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Abstract 
It is often assumed in official statistics that statistics based on complete 

enumerations like census records are ‘true values’, so statistical inference is 

unnecessary, or even not allowed for such statistics. I argue that whether a 

statistic is random depends not only on the data source, but also on the use to 

which the statistic is put. I exemplify several applications in which statistics 

based on complete enumerations should be interpreted as realizations of 

random variables. Variance estimation methods are discussed, and finally, 

Statistics Austria’s estimator of the standard error of the annual total fertility 

rate of small areas is presented. 
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1.  Introduction 

In November 2011, an internal presentation was given at Statistics Austria on health statistics, 

including a slide on differential mortality. Based on a linkage of census records with death 

certificates in a follow-up period, it was shown that unskilled laborers had a mortality risk 

1.50 times as high as non-manual employees, and a confidence interval suggested excess 

mortality to be statistically significant. Since both census records and death certificates are—at 

least in concept—complete enumerations, a question was raised why one should calculate a 

confidence interval for a statistic that was already a ‘true value’. 

A good many times I have heard questions like that one. The subject is clearly becoming more 

important, for official statistics increasingly uses administrative data rather than sample 

surveys. Yet it appears to me that official statistics has so far hardly dealt with the issue in a 

systematic way. The objective of my paper is to close that gap. 



European Conference on Quality in Official Statistics (Q2016) 

Madrid, 31 May-3 June 2016 

2 

 

Whereas the use of ‘complete enumerations’ in official statistics is rather recent in fields like 

income statistics (tax records), it has a much longer history in demography. This refers not 

only to population censuses, but also to vital statistics (birth, death and marriage records). And 

just because of that, we know more about the question of statistical inference from 

demography than from other fields. This is now illustrated by some enlightening quotations. 

As quoted by Hoem (1986), “Westergaard (…) realized already a century ago that there can be 

stochastic variation in vital statistics even when the data do not come from a sample survey”. 

Deming and Stephan (1941) clarify that, in contrast to other applications like revising election 

districts, “as a basis for scientific generalizations and decisions for action, a census is only a 

sample”. Udry et al. (1979) investigate demographic rates for small areas and notice that “the 

instability over time of such rates, although not sampling error, may be thought of as being 

generated by random processes (…). Thus, the observed rate may deviate from the 'true' rate”. 

Chiang (1984: p. 78) considers the variance of age-specific death rates and mentions that 

“statistically speaking, human life is a random experiment and its outcome, survival or death, 

is subject to chance”. Brillinger (1986) is concerned with the question, “do two death rates 

differ by more than some level of natural fluctuations?”. 

We see that inference for statistics based on complete enumerations has quite a tradition in 

demography, albeit rather in academic demography than in official statistics. In the following I 

will give some justifications for that stochastic perspective and propose its application in 

certain situations. My purpose is to give the reader a good feeling when he should interpret 

complete enumerations’ outcomes as realizations of random variables rather than ‘true values’. 

I am however not concerned—save for an example at the very end—with particular statistical 

models. Of course, in applications not only the principal decision on the stochastic approach, 

but even more so the choice of the model matters. 

2.  Randomness in Complete Enumerations 

Why is there opposition to statistical inference for population parameters in case of complete 

enumerations? Obviously, it is not just the extra amount of work that one has to put into it, but 
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a deeper theoretical, philosophical issue. In this respect, we should remember that probability 

theory—the mathematical foundation of statistical inference—does not contain any 

substantive definition of basic concepts such as ‘random experiment’, ‘probability’, or 

‘independent events’, but relies purely on formal arguments. So in principle any statistical 

problem can be formulated in probabilistic terms. Jagers (1986) gives a nice demographic 

example, clarifying “how can there be randomness when everything is determined”. 

It might also be good to remember some formal logic, to avoid a false converse. If estimates 

based on sample surveys require statistical inference, then it does not follow that complete 

enumerations forbid inference. Instead, if inference is not required, then the figure has been 

obtained by a complete enumeration (or conditionally on an observed sample). 

I believe that opposition to statistical inference in case of complete enumerations roots in a 

narrow understanding of ‘randomness’, which refers exclusively to drawing a sample from a 

finite population. This may have to do with the fact that many academic staff in official 

statistics are social scientists, which during their studies learn statistics specifically as a tool 

for analyzing sample survey data. However, there are many other applications of statistics than 

survey sampling. In engineering for instance, stochastic approaches are typically applied to 

tolerance bands and measurement errors, and most statistical textbook examples of ‘random 

experiments’ such as coin tosses or dice rolls are instances of infinite populations. 

In a more general perspective, randomness may be understood as a lack of information. 

Clearly, even a statistic based on a ‘complete enumeration’ may not contain all necessary 

information if it is used otherwise than just for descriptive purposes. It may then be beneficial 

or even required to take a stochastic approach, interpreting the statistic as a random outcome 

of some unobserved underlying law. 

There is however a statistical difference between randomness in sample drawing and 

randomness in a more general sense. Namely, only in the former case is randomization usually 

under the statistician’s control. This means that statistical inference for complete 
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enumerations’ outcomes is somewhat less ‘objective’ than inference from a sample to a finite 

population. 

3.  Applications of the Stochastic Approach 

Official statistics is increasingly demanded to produce not just annual national or regional, but 

also small-area and short-period figures. In many instances such figures are percentages, rates 

and the like, abstracting from the underlying absolute numbers. Now it is generally agreed that 

percentages and rates based on small numbers are not meaningful. For example, if in a small 

area no death occurs within a calendar year, then all age-specific death rates are zero and so 

life expectancy is infinite (compare also Manton et al. 1981). So in publication of statistical 

figures, one is advised to suppress or at least indicate figures for small populations. But how 

small is small? An obvious answer lies in the stochastic approach, defining a limit for the 

standard error of a statistic. 

A second application is inference for superpopulations, i.e. when the population of interest 

exceeds the enumerated population. The differential mortality figures mentioned in the 

introduction were calculated on behalf of the Austrian Federal Ministry of Social Affairs. Its 

goal was to have empirical evidence to decide whether there should be introduced occupation-

specific pension deductions in case of early retirement. Now any change in pension policy 

would naturally be applied to a population in the future, whereas the empirical evidence for it 

refers to a population in the past. So it is in order to interpret the empirical evidence as a 

random instance of a more general population (covering, of course, also future populations), 

and hedge against random fluctuations in the observed data. In that case the assumed sample 

refers to a random period of time, or in the case of a census, a random snapshot in time. 

Of course, statements about a superpopulation may also be of interest in the case of genuine 

sample data. In that case it simply means that the target population exceeds the sampling 

frame. Kish (1986) distinguishes two steps of statistical inference, an ‘objective’ step from the 

sample to the frame, and a ‘subjective’ step from the frame to the target population. 
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Interestingly, the principle idea behind the superpopulation approach has been applied for a 

long time in a classical application of official statistics, namely the graduation of age-specific 

mortality rates in a life table (Spiegelman 1968: Ch. 5). The idea behind it is precisely to 

abstract from random deviations in an observational period to a more fundamental underlying 

pattern of age-specific mortality. Given that graduated life tables are often used for legal and 

actuarial purposes, it is evident that their target population reaches beyond the observational 

period. 

Then, accounting for uncertainty in population outcomes may increase efficiency when such 

outcomes are related to explanatory variables in regression models. In particular, one may 

apply weighted regression with weights inversely proportional to estimated variances. Indeed 

it seems quite natural that outcomes for large populations should be given greater weight than 

for small populations. Two applications in epidemiology are Manton et al. (1981) and Pocock 

et al. (1981). 

Finally, the stochastic approach allows for efficient use of resources in plausibility checking 

and error detection. Before publication of official statistics, data are usually checked first on 

the micro and then on the macro level. The goal of macro level plausibility checking is to 

identify values which seem ‘implausible’, in order to look for possible errors. Especially when 

comparing outcomes with previous years’ values or other benchmarks, implausibility—a 

rather vague concept—may be operationalized by the much stronger statement of low 

probability. Ranking check results by ascending probabilities then provides a sensible priority 

list. Compare Brillinger’s (1986) detection of a very large residual in a mortality time series, 

which turned out to be a misprint. 

4.  Variance Estimation 

So if one has decided on the stochastic approach, how can one estimate variances? Essentially 

in the same way as for sample survey data, although special sampling features such as 

disproportionate sampling or nonresponse are of course not applicable to complete 

enumerations. 
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A first strategy which has been used by Udry et al. (1979) is to partition the full data into 

pseudo-replicates. A year may be partitioned into 12 months, a district into its municipalities. 

The deficiencies of this approach are obvious. The available data may simply not allow for 

partition, and even if they do, it works only if the pseudo-replicates do not differ with respect 

to the expected outcome in any systematic way (e.g., in the case of 12 months there must be 

no seasonal variation, or the seasonal variation must be known a priori). 

A better approach is to draw bootstrap resamples, in the same way as it is done for genuine 

sample data. This however is computationally intensive and requires rather detailed data. In 

particular, the bootstrap is usually not applicable when one has at hand only aggregated data. 

From my point of view, the most promising approach is variance estimation based on 

parametric models. An example is given below. Parametric models usually require only 

aggregate information, and even more important they provide a formula template which can be 

implemented in regular production of official statistics. The main drawback is of course that 

the assumed model may be wrong. But even so a parametric estimate is not useless, because it 

may serve as a benchmark, and in many applications one does have some idea how the actual 

variance relates to it. Next I give an example. 

5.  Example 

The period total fertility rate (TFR) is the sum of age-specific fertility rates over reproductive 

ages in a calendar year. It is a common cross-sectional fertility indicator and indicates the 

mean number of children a woman would bear in lifetime, given current age-specific fertility 

rates and neglecting female mortality. Taking single years of age and defining reproductive 

age from 15 to 49 years, one has 

                                                  
  

  

  
     ,                                        (1) 

with    the annual total of live births of children with mother aged   at birth, and    the 

annual total of person-years lived by women aged   (the population at risk). 
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Statistics Austria calculates (1) not only for all of Austria, but also for regions and districts. On 

the district level, TFR ranged substantially in 2014 from 1.03 (district A) to 1.85 (B). Can we 

conclude that fertility was 80% higher in B than in A? From a purely descriptive point of 

view, we can. However, the observed TFRs are both based on small totals of 300-odd live 

births, so to draw more general conclusions, we take a stochastic perspective and interpret the 

observed values as random outcomes of more general fertility levels. 

Now in a cross-sectional perspective, one can reasonably assume that the population at risk is 

nonstochastic and fertility rates of different age groups are statistically independent, so 

                                              
       

  
 

  
     .                               (2) 

We assume the age-specific total of births to be Poisson distributed, implying identity of 

expectation and variance, so 

                                                    
  

  
 

  
     .                                (3) 

Estimator (3) is regularly applied by Statistics Austria and was also used by Doblhammer et al. 

(2010) to monthly estimates of the German TFR. For the mentioned districts A and B in 2014, 

estimated standard errors are 0.06 and 0.10, respectively. An approximate 95 percent 

confidence interval for the B/A ratio in the TFR (based on logarithmic transformation) is 

[1.54, 2.10], indicating that fertility in B is significantly greater than in A. 

The assumption of Poisson distributed    is not without question (Winkelmann 2010: Ch. 2). 

In particular, individual women’s risk of giving birth may vary beyond age and region. Such 

unobserved heterogeneity increases the actual variance compared to the Poisson model 

variance. A small overdispersion is also introduced by clustering of events by multiple (twin) 

births (see also Kegler 2007). However, negative occurrence-dependence—after a delivery, a 

women usually cannot give birth for around 11 months—pulls in the opposite direction. 

Altogether (3) presumably underestimates the actual variance, so the true uncertainty in the 

B/A ratio might be somewhat larger than our approximate confidence interval suggests. 
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6.  Summary 

Statistical inference may be applied not only to estimates based on sample surveys, but—

depending on the use of a statistic—also to figures obtained by complete enumerations. The 

key lies in a wider understanding of randomness than just sample drawing, based on a general 

lack of information. The issue is becoming more important in official statistics, as sample 

surveys are replaced as data sources by administrative data. 

Applications of the stochastic approach in case of complete enumerations include 

identification of small areas, inference for superpopulations, regression analysis, and error 

detection. Variance estimates may be obtained by pseudo-replicates, bootstrap resamples or 

parametric approaches. An example was presented for small-area total fertility rates. 
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