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Abstract 

The trend towards register based censuses is obvious in Europe. For these 

kind of censuses, record linkage across administrative data bases is essential. 

Without unique personal identifiers (PIDs) record linkage is laborsome, but 

routine. If the jurisdiction requires the use of encrypted identifiers for record-

linkage, the task is challenging. The set of problems associated with this task 

has created an academic subfield called Privacy Preserving Record Linkage 

(PPRL). PPRL requires the use of advanced encryption techniques. Most 
often, standard encryptions such as MD5 or SHA-1 are applied on phonetic 

codes of identifiers. In real world settings, such codes miss many true links 

due to excessive errors in identifiers. Furthermore, missing identifiers usually 

require the use of hierarchical matching schemes. Therefore, new techniques 

such as embedding or Bloom Filters have been suggested. However, most 

encryption techniques can be attacked with cryptographic methods. All 

applications of PPRL have to demonstrate that their encryptions can resist at 

least a reasonable amount of cryptographic efforts. Based on recent 

cryptographic research, recommendations on the practical applications for 

PPRL will be given. Furthermore, in order to handle census scale datasets, 

special techniques for finding nearest approximate neighbors of encrypted 

records (blocking techniques) have to be used. The state of the art on 
blocking within PPRL will be described briefly. 
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1.  Introduction 

Register-based censuses are becoming more and more common in Europe (Valente, 2010). In 

countries where unique personal identifiers (PIDs) are not available, linking real-world entities 

across administrative data requires the use of identifiers such as names or birth dates (Abbott 

et al., 2016). Since these identifiers are prone to error, they can lead to non-linked pairs, which 

can in turn lead to biased estimates (Harron et al., 2014, Bohensky, 2016). 

If the jurisdiction does not allow the use of unencrypted identifiers for record linkage, 

different linkage techniques are required allowing for errors in encrypted identifiers. This field 

of research is known as Privacy Preserving Record Linkage (PPRL, Vatsalan et al. (2013)). 

Many different approaches to PPRL have been suggested, for example, phonetic codes (Borst 

et al., 2001, Karmel et al., 2010), embedding (Scannapieco et al., 2007), reference lists (Pang 

and Hansen, 2006), secure multi-party protocols (Vaidya and Clifton, 2003) and Bloom Filters 

(Schnell et al., 2009). In current practice, only variants of phonetic codes and Bloom Filters 

are in use with census-scale data. Although phonetic codes are tried and tested for many years, 

especially in medical applications, simple implementations will miss many true links. 

Therefore, the application of phonetic codes usually requires a series of linkages using 

different encrypted identifiers (Abbott et al., 2016). The consequences of these procedures for 

inconsistent linkage decisions are hardly understood so far. Given this unsatisfactory state, 

research for alternative procedures is ongoing. Currently, the only alternative to phonetic 

encodings are Bloom Filter-based approaches. Therefore, we will concentrate on these. For a 

full overview of other relevant PPRL techniques, see Vatsalan et al. (2013). 

2.  Using Bloom Filters and Cryptographic Long-term Keys (CLKs) for encoding 

identifiers 

Bloom (1970) suggested rapidly checking set membership by hashing keys to a bit vector. Its 

application for PPRL was suggested by Schnell et al. (2009). Currently, Bloom Filter-based 

encryptions are regularly used for private linking of personal data (Randall et al., 2013, 

Schnell et al., 2014, Schmidlin et al., 2015, Schnell and Borgs, 2015), to store ordinal data 
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(Vatsalan and Christen, 2016) and even for masking geographical data (Farrow, 2014, Farrow 

and Schnell, Under review). 

Initially, a Bloom Filter is a bit array of the length l with all elements set to zero. To encrypt 

an identifier, the corresponding string is split into subsets of the length n. Most often, n=2 is 

used, these subsets are called bigrams. The bigrams are stored in a Bloom Filter by mapping 

the numeric representation of a linear combination of their SHA1- and MD5-strings to the 

Bloom Filter:  

                                              (1) 

The resulting position in the Bloom Filter is set to one. This mapping is repeated k times. This 

kind of linear combination is the “double hashing” scheme proposed by Kirsch and 

Mitzenmacher (2006).  

For practical applications, we recommend using         hash functions for a Bloom 

Filter length of       , depending on the average amount of n-grams in the data (we use 

smaller values of k for higher average n-grams of all identifiers). Due to collisions, each n-

gram sets up to k positions in the Bloom Filter to one. The resulting array of zeroes and ones is 

a Bloom Filter encryption of a single identifier. The desirable property of Bloom Filters is that 

they are similarity-preserving: an appropriate similarity function will find similar Bloom 

Filters despite small errors in the identifiers. The initial proposal for Bloom Filter-based 

Record Linkage used one separate Bloom Filter for each identifier. Schnell et al. (2011) 

showed that instead of separate Bloom Filters, one common Bloom Filter for all identifiers can 

be used. The resulting combined Bloom Filter is called a Cryptographic Long-term Key 

(CLK). In practice, CLKs seem to perform slightly inferior to separate Bloom Filters, but in 

many settings, CLKs are easier to apply. Furthermore, CLKs are harder to attack by simple 

frequency attacks than separate Bloom Filters. It should be kept in mind that all kinds of 

encryptions of identifiers (including phonetic keys) are prone to frequency attacks: a very 

common combination of personal identifiers will still be very common after an encryption. 

Therefore, encryptions of identifiers should employ the cryptographic principle of diffusion. 
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For practical considerations regarding such protective measures against attacks, see Schnell 

(2016). 

In a first cryptographic study of Bloom Filter encryptions beyond frequency attacks of the 

entire bit pattern, Niedermeyer et al. (2014) showed that the double hashing scheme for Bloom 

Filters is vulnerable to cryptographic attacks of individual bit patterns resulting from bigrams. 

Recently, the double-hashing scheme has been successfully attacked within CLKs (Kroll and 

Steinmetzer, 2015). However, Niedermeyer et al. (2014) suggested to use full random hashing 

as a replacement of the double hashing scheme. For simulations, random hashing is 

implemented using a linear-congruential pseudo-random number generator (LCG, Stallings, 

(2014)) to generate a sequence X: 

                         (2) 

where a and c are carefully chosen constants. The sum of the index of the bigram in a bigram 

table and a secret cryptographic key is used as an initial value   . For each bigram, k 

subsequent numbers of the LCG are generated.  For an actual implementation in practice, we 

would recommend using a cryptographic pseudo-random number generator instead of the 

LCG. Of course, a shared table of physically generated true random numbers could be used 

instead. Research on the cryptographic properties of CLKs is ongoing, but up to now, no 

successful attack on CLKs using random hashing is known.  

3.  Linking large databases with CLKs 

While CLKs enable error-tolerant linkage through similarity measures, calculating the 

similarity is computationally expensive. If the full Cartesian product of two data sets has to be 

computed, the amount of computations grows too fast for practical applications with census-

scale data. To reduce the number of comparisons, special techniques for finding nearest 

neighbors (blocking) have to be used. 



European Conference on Quality in Official Statistics (Q2016) 

Madrid, 31 May-3 June 2016 

5 

 

3.1. Finding best matching CLKs 

There are several methods for finding nearest neighbors in high dimensional binary space. In 

practice, most often Canopy Clustering (CC, McCallum et al. (2000)) and Sorted nearest 

neighborhood blocking (SNN, Hernandez and Stolfo (1998)) are used. 

Although tree-based approaches are widely regarded as not suitable for finding nearest 

neighbors in binary space, Bachteler et al. (2013) suggested Multibit Trees for linking CLKs. 

Multibit Trees were introduced by Kristensen et al. (2010) for applications in 

chemoinformatics. During the search for nearest neighbors with Multibit Trees, the search is 

restricted to sub-trees with the same amount of bits set to one. For each cardinality of a query 

bit vector, we can estimate an upper similarity bound for all trees built from a second data set 

(Swamidass and Baldi, 2007). Only trees with an upper similarity bound higher than a given 

threshold will be considered for the calculation of the similarity. This reduces the search space 

considerably. Due to its fast computation, most often the Tanimoto similarity is used. A 

Tanimoto-coefficient is defined as the ratio of the bit positions set to one in both vectors A and 

B to the total number of bits set to one in A and B: 

       
         

         
         (3) 

Lower thresholds will consider trees with lesser similarities, thereby increasing the search 

space and the risk of false positive classifications. Conversely, the amount of true matches will 

increase as well. For applications with CLKs, simulations indicate a Tanimoto-threshold of 

0.85 to be optimal (Schnell, 2016).  

The currently most promising approaches to find nearest neighboring CLKs (e.g. Canopy 

Clustering (CC), Sorted nearest neighborhood blocking (SNN) and Multibit Trees (MBT)) 

were compared by Schnell (2014). While the SNN blocking was shown to be faster than both 

other methods, its resulting linkage quality for CLKs was unacceptable. Furthermore, if the 

number of ones in a Bloom Filter (the Hamming weight) is identical for all CLKs, SNN 
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blocking will fail. The restriction of identical Hamming weights might be used to impede 

cryptographic attacks (Schnell et al., 2016).  

While both CC and MBT showed virtually the same linkage quality, Multibit Trees 

outperform Canopy Clustering by large. In a recent comparison, a state-of-the-art parallel 

algorithm (PPJoin) was also outperformed by Multibit Trees (Sehili et al., 2015). 

3.2 Quality and Speed of CLKs with Multibit Trees 

CLKs in conjunction with Multibit Trees are able to achieve high-quality linkage results. 

Using Australian health data with standard CLKs and Multibit Trees, up to 97% of all possible 

matches were found, while keeping the amount of false positives under 5% (Brown et al., 

2016). It should be noted, that no blocking was used at all. For example, by using date of birth 

as an external block or as a salt (Niedermeyer et al. 2014), precision can be improved. 

The critical dependence of CLK performance on the similarity threshold is easily 

demonstrated by an example using German cancer registry data, shown in  Fig. . Using a 

Tanimoto-threshold of 0.85 (as recommended earlier), we are able to achieve a F-Score of 

0.975.  
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Fig. 1: Precision, Recall and F-Score for linking cancer registry data (                  ) with CLKs 

using k=10 hash functions and Multibit Trees by varying thresholds. 

Multibit Trees are able to effectively link even very large amounts of data. Using a threshold 

of 0.85, files up to 10 million records can be linked without additional blocking in less 

than100 hours on standard hardware. External blocks for Multibit Trees on CLKs for census-

sized data have been studied by Schnell (2014). For example, if the year of birth is encrypted 

(e.g. with SHA-256) and used to form blocks of CLKs in which the Multibit Trees are used 

separately, the maximum block size will be smaller than one million records for nearly all 

censuses. Using this approach, a full Census can be linked privately on a small server-cluster 

in less than a week.  

4.  Conclusion 

Privacy Preserving Record Linkage, as shown here, works well despite errors in identifiers. 

False positive links can be further reduced by including additional identifiers, for example, 

place of birth or geographical distances between possible record pairs. However, simulations 
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have shown that the performance of Bloom Filter-based PPRL is dependent on the chosen 

parameters (Schmidlin et al., 2015). Therefore, we are currently developing an automatic 

method of choosing optimal parameters for Bloom Filter-based PPRL. Of course, exploring 

the cryptographic properties of CLKs to increase their resilience against cryptographic attacks 

is of primary importance for the wide-spread use of this PPRL approach. Finally, speeding up 

Multibit Trees by using GPUs and implementing these methods on Hadoop will be further 

steps in this research program. 
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