

The use of regression models in labour market flow statistics

Session 2

1 June 2016

Hannah Kiiver & Frank Espelage Eurostat

Hannah.kiiver@ec.europa.eu

Frank.espelage@ec.europa.eu

Introduction to Labour Force Survey (LFS) based flow statistics

- Quarterly survey, sample overlap
- Match data, re-calculate weights to fit marginal distribution of ILO status (unemployment, employment, inactivity) in both quarters
- Flows for ILO- status, 15-74 age group, by sex
- High demand for additional breakdowns:
 - Age, education, duration of unemployment

Transitions in labour market status in 26 EU MS, Q1-Q2 2015

(in % of initial status; population aged 15-74)

	Employment Q2 2015	Unemployment Q2 2015	Inactivity Q2 2015
Employment Q1 2015	97.1%	1.3%	1.6%
Unemployment Q1 2015	18.6%	64.6%	16.8%
Inactivity Q1 2015	3.0%	3.7%	93.3%

Share of confidential data points of flows data, by breakdown, 2015Q1-Q2

Breakdown variable	Total # of breakdowns	% confidential data points 26 MS – change				
		26 MS - total	of ILO status	EE/LU/MT - total		
Age groups	3	12	17	50/41/56		
Age groups, sex	6	21	30	71/61/57		
Education, sex	6	25	36	67/69/59		
Duration of unemployment, sex						
(sample restricted to flows from unemployment in initial period)	8	26	36	91/95/90		

How to meet demand for data?

- (Very) long run: improve sample size, provide matched micro-data with longitudinal weights
 - For small countries, this may not be a solution
- Short run: use simple regressions to extract information
 - Again, limits for small countries
- Issues
 - Modelling in general
 - How to determine method, regression specification?
 - Use of weights in regression

Approach for flow statistics I

- Modelling is already used, also in survey data; use of regression analysis on final data unusual, but not different.
 - → replace descriptive statistics, no causality
- Keep goal in mind: simple model, use variables of interest for breakdowns, present results similarly to current tables.
 - → logit, interaction terms, present predicted probabilities
- Use of weights determined by available technical information and regressors.
 - > results similar with and without use of weights

Approach for flow statistics II

Dependent variable =1 if individual moved from unemployment to employment

Explanatory variables	Definition	(1)	(2)	(3)	(4)	(5)*
	0= female					
sex	1=male x		X	X	X	X
age	continuous	X	X	X	X	X
age*age				v		
	0= less 3 mths				х	х
	1= 3 to 11 mths					
duration of unemployment	2= 12-23 mths	X	X			
	3= 24+ mths					
	0= ISCED0_2					
educational attainment	1=ISCED3_4	X	X	X	X	x
	2=ISCED5_8					
sov*duration			37			
education*duration					v	
aga*duration				**		
	0=2014					
year	1=2015					X
year*duration				· · · · · · · · ·		X

Example: flow unemployment to employment, Spain 2014Q2-Q3

Logistic regression

Log pseudolikelihood = -1760.0138

Number of obs = 14602 Wald chi2(14) = 527.81 Prob > chi2 = 0.0000 Pseudo R2 = 0.0722

53	2 5	Robust		5.1.1	1050 0 5	
flow_UE	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
sex						
male	.3056156	.0595245	5.13	0.000	.1889498	.4222814
education						
ISCED 3-4	.1022014	.0748458	1.37	0.172	0444937	.2488964
ISCED 5+	.3620214	.0716501	5.05	0.000	.2215898	.5024529
age	.1010368	.0322819	3.13	0.002	.0377654	.1643082
c.age#c.age	0013497	.0004243	-3.18	0.001	0021814	0005181
c.age#c.age	0013497	.0004243	3.10	0.001	0021014	0003161
duration						
3-11 mths	4597966	.7365629	-0.62	0.532	-1.903433	.9838402
12-23 mths	9064614	.9605456	-0.94	0.345	-2.789096	.9761734
24 mths +	9308355	1.041637	-0.89	0.372	-2.972406	1.110735
1 "						
duration#c.age						
3-11 mths	.0105112	.0412544	0.25	0.799	070346	.0913683
12-23 mths	.0089656	.0535842	0.17	0.867	0960574	.1139887
24 mths +	0258149	.0551312	-0.47	0.640	1338701	.0822403
duration#c.age#c.age						
3-11 mths	0001735	.0005427	-0.32	0.749	0012371	.0008902
12-23 mths	0003622	.0007027	-0.52	0.606	0017394	.0010151
24 mths +	.0003022	.0007027	0.32	0.747	0011292	.0015735
ZI mons :	.0002222	.0000055	0.52	0.717	.0011232	.0010/33
cons	-2.876687	.5788542	-4.97	0.000	-4.01122	-1.742153

		Delta-method	l			
12016	Margin	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
ZUI Uat#duration						
1#<3 mths	.2843314	.016668	17.06	0.000	.2516628	.3170001
European Conference on 3-11 mths Quality in Official Statistics 3-11 mths	.2268469	.0115369	19.66	0.000	.204235	.2494589
1#12-23 mths	.1387329	.0130725	10.61	0.000	.1131114	.1643545
1#24 mths +	.0868739	.0100641	8.63	0.000	.0671486	.1065992
2#<3 mths	.3121298	.0156889	19.89	0.000	.2813801	.3428795
2#3-11 mths	.2519284	.0108762	23.16	0.000	.2306114	.2732454
2#12-23 mths	.148425	.0119908	12.38	0.000	.1249234	.1719265
2#24 mths +	.0922378	.0073803	12.50	0.000	.0777728	.1067029
3#<3 mths	.3264617	.0172123	18.97	0.000	.2927262	.3601971
3#3-11 mths	.2638343	.011879	22.21	0.000	.240552	.2871167
3#12-23 mths	.1476279	.0126235	11.69	0.000	.1228864	.1723695
3#24 mths +	.0930459	.0075154	12.38	0.000	.078316	.1077758
4#<3 mths	.326251	.0175553	18.58	0.000	.2918433	.3606587
4#3-11 mths	.261248	.0119884	21.79	0.000	.2377513	.2847448
4#12-23 mths	.1364823	.0119174	11.45	0.000	.1131245	.1598401
4#24 mths +	.0891894	.0078385	11.38	0.000	.0738263	.1045526
5#<3 mths	.3115127	.0166884	18.67	0.000	.278804	.3442214
5#3-11 mths	.2444494	.011241	21.75	0.000	.2224175	.2664812
5#12-23 mths	.1169576	.0099502	11.75	0.000	.0974555	.1364598
5#24 mths +	.081185	.0071025	11.43	0.000	.0672644	.0951057
6#<3 mths	.2833567	.0179065	15.82	0.000	.2482607	.3184528
6#3-11 mths	.2153376	.0119688	17.99	0.000	.1918791	.2387961
6#12-23 mths	.0924827	.0091089	10.15	0.000	.0746295	.1103359
6#24 mths +	.0700849	.0061073	11.48	0.000	.0581149	.082055
7#<3 mths	.2442115	.0239493	10.20	0.000	.1972717	.2911513
7#3-11 mths	.1774888	.0154999	11.45	0.000	.1471095	.2078681
7#12-23 mths	.0671462	.0103013	6.52	0.000	.046956	.0873364
7#24 mths +	.057285	.0064988	8.81	0.000	.0445476	.0700224
8#<3 mths	.1980107	.0322513	6.14	0.000	.1347993	.2612221
8#3-11 mths	.1358893	.0195454	6.95	0.000	.097581	.1741975
8#12-23 mths	.0445842	.0112087	3.98	0.000	.0226157	.0665528
8#24 mths +	.0442588	.0080988	5.46	0.000	.0283855	.0601322
9#<3 mths	.1499213	.0386101	3.88	0.000	.0742469	.2255957
9#3-11 mths	.0959995	.0214939	4.47	0.000	.0538724	.1381267
9#12-23 mths	.0270156	.0104263	2.59	0.010	.0065803	.0474508
9#24 mths +	.0322779	.0093854	3.44	0.001	.0138828	.050673

Predicted probability for transition from unemployment to employment, Q2-Q3 2014, Spain

Marginal effects of duration evaluated at 5-year age intervals covering ages 25 to 65

