

Latent Class Multiple Imputation for multiply observed variables in a combined dataset

Session 15 – June 2, 2016

L. Boeschoten MSc, dr. D.L. Oberski, prof. Dr. A. G. de Waal Tilburg University & Statistics Netherlands I.boeschoten@tilburguniversity.edu

Overview

- Introduction
- MILC method
- Simulation
- Application
- Conclusion and discussion

Introduction

Combined datasets

- Registers and surveys
- Linked on unit level
- Examples: Dutch SSD or 2011 census
- Categorical variables
- Used to produce large tables (hypercubes)

Measurement errors in a combined dataset Invisibly and visibly present

Invisibly present errors

- Compare responses on indicators measuring the same latent "true" variable within a combined dataset
- Latent variable models

Visibly present errors

- Logical relations between variables make errors visibly present
- Edit rules

Measurement errors in a combined dataset Solutions

Goal: To estimate cross tables between variables, taking measurement error and edit restrictions into account, and the extra uncertainty this creates.

Invisibly present errors: Multiple indicators from combined dataset

Visibly present errors: Restriction covariates

Estimation: Latent Class analysis

Further analyses: Multiple Imputation

MILC method

Step by step

1. Original combined dataset

- 2. *M* bootstrap samples of the combined dataset
- 3. M Latent Class models

MILC method

Step by step

- 3. M Latent Class models
- 4. *M* new imputed variables in the original combined dataset
- 5. Estimates of the new imputed variables

6. Pool the estimates using Rubin's rules

Simulation approach

Data generation

- Three dichotomous indicators (Y1, Y2, Y3)
 of latent variable X
- Dichotomous covariate Q and restriction covariate Z

Reference values

- 2x2 table of imputed latent variable W and Z
- Logistic regression of W on Q

Simulation conditions

- Different classification probabilities
- Different *P(Z)* & *P(Q)*

Simulation approach

Entropy R²

- How well can you predict class membership based on the observed variables?
- Score between 0 and 1
- 1 means perfect prediction

Simulation conclusions

- Quality of the results is very dependent on entropy R² of the LC model
- "True" logistic regression estimates can be obtained when the entropy R^2 is at least 0.60
- "True" cross table counts under edit restrictions can be obtained when the entropy R² is at least 0.90

Latent dichotomous variable X measuring home ownership (1 = "own", 2 = "rent")

Latent dichotomous variable *X* measuring *home ownership* (1 = "own", 2 = "rent")

BAG register:

1 indicator

Latent dichotomous variable *X* measuring *home ownership* (1 = "own", 2 = "rent")

BAG register:

1 indicator

LISS background study

- 1 indicator
- 1 covariate: marriage
 (1="married", 2="not married")

Latent dichotomous variable X measuring home ownership (1 ="own", 2 ="rent")

BAG register:

• 1 indicator

LISS background study

- 1 indicator
- 1 covariate: marriage
 (1="married", 2="not married")

LISS core study on housing

 1 restriction covariate: rent benefit (1="yes", 2="no")_

Latent dichotomous variable X measuring home ownership (1 = "own", 2 = "rent")

BAG register:

1 indicator

LISS background study

- 1 indicator
- 1 covariate: marriage
 (1="married", 2="not married")

LC model has an entropy R² of 0.93

LISS core study on housing

 1 restriction covariate: rent benefit (1="yes", 2="no")

2x2 table of imputed latent variable home ownership and restriction covariate rent benefit

	P(own x r.b.)	P(rent x r.b.)	P(own x no)	P(rent x no)
BAG register	0.005	0.295	0.055	0.644
LISS background	0.010	0.289	0.029	0.672
MILC	0.000	0.295	0.021	0.679

Logistic regression of covariate *marriage* on imputed latent variable *home ownership*

	Intercept		Not married	
	<u>estimate</u>	<u>95% CI</u>	<u>estimate</u>	<u>95 % CI</u>
BAG register	2.466	[2.209; 2.723]	-1.233	[-1.390; -1.076]
LISS background	2.762	[2.490; 3.034]	-1.304	[-1.468; -1.141]
MILC	2.822	[2.553; 3.091]	-1.416	[-1.685; -1.147]

Conclusion and discussion

Conclusion

- Quality of the results is very dependent on entropy R² of the LC model
- Different entropy R^2 values are required for different types of estimates
- MILC appeared to be useful in practice

Discussion

- Covariates
- Missing values

