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Combined datasets

e Registers and surveys

e Linked on unit level

e Examples: Dutch SSD or 2011 census

e (Categorical variables

e Used to produce large tables (hypercubes)
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Invisibly present errors

e Compare responses on indicators measuring the
same latent “true” variable within a combined
dataset

e Latent variable models

Visibly present errors

e Logical relations between variables make errors
visibly present

e Edit rules
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Goal: To estimate cross tables between variables, taking
measurement error and edit restrictions into account, and
the extra uncertainty this creates.

Invisibly present errors: Multiple indicators from combined
dataset

Visibly present errors: Restriction covariates
Estimation: Latent Class analysis

Further analyses: Multiple Imputation
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71 s Step by step

1. Original combined dataset

/1 \

2. M bootstrap samples of the
combined dataset

m [ Tm 3. M Latent Class models
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3. M Latent Class models

4. M new imputed variables in the
original combined dataset

5. Estimates of the new imputed
variables

6. Pool the estimates using Rubin's rules
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Data generation

e Three dichotomous indicators (Y1, Y2, Y3)
of latent variable X

e Dichotomous covariate Q and restriction
covariate Z

Reference values

e 2x2 table of imputed latent variable W
and Z

e Logistic regression of Won Q

Simulation conditions
e Different classification probabilities
e Different P(Z) & P(Q)
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 How well can you predict 1.01

class membership based
on the observed variables?

e Score between 0 and 1

entropy R

=
fan}

1 means perfect prediction
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e Quality of the results is very dependent on entropy
R? of the LC model

e “True” logistic regression estimates can be obtained
when the entropy R? is at least 0.60

e “True” cross table counts under edit restrictions can
be obtained when the entropy R? is at least 0.90
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Latent dichotomous variable X measuring home
}Wl | QualityinOpfficialstatistics OW/')E‘fShlp (1 :”Own”, 2 :”rent”)
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2016 Application on a combined dataset

BAG register:

e 1 indicator
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2016 Application on a combined dataset

BAG register:

e 1 indicator

LISS background study
e 1 indicator

* 1 covariate: marriage
(1="“married”, 2=“not married”)
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BAG register:

e 1 indicator

LISS background study
e 1 indicator

1 covariate: marriage
(1="“married”, 2=“not married”)

LISS core study on housing

e 1] restriction covariate: rent
benefit (1="yes”, 2=“no”) =E£
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BAG register:

e 1 indicator

LISS background study
e 1 indicator

1 covariate: marriage
(1="“married”, 2=“not married”)

LC model has an entropy  LISS core study on housing

R? of 0.93 e 1 restriction covariate: rent
benefit (1="yes”, 2="“no”) =E
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2x2 table of imputed latent variable home
L emwemeasaisies  ownership and restriction covariate rent benefit

P(rentxrb.) P(ownxno) P(rentxno)

BAG register 0.295 0.055 0.644
LISS background 0.289 0.029 0.672
MILC 0.295 0.021 0.679
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Application on a combined dataset

Logistic regression of covariate marriage on
imputed latent variable home ownership

Intercept Not married
estimate 95% Cl estimate 95 % Cl
BAG register 2.466 [2.209; 2.723] -1.233 [-1.390; -1.076]
LISS background 2.762 [2.490; 3.034] -1.304 [-1.468; -1.141]
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Conclusion

e Quality of the results is very dependent on entropy R?
of the LC model

» Different entropy R? values are required for different
types of estimates

e MILC appeared to be useful in practice

Discussion
e (Covariates
e Missing values
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