

SURS

We count. Today for tomorrow.

Standard error estimation – how to do it quickly, efficiently and correctly

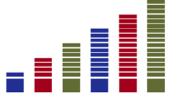
Session number: 25

Date: 3.6.2016

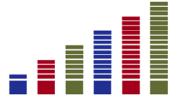
Authors: Rudi Seljak, Jerneja Pikelj, Petra Blažič

Affiliations: Statistical Office of the Republic of Slovenia, Ljubljana,

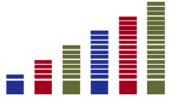
Slovenia


Email: rudi.seljak@gov.si, jerneja.pikelj@gov.si, petra.blazic@gov.si

Contents

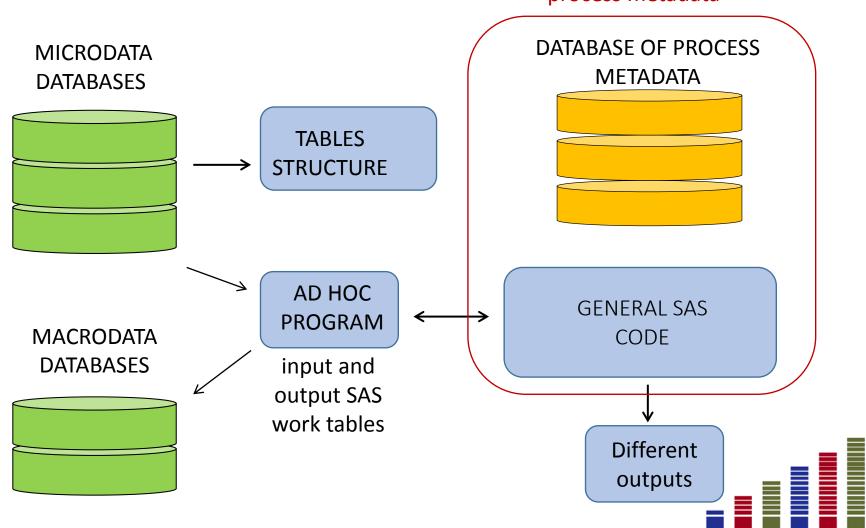

- Introduction
- General solutions main characteistics
- Basic architecture
- Standard error estimation
- Challenges associated with defining process metadata
- Conclusions

Introduction


- The aim of data processing in official statistics is the production of quality statistical data
- Rationalization of statistical processes
- The need for transition:
 - From custom made solutions for surveys (stove pipe approach) to generalised process solutions
 - From domain oriented to process oriented production

General solution – main characteistics

General tool is based on small generic solutions – building blocks


- General SAS macros for e.g. data validation, imputations, systematic corrections, aggregation and standard error estimation, tabulation, quality indicators
- Can be plugged to different datatables in different environments (e.g. ORACLE, SAS)
- Designed as metadata driven systems

Basic architecture

Graphical interfaces for management of process metadata

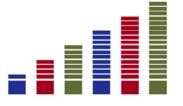
Standard error estimation

Past:

- survey dependent standard error estimation
- direct estimators of standard errors for the key statistics and key domains
- simple linear models for the other statistics and (sub) domains

Present:

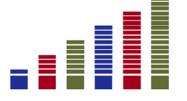
- general rules for standard error estimation for different types of estimators and different types of sampling designs
- new rules for dissemination and presentation of the standard errors
- general application provides quick, efficient and unified standard error estimation system


Structure of the metadata

Statistics:

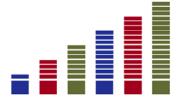
- stat_label label of statistics
- variable name of the variable, needed for the calculation of the statistics
- type type of the statistics

Domains:


- domain_label label of the domain
- dom_var1, dom_var2, ... list of the variables, which define the dimensions of the domain

Process metadata – example (1)

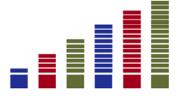
- Community Innovation Survey (CIS)
- We want to estimate the number of innovative enterprises by size classes
 - INOV= $\begin{cases} 1; & \text{if the enterprise is innovative} \\ 0; & \text{otherwise} \end{cases}$
 - SIZE_CLASS= { 1; if the number of employees is greater than 250 2; if the number of employees is between 50 and 250 3; if the number of employees is less than 50

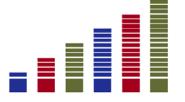

Process metadata – example (2)

Statistics

Stat_label	Variable	Туре
STAT1	INOV	01
STAT2	ONE	01

Domains


Domain_label	Dom_var1	Dom_var2
DOM1	SIZE_CLASS	
DOM2	SIZE_CLASS	INOV


Conclusions

- Importance of the definition of the process metadata different definition could give us different results
- Challenges associated with the form of the microdata input table
- Implementation of statistical processing for all surveys at SURS with SOP
- Future challenges:
 - Macro editing
 - Aggregation and tabulation of indices
 - •

Thank you for your attention!

