

A quality assessment of flash estimates for the income distribution

Session 11 01/06/2016

Aura Leulescu EUROSTAT

<u>Aura.leulescu@ec.europa.eu</u>

Daniel Koch
Sogeti Luxembourg
daniel.koch@ext.ec.europa.eu

Background

- Raising importance of social indicators and income inequlities for policy-making at EU level
- Indicators needed for social impact assessment at national and EU level
- Integrated in the European Semester
- Main source at EU level is EU-SILC
 - Income as structural information
 - Currently available end N+2

Income indicators

Income indicators: deciles, at risk-of-poverty threshold, the at-risk-of-poverty rate, the quintile share ratio and the Gini coefficient

ARPR 2004-2013

Flash estimates on income indicators

- refer to a past yearly reference period (year N);
- refer to a set of distributional indicators for equivalised disposable income
- are based on an information set that includes the latest income data available from EU-SILC) +auxiliary information from the reference period;
- are based on a set of statistical techniques: mainly microsimulation and time series modelling
- are assessed based on a specific quality framework

Quality assessment

- Consistency of auxiliary data sources
- Retrospective performance assessment
 - Extensive testing of different methods and sources
 - ➤ Assess ability to reproduce reference values for target years 2012-2013
 - ✓ Performance metrics for different indicators
 - ✓ Tests distributions
- Uncertainty measurement

Performance metrics

✓ ACCURACY AND CONSISTENCY

$$accuracy = 1 - \left(abs\left(\frac{EST_t}{REF_t} - 1\right)\right)$$

$$consistency = 1 - \left(abs\left(\frac{EST_t}{EST_{t-1}} - \frac{REF_t}{REF_{t-1}}\right)\right)$$

- Mainly for bechmarking and comparative studies
 - Across methods/countries/indicators
- Filter 'a set of good enough performers' to enter the second stage
- Detect difficult countries or indicators
- Assessing method convergence in terms of estimations
- Weighting methods according to their past performance

Performance by country (FE 2012-2013)

Performance by method: zoom in on CZ and IT

Performance by indicator (FE 2012-FE 2013)

- Denote as $\hat{F}_E(x)$ ($\hat{F}_S(x)$) the nowcasted (sample-based) cumulative distribution function at the target year
- The null hypothesis of distribution tests states that the nowcasted sample and the SILC sample are generated from the same population distribution

$$F_E(x) = F_S(x)$$
 for all $-\infty < x < +\infty$

In the case of the Kolmogorov-Smirnov test the similarity measure

$$D(x) = \sup_{x} \left| \hat{F}_E(x) - \hat{F}_S(x) \right|$$

Relative Performance: Rank flash estimation approaches according to D(x)

Absolute Performance: Compute p-value of a given approach

- Two random variables with identical probability distributions have the same set of income indicators
- Two random variables with distinct probability distributions do not necessarily have different sets of income indicators
- Rules of implication
 - $\bar{R}(H_0) \Rightarrow$ Good performance of the income distribution flash estimate
 - ⇒ Good performance of all the income indicator flash estimates
 - $R(H_0) \Rightarrow$ Low performance of the income distribution flash estimate
 - **★** Low performance of all the income indicator flash estimates

Densities		P-Value	ARPT	ARPR	QSR
Non-standardized Income Distributions Again	Distribution Incore Dathbidin Rash Incore Dathbidin St.C	0	1200015000	0.0420.042	2.282.28
Standardized Income Distributions	Distribution Income Dathbution Planh Income Dathbution S.L.C	1	0.60.6	0.0420.042	2.282.28

Confidence Intervals for Indicator Flash Estimates

- Denote as $\hat{\theta}_E$ the flash estimate of a given income indicator and as $\hat{\theta}_S$ the corresponding indicator derived from SILC
- $oldsymbol{\hat{ heta}}_S$ is an unbiased estimator of the population indicator
- We want to test the following null hypothesis

$$H_0: E(\hat{\theta}_E) = E(\hat{\theta}_S) \text{ and } Var(\hat{\theta}_E) \leq Var(\hat{\theta}_S)$$

• If both estimators are uncorrelated, one can use Markov's inequality to define the following confidence interval for $\hat{\theta}_E$ under H_0

$$P(\hat{\theta}_S - 2k\mathbf{SD}(\hat{\theta}_S) \le \hat{\theta}_E \le \hat{\theta}_S + 2k\mathbf{SD}(\hat{\theta}_S)) \ge 1 - \frac{1}{k^2}$$

ullet SD $(\hat{ heta}_{S})$ can be approximated on the basis of resampling methods

