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Space, time, and space-time eigenvector filter 
specifications that account for autocorrelation 
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Abstract 

Currently the development of eigenvector spatial filtering theory and 
methodology focuses on spatial autocorrelation. An overview of this development 
is summarized, and extended to serial correlation in time series, and space-time 
autocorrelation structures. Temporal comparisons are made with ARIMA model 
results. Illustrations are with linear and generalized linear model descriptions for 
selected datasets. 

Keywords: serial correlation, spatial autocorrelation, space-time autocorrelation, 
eigenvector. 
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Especificaciones de filtrado espacial, temporal y espacio-temporal 
mediante autovectores para casos de autocorrelación 

Resumen 

Actualmente el desarrollo de la teoría y la metodología de filtrado espacial 
mediante autovectores está centrada en la autocorrelación espacial. En este 
artículo se resume dicho desarrollo y se extiende tanto a la correlación serial en el 
campo de las series temporales como a las estructuras de correlación espacio-
temporales. Las comparaciones se llevan a cabo con modelos ARIMA. Se aportan 
ilustraciones de la metodología propuesta mediante modelos lineales y modelos 
lineales generalizados para una serie de bases de datos debidamente seleccionadas. 

Palabras clave: correlación serial, autocorrelación espacial, autocorrelación 
espacio-temporal, autovector. 
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1. Introduction 

Classical mathematical statistics avoids correlation amongst observations by invoking 
the assumption of independent observations, which sets the covariance term to 0 in 
expressions such as the variance of a linear combination of random variables. 
Consequently, joint probability distributions are the products of marginal probability 
distributions. In contradistinction, many datasets comprise a collection of observational 
units that are related to each other in some way, such as being adjacent in a time 
sequence (e.g., repeated measures, time series), being linked members in a subgroup of 
a population (e.g., social networks), or being neighbors in a geographic distribution 
(e.g., spatial series). Consequently, joint probability distributions are the products of 
conditional probability distributions. Autoregressive model specifications furnish one 
popular modification to classical mathematical statistics to capture these observational 
dependences. In a regression context, these specifications result in the response variable, 
Y, being on both sides of an equation: the left-hand side contains Y, and the right-hand 
side contains some linear combination of observed yis, the n realizations of Y, such that 
each yi is not a function of itself (i.e., its coefficient is 0 in the linear combination). In 
classical mathematical statistics, all of the weights for this linear combination are zero. 
Another popular approach deals with the inter-correlations among observations (e.g. 
geostatistics, spectral analysis). A third approach, whose formulation and on-going 
development is more recent, is eigenvector filtering. 

Eigenvector filtering is a general data analysis methodology that uses a set of synthetic 
proxy variates, which are based upon some articulation that ties observations together, 
as control variables in a model specification. These control variables identify and isolate 
stochastic dependencies among the observations, thus allowing modeling to proceed as 
if these observations are independent. The purpose of this paper is to present an 
overview of this eigenvector filtering concept, extending it from spatial to both time 
series and space-time data. Background discussion conceptualizes it for time series, and 
then focuses on its initial development that has taken place in terms of eigenvector 
spatial filtering. Results are illustrated with selected empirical examples. 

2. Eigenvector temporal filtering 

The Box-Jenkins ARIMA (autoregressive integrated moving average) modeling is well 
developed for time series data. Dependency is one directional and one dimensional, 
which simplifies the handling of within variable correlation. One problematic 
complication arises when observations in time are not uniformly spaced. Perhaps data 
were not collected at uniform intervals through time, or a data generating process does 
not produce values that are equally spaced through time. R is one of the few software 
environments currently supporting analysis of irregularly space time series data (e.g., 
approx.irts). Other software environments support an autoregressive error model with 
missing values, which are retained in order to maintain uniform spacing of observations. 
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The former allows forecasting, whereas the latter allows imputation of past values (i.e., 
interpolation within the context of backcasting). 

Filtering methodology for time series data is in keeping with the goals of ARIMA 
modeling—and is in the spirit of the Cochrane-Orcutt (1949) pre-whitening 
perspective— while exploiting the strategy of autoregressive error modeling. It uses a 
set of temporal proxy variables, which are extracted as eigenvectors from a modified 
(i.e., doubly centered) binary temporal relationship matrix that ties time series 
observations together, and adds these vectors as control variables into a model 
specification. These control variables identify and isolate the stochastic temporal 
dependencies among the time-indexed observations, thus allowing model building to 
proceed as if the observations are independent. The eigenvectors involved relate to the 
Durbin-Watson (DW) statistic, whose matrix version for T points in time is a T-by-1 
response vector Y regressed on a T-by-(p+1) covariate matrix X (i.e., p covariates and a 
vector of 1s for the intercept), which is given by 

 
T T -1 T T -1 T

T T -1 T

- -
,

-

Y [Ι X (X X) X ] A [Ι X (X X) X ] Y

Y [Ι X (X X) X ] Y
 1 

where superscript T denotes matrix transpose, and T-by-T matrix A is defined as 
follows: 

1 -1 0 0 0 0

-1 2 -1 0 0 0

0 -1 2 0 0 0

0 0 -1 0 0 0

0 0 0 0 -1 2 -1

0 0 0 0 0 -1 1

 
 
 
 
 
 
 
 
 
 
 






      

. 

Matrix A is asymptotically equal to matrix 2Ι– CT, where I is a T-by-T identity matrix 
and CT is a T-by-T binary geographic weights matrix for a linear landscape (i.e., it has 
1s in its upper and lower off-diagonals, and 0s elsewhere). Basilevsky (1983) reports the 

analytical ith element for eigenvector j for this matrix to be  ij
1 ij

e SIN
T 1T 1

     
. 

When no covariates are present (i.e., p = 0), then X = 1, a T-by-1 vector of ones, and the 
T-by-T projection matrix (I– 11T/n) results in the first eigenvector being replaced by a 
vector proportional to 1 whose corresponding eigenvalue is 0. It also forces each of the 
remaining T–1 eigenvectors to have a zero mean, and hence to be mutually orthogonal 
and uncorrelated. These are the previously mentioned synthetic control variates. These 
eigenvectors can be easily approximated by generating the set of j = 2, 3,… T analytical 
eigenvectors, and then subjecting these vectors to a factor analysis. Forecasts can be 
generated by constructing the analytical eigenvectors for a T + Q matrix CT, and then 
imputing the Q future values (i.e., forecasting them). 



10 Daniel A. Griffith  Space, time, and space-time eigenvector... 

 

V
o

l. 
54

. N
úm

 1
77

 / 
20

12
 

Substituting each eigenvector into equation (1) results in a DW value that equals its 

corresponding eigenvalue. In other words, the DW values range from 2
2 2COS

Τ 1

    
 

to Τ
2 2COS

Τ 1

    
, or approximately 0 to 4 (2 indicates zero temporal autocorrelation). 

The number of positive and of negative eigenvalues equals (T – 1)/2 if T is odd; when T 
is even, the number of positive eigenvalues is (T – 2)/2 and the number of negative 
eigenvalues is (T – 1)/2. Meanwhile, because substituting the eigenvectors into equation 
(1) results in a Rayleigh quotient, with vector E1 maximizing the expression, these 
eigenvectors can be interpreted as follows: 

the first eigenvector, say E1, is the set of real numbers that has the largest DW 
achievable by any set for the temporal arrangement defined by the time-series 
connectivity matrix A; the second eigenvector is the set of real numbers that has the 
largest achievable DW by any set that is orthogonal and uncorrelated with E1; the third 
eigenvector is the third such set of real numbers; and so on through ET, the set of real 
numbers that has the largest negative DW achievable by any set that is orthogonal and 
uncorrelated with the preceding (T – 1) eigenvectors. 

As such, these eigenvectors furnish distinct temporal pattern descriptions of latent serial 
correlation in time series variables. 

2.1 Annual sugarcane production in Puerto Rico: an exploratory interpolation 
experiment 

Griffith (2008a) describes annual sugarcane production, in 1,000s of tonnes, for the time 
series 1828-1996 using an ARIMA model specification. He subjects these data to a 
logarithm transformation to stabilize variance, and introduces first differencing to 
account for the dominant trend, and an indicator variable to differentiate between the 
Spanish and the United States (U.S.) control of the island (the transition occurred in 
1899). These data furnish a useful time series for experimental purposes because the 
series is of a reasonable length, is complete, and already has been described with an 
ARIMA model. 

These data could be described by an eigenvector temporal filter (ETF), or by a semi-
variogram model (Figure 1). The basic time structure may be accounted for with a set of 
four covariates: the year (centered; which relates to the ARIMA model differencing), 
the pre-U.S. control indicator variable, and second- and third-powers of the centered 
year covariate (to capture the concave sections of the time series plot). These four 
variables were converted to orthogonal synthetic variates with factor analysis. Three of 
the factors account for roughly 78% of the variability in the transformed sugarcane data; 
the residuals from this regression are not normal.  

Twenty-four eigenvectors extracted from matrix T -1 T T -1 T- -[Ι X (X X) X ] A [Ι X (X X) X ]  
appearing in the numerator of expression (1) account for another roughly 11% of the 
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variation in the transformed sugarcane data (Table 1)1. The residuals from this 
augmented model still are not normal, but very little evidence exists suggesting the 
presence of heteroscedasticity, and no serial correlation appears to remain in the 
residuals (DW = 1.69). Figure 1.a portrays the time series plot for the data as well as the 
predicted values from the ETF model. The filter, which can be constructed without 
using the year indices, also replicates the time series reasonably well. 

One advantage of this type of specification is that if annual values are missing at 
random from a time series, it still can be well-described (Table 1). One disadvantage is 
that it involves only fixed effects (i.e., the time-trend terms and the eigenvectors, all of 
which do not change unless the time horizon changes). A set of simulation experiments 
involving random suppression of response values (i.e., missing at random), and based 
upon 10,000 replications, reveals that stepwise regression selects all of the highly 
significant time trend terms and eigenvectors, and yields R2 values that are equivalent to 
that for the complete data time series, even with 50% of the values suppressed (Table 
1). Occasionally the stepwise procedure selects a few incorrect eigenvectors. In other 
words, the ETF model furnishes an excellent tool for the interpolation of irregular time 
series version of these data. 

Figure 1 

Annual sugarcane time series data. Left (a): log-transformed sugarcane yield time 
series plot. Right (b): semi-variogram plot of log-transformed sugarcane yield time 
series data, with a superimposed Bessel function trend line 

 

                     
1 Because eigenvectors E49, E50 and E70 are highly multicollinear with the four time trend factors, they were 
removed from the candidate set of eigenvectors. 
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Table 1    

Puerto Rico sugarcane ETF parameter estimates and simulation results 
(Continue)

Variable Complete time series data % inclusion (10,000 replications) for % 
missing values 

Parameter 
Estimate 

Standard 
Error 

Pr > F 10 20 30 40 50 

Intercept 5.0120 0.0176 <0.0001 100.00 100.00 100.00 100.00 100.00

Factor 1 0.1276 0.0239 <0.0001 100.00 100.00 100.00 99.98 100.00

Factor 2 1.0858 0.0201 <0.0001 100.00 100.00 100.00 100.00 100.00

Factor 3 -0.7546 0.0178 <0.0001 100.00 100.00 100.00 100.00 100.00

Factor 4 0.3601 0.0249 <0.0001 100.00 99.99 99.97 99.99 99.98

E1 -0.4193 0.0222 <0.0001 100.00 100.00 100.00 100.00 100.00

E2 0.02 0.02 0.05 0.06 0.03

E3 0.02 0.01 0.03 0.03 0.03

E4 -0.0830 0.0179 <0.0001 99.99 100.00 99.97 99.98 99.96

E5 0.01 0.03 0.03 0.04

E6 -0.0785 0.0177 <0.0001 100.00 100.00 100.00 99.98 99.96

E7 0.01 0.01 0.02 0.04 0.03

E8 -0.0535 0.0179 0.0033 99.98 99.99 99.97 99.96 99.94

E9 0.01 0.01 0.04 0.03

E10 0.01 0.01 0.03

E11 0.01 0.01 0.01

E12 0.01 0.01 0.02 0.01

E13 -0.0535 0.0177 0.0030 100.00 100.00 99.97 99.94 99.93

E14 0.0427 0.0177 0.0175 99.97 99.93 99.96 99.96 99.93

E15 0.01 0.02 0.04 0.02

E16 0.04 0.02

E17 0.01 0.01

E18 0.01

E19 0.01 0.01

E20 -0.0443 0.0177 0.0135 99.99 99.95 99.97 99.94 99.94

E22 0.01 0.03 0.02

E23 0.01

E24 0.01 0.03

E25 0.01

E27 -0.0375 0.0177 0.0360 99.95 99.94 99.93 99.90 99.91

E29 0.01 0.02 0.01

E30 0.02

E31 0.01

E32 0.01

E34 0.02 0.02 0.01

E35 -0.0667 0.0182 0.0004 99.99 99.98 99.94 99.96 99.95

E36 -0.0808 0.0180 <0.0001 99.99 100.00 99.97 99.98 99.96
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Table 1 

Puerto Rico sugarcane ETF parameter estimates and simulation results 
(Conclusion)

Variable Complete time series data % inclusion (10,000 replications) for % 
missing values 

 
Parameter 
Estimate 

Standard 
Error 

Pr > F 10 20 30 40 50 

E37 0.01 0.01 0.01

E38 0.01 0.01 0.01 0.01

E39  0.02 0.01

E40  0.02 0.01 0.01

E41 -0.0980 0.0180 <0.0001 100.00 100.00 99.99 100.00 99.97

E42 0.01 0.01 0.01 0.02 0.01

E43  0.03 0.01

E44 -0.0607 0.0181 0.001 99.99 99.95 99.93 99.96 99.95

E45 -0.1589 0.0191 <0.0001 100.00 100.00 100.00 100.00 99.99

E46  0.01 0.01

E47 -0.0616 0.0177 0.0007 99.99 100.00 99.96 99.95 99.93

E48  0.01 0.01 0.03

E51 -0.1408 0.0199 <0.0001 99.99 99.99 99.97 99.99 99.96

E52 -0.0645 0.0178 0.0004 100.00 99.96 99.96 99.97 99.94

E53  0.01 0.02

E54 -0.1411 0.021 <0.0001 99.99 99.99 99.94 99.97 99.96

E55 -0.0437 0.0177 0.0148 99.96 99.96 99.94 99.92 99.93

E56 -0.0420 0.0177 0.0192 99.98 99.94 99.95 99.93 99.92

E57  0.01 0.01 0.02

E58  0.01 0.01

E59 -0.0974 0.0185 <0.0001 100.00 100.00 99.97 100.00 99.97

E60 -0.0982 0.0187 <0.0001 99.99 99.99 99.93 99.95 99.96

E61 0.02 0.07 0.07 0.06 0.05

E62 -0.0402 0.0177 0.0245 99.94 99.97 99.92 99.93 99.91

E63  0.01 0.01

E64 -0.0419 0.0177  0.0194 99.94 99.95 99.93 99.92 99.90

E66 -0.0407 0.0179  0.0240 99.92 99.93 99.94 99.94 99.92

E67  0.01

E68 0.01 0.01 0.01 0.03

E69  0.01 0.04

R2 0.9782 
0.9782 

(0.0002) 

0.9782 

(0.0002)

0.9782 

(0.0004)

0.9783 

(0.0004)

0.9782 

(0.0005)

Semi-variogram models were developed for two-dimensional data, and with more 
recent extensions to three-dimensional data (e.g., Heuvelink and Griffith, 2010). But 
they also can be employed with one-dimensional data such as a time series. 
Interpolation is irrelevant when a complete time series exists; it is relevant when an 
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irregular time series exists. Figure 1b portrays the K-Bessel (or Matérn) function 
description of the residuals from a regression of the transformed sugarcane figures on 
the time trend terms. Table 2 summarizes semi-variogram estimation simulation results 
for randomly suppressed values. Not surprisingly, the principal impact is on the 
standard deviation (s.d.). Estimates for the nugget are very stable, in part because its 
lower bound is restricted to be 0. In an attempt to capture as much structural trend as 
possible, 100% of the regressions include all four of the time trend factors. 

Table 2 

Puerto Rico sugarcane temporal semi-variogram model estimates and simulation 
results 
Parameter Complete data % inclusion (10,000 replications) for % missing values 

10 20 30 40 50 

esti-
mate 

s.e. esti-
mate 

s.d. esti-
mate 

s.d. esti-
mate 

s.d. esti-
mate 

s.d. esti-
mate 

s.d. 

Nugget 0.0123 0.0117 0.0123 0.0003 0.0123 0.0002 0.0123 0.0003 0.0123 0.0003 0.0123 0.0004 

Partial sill 0.3794 0.0163 0.3794 0.0008 0.3794 0.0014 0.3794 0.0021 0.3794 0.0017 0.3794 0.0035 

Range 9.3180 0.8968 9.3182 0.0464 9.3181 0.0435 9.3179 0.0636 9.3174 0.0572 9.3188 0.1100 

Nu 0.9411 0.0802 0.9412 0.0039 0.9412 0.0049 0.9412 0.0055 0.9411 0.0062 0.9411 0.0113 

2.2 Daily atrazine levels (ppb) in drinking water: an exploratory non-normal 
probability model experiment 

Atrazine is a principal herbicide used extensively by farmers during the last half century 
to control weeds in the production of, especially, sugarcane, corn, and sorghum. Human 
health risk concerns arise from this chemical entering community water systems 
(CWSs) through watershed runoff after rainfall events following its application to farm 
fields. Concentrations in runoff surface water are a function of such factors as 
hydrology, meteorology, soil type, agronomic and land use practices, herbicide 
application rates, timing and methods, and environmental fate properties of atrazine. 
Consequently, the government monitors finished drinking (i.e., treated) water for levels 
of the chemical. One goal of this monitoring program is to minimize the costly and 
time-consuming collection of daily samples for monitoring purposes. In other words, 
government agency personnel want to be able to effectively and efficiently analyze 
irregular time series during each annual growing season, recognizing that atrazine levels 
essentially are zero outside of a growing season. Irregular time series are to be 
converted to regular time series by interpolation. 

From May 15 (three days before a rainfall event) to June 30, 2011, Syngenta 
Corporation Protection, LLC, collected and assayed daily water samples from a CWS 
supported by a 4,055-square-mile watershed, and whose water source is a river2. These 

                     
2 CWS-45 designates this system. See Table 2 in the attachment to entry ID EPA-HQ-OPP-2011-0399-0042 that can be 
accessed on page 6 of 7 at http://www.regulations.gov/#!searchResults;dct=SR%252BFR%252BPS;a=EPA;dkt=N;pd= 
=07%257C01%257C11-08%257C24%257C11;rpp=10;po=50;s=atrazine. 
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45 consecutive days of data were subjected to a logarithmic transformation—
LN(atrazine+0.13)— similar to that for the preceding sugarcane data. But one notable 
feature of these data is that they are better described by a 3-parameter Weibull distribution 
(Figure 2). One difference between this atrazine and the preceding sugarcane time series is 
that the latter portrays a serpentine curve with a single frequency spike, whereas the 
atrazine time series portrays a serpentine curve with three consecutive frequency spikes 
having different amplitudes—a much more complex time series.  

These data are well described by the following ARIMA model (unit root tests imply the 
need for a first differencing):  

t t-1 t-2 t-3ŷ 0.0361 1.4016y - 0.5754y 0.1738y   , 

which accounts for roughly 80% of the variation in log-atrazine—roughly 65% of the 
variation in atrazine after back-transformation—and whose residuals contain only trace 
serial correlation but fail to conform closely to a normal distribution (Figure 3a).  

Figure 2 

Daily atrazine time series data. Left (a): time series plot. Middle (b): log-normal 
quantile plot. Right (c): Weibull quantile plot 

 

 

 

 

 

 

 

The ARIMA model findings suggest that the Bessel function is the most appropriate 
semi-variogram model. But Figure 3b reveals that it furnishes a poor description of the 
autocorrelation structure in the log-atrazine data (the description improves little by 
convoluting a Bessel with a wave hole function to try to capture the conspicuous 
periodicity). Meanwhile, the ARIMA model accounts for considerably less variance than is 
accounted for by the ETF model (roughly 99% in both its log-transformed and back-
transformed versions; it contains 22 eigenvectors), whose residuals contain only trace serial 
correlation and conform very closely to a normal curve. In other words, the ETF model 
appears to furnish a superior description for these data in a conventional context. Its 
additional advantage is that the ETF model can furnish a description in terms of a Weibull 
distribution, which currently is not possible with the ARIMA and geostatistical models. With 
this distributional assumption, the ETF specification accounts for roughly 93% of the 
variability in untransformed atrazine measures (Figure 3d). Its residuals conform closely to 
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an extreme value distribution. This latter modeling exercise furnishes a proof of concept 
demonstration. 

Figure 3 

Daily atrazine time series data. Top left (a): log-transformed atrazine time series 
plot with ARIMA fit superimposed. Top right (b): semi-variogram plot of log-
transformed atrazine time series data, with a superimposed Bessel function trend 
line. Bottom left (c): log-transformed atrazine time series plot with normal ETF fit 
superimposed. Bottom right (d): atrazine time series plot with Weibull ETF fit 
superimposed 

 

2.3 Annual milk production in Puerto Rico: an exploratory forecasting 
experiment 

The previous two experiments focus on interpolation. The experiment summarized in 
this section involves the more common practice of forecasting with a time series. The 
Department of Agriculture, Commonwealth of Puerto Rico (CPR) reported annual milk 
production in Puerto Rico, for the period 1939/40-2008/09. Unlike the preceding two, 
this time series does not disappear; rather, it is ongoing. The 2009/10 annual forecast is 
compared with the CPR estimate. Two features of these data are noteworthy. First, the 
trend is roughly the same as that for the sparser U.S. Department of Agricultural 
(USDA) data, but the USDA figures tend to be less than the CPR figures through about 
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2000—most likely because the two government agencies defined farm slightly 
differently, and used a different definition of production year until the CPR became 
more closely affiliated with USDA through the National Agricultural Statistics Service 
(NASS). Second, the trend beyond 2002 is for deceasing milk production. 

Figure 4 

Milk production in Puerto Rico. Left (a): time series plot of reported quantities. 
Middle (b): ETF desciption of the CPR statistics concatenated with forecasts. 
Right (c): ARIMA description of the CPR statistics concateneted with forecasts 

 

 

The ARIMA model equation describing this time series is given by: 

t t-1ŷ 2667 y ,   

which accounts for roughly 98% of the variation in 1,000s of quarts of milk (the 

bivariate regression equation relating these two variates is: Y = 10845 + 0.9655 Ŷ  + e), 
and whose residuals contain only trace serial correlation and conform to a normal 
distribution. But the ARIMA forecasts predict a turn-around growth in milk production. 
This model yields a mean squared prediction error (MSPE) of 138.9103, for the CPR 
prediction of 288,964 thousands of quarts of milk for 2009/10. A larger MSPE of 11.6
103 results from a comparison with USDA reported tons of milk produced in 2010 (which 
translate into roughly 304,151 thousands of quarts3). Although these MSPEs are larger 
than their ETF counterparts for a one-year-ahead forecast, the ARIMA 15-years-ahead 
forecast trend line is inconsistent with existing data. 

Meanwhile, the ETF model employs eigenvectors that span both the observed CPR time 
series and the forecast period (i.e., T = 72). Its candidate set includes 35 eigenvectors 
portraying positive serial correlation. Because quarts of milk are counts, the response 
variable is treated as a negative binomial random variable (i.e., a Poisson random 
variable with overdispersion). The constructed ETF consists of 13 eigenvectors, and 
accounts for roughly 99% of the variation in the milk production figures (the bivariate 

                     
3 The average cow produces 53 pounds of milk a day, which on average converts to 6.2 gallons of milk. 
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regression equation relating these two variates is: Y = -2679.0240 + 1.0092^Y + e). The 
dispersion parameter estimate is 0.0031, indicating little initial overdispersion; the 
resulting deviance statistic is 1.25. The ETF forecasts predict a continued downturn in 
milk production. This model yields a MSPE of 170.8103, for the CPR prediction of 
288,964 thousands of quarts of milk for 2009/10. A smaller MSPE of 798.3103 results 
from a comparison with USDA reported tons of milk produced in 2010. Although these 
MSPEs are larger than their ARIMA counterparts for a one-year-ahead forecast, the 
ETF 15-years-ahead forecast trend line is consistent with existing data. 

2.4 A summary of findings for temporal filtering 

Constructed ETFs perform very well in the selected empirical examples. This 
specification outperforms geostatistical models when interpolating, and it shows 
promise of outperforming an ARIMA model when forecasting. It also is capable of 
accommodating non-normal statistical distributions, such as the Weibull and the 
Poisson (or its negative binomial overdispersion counterpart). Because of its relative 
newness, the ETF’s most conspicuous weakness is its lack of a more fully developed 
mathematical statistics theoretical basis. Both geostatistical and Box-Jenkins models 
have such bases. 

3. Eigenvector spatial filtering 

The preceding discussion describes how eigenvector filtering can be applied to time 
series data, essentially treating them as one-dimensional geographic data. But the initial 
formulation and development of this filtering methodology was for two-dimensional 
geographic data (see Griffith, 2000, 2002, 2003, 2004; Tiefelsdorf and Griffith, 2007). 
In this context, eigenvector spatial filtering uses a set of spatial proxy variables, which 
are extracted as eigenvectors from an n-by-n modified (i.e., doubly centered) binary 
spatial relationship matrix, Cs—which has 1s in the cells whose row and column 
locations are neighbors, and 0s elsewhere—that ties geographic observations together4 
(Figure 5), and adds these vectors as control variables into a model specification. Like 
before, these control variables identify and isolate the stochastic spatial dependencies 
among the location-indexed observations, thus allowing model building to proceed as if 
the observations are independent. The eigenvectors involved usually relate to the Moran 
Coefficient (MC)5, whose matrix version for n-by-1 response vector Y adjusted only for 
its mean is given by 

 
T T T

s
T T

n n

n


Y ( -11 / ) C  ( -11 / ) Y

Y ( -11 / ) Y

 


 2 

                     
4 The entries of matrix Cs are cij, which equals 1 if areal units i and j are geographic neighbors, and 0 otherwise. 
Neighborness often is defined as whether or not two areal unit polygons share a common boundary (non-zero length sharing 
is called the rook’s case; zero and non-zero length sharing is called the queen’s case), or are within a specified distance of 
each other (frequently with distance measured between areal unit centroids). 
5 It also can be based upon the Geary Ratio (GR). 
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Unless the set of polygons comprising a surface partitioning forming a regular square 
tessellation, analytical eigenvectors for expression (2) are unknown. 

Figure 5 

Left (a): the partitioning of Puerto Rico into municipalities. Gray lines denote the 
topological network, which connects the centroids of municipalities with common 
boundaries. Right (b): the initial part of the 73-by-73 connectivity matrix for 
Puerto Rico 
 

C =  

1 2 3 4 5 6 7     
1
2
3
4
5
6
7

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 1 0 0 0 1 0  
1 0 0 0 0 0 0  
0 0 0 1 0 0 0  
0 0 1 0 0 1 0 ڮ
0 0 0 0 0 0 1  
1 0 0 1 0 0 0  
0 0 0 0 1 0 0  

ڭ ے  
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Again, because substituting the eigenvectors into equation (2) results in a Rayleigh 
quotient, with vector E1 maximizing the expression, these eigenvectors can be 
interpreted as follows: 

the first eigenvector, say E1, is the set of real numbers that has the largest MC 
achievable by any set for the geographic arrangement defined by the spatial connectivity 
matrix C; the second eigenvector is the set of real numbers that has the largest 
achievable MC by any set that is orthogonal and uncorrelated with E1; the third 
eigenvector is the third such set of real numbers; and so on through En, the set of real 
numbers that has the largest negative MC achievable by any set that is orthogonal and 
uncorrelated with the preceding (n – 1) eigenvectors. 

As such, these eigenvectors furnish distinct map pattern descriptions of latent spatial 
autocorrelation in geographically distributed variables. An eigenvector spatial filter 
(ESF) is constructed as some linear combination of a subset of these eigenvectors, 
called the candidate set. 

The candidate set begins with all eigenvectors portraying the same nature (i.e., positive 
or negative) of spatial autocorrelation as is measured in a response variable. Next, those 
eigenvectors representing inconsequential levels of spatial autocorrelation are removed 
from this candidate set. For positive spatial autocorrelation situations, Griffith and Chun 
(2009) suggest the following formula for establishing the threshold eigenvector MC 
value defining a candidate set of these eigenvectors for constructing an ESF: 

 
MC

eigenvector -0.6606 - 0.2525 z

2.8805
MC  2.9970 - ,

1 + e
  3 

where zMC denotes the z-score of the MC for the response variable Y (or its transformed 
version, if used). Finally, a stepwise regression procedure can be used to select those 
eigenvectors that account for the spatial autocorrelation in the response variable. This 
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stepwise selection can be based upon the conventional R2-maximization criterion, or a 
residual MC minimization criterion (see the R package spdep). 

3.1 2010 population density across Puerto Rico: a comparison of autoregressive 
and ESF results 

Population density (i.e., total population count divided by total area) is a continuous 
variable with a lower bound of 0. A log-transformed version of it often conforms 
closely to a normal distribution. This is the version commonly described with a Cliff-
Ord spatial simultaneous autoregressive (SAR) model, frequently employing the row-
standardized version of spatial relationship matrix C, namely W. This specification 
supports the use of spatial autoregressive theory to account for spatial autocorrelation 
with an SAR model specification (Ord, 1975), as well as residual spatial autocorrelation 
statistical distribution theory for the ESF specification. 

The following logarithmic transformation aligns the 2010 geographic distribution of 
population density across Puerto Rico by municipio with a bell-shaped curve: 

LN(population/area – 75) . 

The probability of the Shapiro-Wilk (S-W) statistic increases from < 0.0001 to 0.2133. 
The MC for the geographic distribution of this variable is 0.5255 (zMC = 7.1145). The 
normal approximations presented in this section utilize this transformed variable. The 
estimated SAR model with no covariates is 

ˆ 0.6929 ,Y WY  

with the spatial lag term accounting for roughly 49% of the variation in the log-
transformed population density (Figure 6a) and produces residuals that are 
approximately normally distributed [PR(S-W) = 0.2445].  

Figure 6 

Scatterplots of observed (y) versus normal-approximation (yhat/predicted value of 
y) predicted log-transformed population density, with superimposed ideal line. 
Left (a): estimated SAR model results. Right (b): estimated ESF model results 
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Meanwhile, equation (3) indicates that the candidate set of eigenvectors should be only 
those with a MC of at least 0.34385; the candidate set contains 16 eigenvectors. The 
linear regression constructed ESF includes 10 eigenvectors, has a MC of 0.88616, 
accounts for roughly 65% of the variation in the log-transformed population density 
(Figure 6b), and produces residuals that are approximately normally distributed [PR(S-
W) = 0.0610] and have only trace spatial autocorrelation remaining (zMC = 0.4512). 

In this particular data analysis, the ESF specification essentially outperforms the SAR 
specification. It renders a better distribution of predicted values, whereas the SAR 
specification produces residuals that better conform to a bell-shaped curve. 

3.2 2010 population density across Puerto Rico: an extension to a Poisson 
model specification 

Population figures are counts, and as such should be treated as a Poisson random 
variable. Population by municipio exhibits excess Poisson variation, requiring it to be 
treated as a negative binomial random variable. The ESF constructed with this new 
distribution assumption includes all but one of the eigenvectors selected for the normal 
approximation ESF. The percent of variance accounted for increases slightly, to roughly 
71%, with this more appropriate specification. The overdispersion parameter is 0.1609, 
indicating the presence of considerable extra Poisson variation. A comparison between 
this result and the back-transformed normal approximation SAR result (Figure 7b) 
reveals serious distortions by the employment of a Box-Cox power transformation. Now 
the SAR model results account for only roughly 52% of the variation in population 
density. 

Figure 7 

Scatterplots of observed (y) and predicted (predicted value/btyhat) population 
density, with a superimposed ideal line. Left (a): estimated negative binomial ESF 
model results. Right (b): back-transformed normal approximation SAR model 
results 

The improvement by removing specification error attributable to using a normal 
approximation for a Poisson probability model is small but noticeable. The ESF 
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specification is superior to an auto-Poisson model specification here because the auto-
Poisson model is incapable of capturing any positive spatial autocorrelation effects, which 
are the only ones present in the analyzed geographic distribution of population density. 

3.3 Spatially varying coefficients: an alternative to geographically weighted 
regression (GWR) 

Griffith (2008b) outlines methodology for employing eigenvector spatial filtering to 
construct geographically varying regression coefficients. In effect, the eigenvector 
filtering discussed in this paper results in a spatially varying intercept term, similar to 
the spatial lag or spatial autoregressive response model. This type of specification can 
be extended to the coefficients of covariates by introducing interaction terms—
Hadamard products of eigenvectors and covariates—into a model specification. 
Estimates of the regression coefficients can be pooled for products with a common 
covariate; factoring out this common covariate yields the spatially varying coefficients 
as linear combinations of eigenvectors. This specification is more in keeping with the 
SAR model specification. 

3.4 A summary of findings for eigenvector spatial filtering 

Constructed EFSs perform very well in the selected empirical examples. ESF 
specifications outperform autoregressive model specifications in terms of goodness-of-
fit assessments. They also are capable of accommodating non-normal statistical 
distributions, such as the Poisson (or its negative binomial overdispersion counterpart). 

4. Eigenvector space-time filtering 

The preceding discussion describes how eigenvector filtering can be applied to either time 
series (indexed with t) or spatial series [indexed with (u, v)] data; this section synthesizes 
these two approaches into a space-time [indexed with (u, v, t)] methodology.  

Figure 8 

The linkages for the two space-time conceptualizations of dependency 
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Space-time autocorrelation can be accounted for in such data with a set of eigenvectors 
extracted from a modified (i.e., doubly centered) space-time adjacency matrix. This 
section summarizes an evaluation of two principal space-time dependency structure 
specifications (Figure 8): 

 location (u, v, t) links to the preceding in situ location as well as the preceding 
neighboring locations, a lagged specification; and,  
 location (u, v, t) links to the preceding in situ location as well as the instantaneous 
neighboring locations, a spatially contemporaneous specification. 

This work is an extension of research summarized in Griffith (2004), Griffith (2010), 
and Griffith and Heuvelink (2010). 

Matrix versions of the conceptualizations portrayed in Figure 8 are as follows: 

space-time lagged specification:  

 T T
T S Sn  [  n  , (Ι - 11 / ) C (C I )](Ι - 11 / )  and 4 

space-time contemporaneous specification:  

 T T
T S T Sn  (  n  ,  (Ι - 11 / ) I C C I ) (Ι - 11 / )  5 

where:   denotes Kronecker product, and (I – 11T/n) is an nT-by-nT projection 
matrix. Griffith (1996) discusses eigenfunctions for these matrices. These are the 
connectivity matrices for space-time versions of the MC (Cliff and Ord, 1981; Griffith, 
1981). 

Analogous to the preceding discussions, eigenvector space-time filtering uses a set of 
synthetic proxy variables, which are extracted as eigenvectors from either a modified 
space-time lagged or a space-time contemporaneous connectivity matrix that ties 
geographic objects together in space and time, and adds these vectors as control 
variables into a model specification. Like before, these control variables identify and 
isolate the stochastic space-time dependencies among the (u, v, t)-referenced 
observations, thus allowing model building to proceed as if the observations are 
independent. The eigenvectors involved relate to the spaced-time MC, whose matrix 
version for nT-by-1 response vector Y adjusted only for its mean is given by 

 
T T T

T T

n   n  

n  

Y (Ι -11 / ) A (Ι -11 / ) Y
,

Y (Ι -11 / ) Y
 6 

where matrix A is either expression (4) or (5).  

Similar to the time only and space only cases, because substituting the eigenvectors into 
equation (6) results in a Rayleigh quotient, with vector E1 maximizing the expression, 
these eigenvectors can be interpreted as follows: 
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The first eigenvector, say E1, is the set of real numbers that has the largest space-time 
MC achievable by any set for the areal unit articulation defined by the space-time 
connectivity matrix A; the second eigenvector is the set of real numbers that has the 
largest achievable space-time MC by any set that is orthogonal and uncorrelated with 
E1; the third eigenvector is the third such set of real numbers; and so on through En, the 
set of real numbers that has the largest negative space-time MC achievable by any set 
that is orthogonal and uncorrelated with the preceding (n – 1) eigenvectors. 

As such, these eigenvectors furnish distinct map patterns that may change through time 
in some structured way (i.e., the Kronecker products are time specific values by which 
geographic map pattern values are multiplied), and in doing so furnish descriptions of 
latent space-time autocorrelation in correlated variables. A eigenvector space-time filter 
(ESTF) is constructed as a linear combination of a subset of these eigenvectors, called 
the candidate set. 

4.1 The Puerto Rico urbanization experiment: some background about island-
wide urbanization 

Puerto Rico has a long Western European-based urban history, covering roughly half a 
millennium. From its initial settlements of San Juan and San Germán in the early 1500s, 
the island has developed an urban dimension that, today, appears to be undergoing 
absorption by the San Juan metropolitan region. The evolution of this urban dimesnion 
on a remote island has helped to isolate it over the centuries from many contagion-type 
geographic effects, but not external effects via pronounced migration and port-to-world 
linkages, allowing the undertaking of studies in a more isolated natural experiment 
context. The purpose of this section is to summarize Puerto Rican urbanization during 
the period 1899-2000, for which U.S. federal census records are available. This 
landscape transformation is characterized by positive temporal and spatial 
autocorrelation, dependencies that produced conspicuous map patterns over time. Urban 
population may be cast as a percentage of total population in an area, resulting in it 
being a binomial random variable.  

To date, the trajectory of in/decreases in Puerto Rican population follows an exponential 
growth curve (Figure 9a). This same trend characterizes the increase in per cent urban 
population on the island (Figure 9b). These trends may be described, respectively, by 
the following two equations: 

population: 
0.2461322.17-216.96[(t-1493) /100]15.1506-0.0855LN {1 e }

tp ~ P(e ) , pseudo-R2 = 0.9985, 

and, per cent urban: t t 17.7854-0.0382(t-1493)

1
U ~ b(p , )

1 e
, pseudo-R2 = 0.9635, 

where pt denotes the population at time t, Ut denotes the urban population at time t, P 
denotes a Poisson distribution, and b denotes a binomial distribution. 

Figure 10a portrays the historical urban centers, revealing a tendency for urban 
population to concentrate on the island’s coastal lowlands through time. Figure 10b 
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portrays the digital elevation model (DEM), displaying geographic variation in 
elevation across the island, and revealing why the coastal areas were sensible selections 
for establishing urban centers. The interior city of Caguas is located in the conspicuous 
valley that is visible in Figure 10.b. This DEM figure suggests that elevation may be a useful 
covariate in describing the space-time growth of urban population across Puerto Rico. 

Figure 9 

Left (a): the growth of population in Puerto Rico over time. Right (b): the increase 
in percentage urban population in Puerto Rico over time. Asterisk (*) denotes an 
actual value; open circle (o) denotes a predicted value 

 

Figure 10 

Left (a): historical principal cities of Puerto Rico. Right (b): DEM for Puerto Rico 
 

 

 
 
 
 

 

4.2 Space-time urbanization in Puerto Rico, 1899-2000: the lagged specification 

The lagged structure portrayed in Figure 8 casts the value at some location (ui, vi, t) as a 
function of those values at (ui, vi, t-1) and its neighbors (uj, vj, t-1), where aii,t,t-1 = 1 and 
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aij,t,t-1 = 1in expression (4). The equation describing this formulation for a binomial 

percentage 
u,v, t

1

1 e


 is as follows: 

 
s

i i i i i i s s i i i i
s

KK

u  v  t 0 1 2 u  v k k u  v  t k k  u  v u  v
k 1 k 1

t e E ( F ) 
 

             7 

where 
i iu ve  denotes the elevation at location (ui, vi), Ek denotes a space-time 

eigenvector, Fk denotes a spatial eigenvector, and the sum in the parentheses is a 

random effects term [
s

s s i i
s

K

k k u v
k 1

F

  denotes spatially structured (SSRE; Figure 11a), 

and 
i iu v denotes spatially unstructured (SURE; Figure 11b), random effects]. The 

candidate set for the ESTF contains 99 (of 876) eigenvectors; the candidate set for the 
SSRE contains 18 (of 73) eigenvectors. While the SURE contains only trace levels of 
spatial autocorrelation, the spatial autocorrelation indices for the SSRE are: MC = 0.865, 
GR = 0.253. The ESTF contains 15 eigenvectors. This set of covariates accounts for 
roughly 86% of the time-invariant variation in the percentage of location-specific urban 
population across the century6 (elevation alone accounts for about 4%). The specification 
still results in considerable extra-binomial variation. But the random effects term reduces 
this overdispersion by roughly 63%, and accounts for an additional roughly 26% in the 
variation of percentage urban population. The random effects term has a mean of 0.0010, 
a variance of 1.0105, and conforms closely to a normal curve [P(S-W) = 0.2717]. The 
SSRE component highlights the San Juan metropolitan region (Figure 11a). 

Figure 11 

Components of the random effects term. Left (a): SSRE. Right (b): SURE. The 
magnitude of the numbers is directly proportional to the darkness of the grayscale 

Table 3 summarizes the spatial filter eigenvectors appearing in the Kronecker products 
of the selected space-time eigenvectors. Autocorrelation latent in these space-time data 
becomes increasingly complex with the passing of time, which is indicated by an 
increase in the number of spatial eigenvectors describing the ESTF: the island evolves 

                     
6 A large number of 0 percentages during the first half of the century is one reason why this percentage is not larger. 
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from essentially a rural to an urban society. In addition, this autocorrelation increasingly 
is dominated by spatial structure, which is indicated by an increase in the percentage of 
ESTF variance accounted for with the passing of time. Figures 12a-12e portray the five 
eigenvectors common to all points in time in the ESTF. Eigenvector E3 visualizes a 
contrast between the west coast (dominated by the Mayaguez metropolitan region) and 
the San Juan urban area. Eigenvector E4 visualizes a north-south contrast (relating to 
elevation variation portrayed in Figure 10b).  

4.3 Space-time urbanization in Puerto Rico, 1899-2000: the contemporaneous 
specification 

The lagged structure portrayed in Figure 8 casts the value at some location (ui, vi, t) as a 
function of those values at (ui, vi, t-1) and its neighbors (uj, vj, t), where aii,t,t-1= 1 and 
aij,t,t = 1in expression (5). The equation describing this formulation is the same form as 
for equation (7); but the space-time eigenvectors are different. With this specification, 
the candidate set increases to 204, of which 21 are used to construct the ESTF. Figure 
13a portrays the SSRE, and Figure 13b portrays the SURE, for this specification. While 
the SURE contains only trace levels of spatial autocorrelation (i.e., the ESTF captures 
virtually all of the spatial structure latent in the space-time data series), the spatial 
autocorrelation indices for the SSRE are: MC = 0.689, and GR = 0.349. This set of 
covariates accounts for roughly 88% of the variation in the time invariant percentage of 
location-specific urban population across the century (again, elevation alone accounts 
for about 4%). This specification still results in considerable extra-binomial variation. 
But the random effects term reduces this overdispersion by roughly 64%, and accounts 
for an additional roughly 28% in the variation of percentage urban population. The 
random effects term has a mean of 0.0067, a variance of 1.0166, and conforms closely 
to a normal curve [P(S-W) = 0.1287]. The SSRE component highlights a north-south 
contrast (again, relating to the elevation variation portrayed in Figure 10b). 
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Table 3 

Results for the lagged specification: the ESTF as a function of the geographic 
eigenvectors 
  (Continue)

Vector MC 1899 1910 1920 1930 1935 1940 1950 1960 1970 1980 1990 2000 

1 1.09 X X X X X  X X X X 

2 1.05  X X X X X   X X 

3 0.91 X X X X X X X X X X X X 

4 0.85 X X X X X X X X X X X X 

5 0.83  X X X X X X X  X 

6 0.81 X X X X X X X X X X 

7 0.72           

8 0.70    X X      

9 0.61   X X X     X 

10 0.57 X X X X X X X X X X X X 

11 0.54     X X X X    X 

12 0.50 X X X X X X X X X X X X 

13 0.47     X X X   X  X 

Table 3 

Results for the lagged specification: the ESTF as a function of the geographic 
eigenvectors 
  (Conclusion)

Vector MC 1899 1910 1920 1930 1935 1940 1950 1960 1970 1980 1990 2000 

14 0.43            X 

15 0.40             

16 0.37 X  X X X  X  X X X X 

17 0.33 X X X X X X X X X X X X 

18 0.28       X  X X X X 

R2 0.647 0.666 0.792 0.887 0.991 0.992 0.975 0.802 0.878 0.932 0.854 0.998 

Note: X denotes selected ESF eigenvector. Bold italic X (X) denotes ESF eigenvectors common to all years. 

Table 4 summarizes the spatial filter eigenvectors appearing in the Kronecker products 
of the selected space-time eigenvectors. Autocorrelation latent in these space-time data 
maintains about the same degree of complexity with the passing of time as for the lagged 
specification. Now only three eigenvectors are common to all points in time, revealing that 
the autocorrelation complexity is less well structured. Figure 12f portrays the additional 
eigenvectors common to all points in time in this ESTF. 
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Figure 12 

Eigenvectors from expression (2) spanning all time periods in the ESTF. Top left 
(a): E3. Top middle (b): E4. Top right (c): E10. Bottom left (d): E12. Bottom middle 
(e): E17. Bottom right (f): E6. The magnitude of the numbers is directly 
proportional to the darkness of the grayscale 

MC = 0.91204 MC = 0.85248 MC = 0.57034 

 

MC = 0.50405 MC = 0.33454 

 

MC = 0.71895 

Table 4 

Results for the lagged specification: the ESTF as a function of the geographic 
eigenvectors 
Vector MC 1899 1910 1920 1930 1935 1940 1950 1960 1970 1980 1990 2000 

1 1.09 X X X X X  X X X X X X 

2 1.05  X X  X X  X  X X  

3 0.91 X X X X X X X X X X X X 
4 0.85 X X X X X X X X X X X X 
5 0.83 X X X  X X X X  X X X 

6 0.81 X X X X X X X X X X X X 
7 0.72             

8 0.70    X X X X X X X X  

9 0.61             

10 0.57 X X X X X  X X X X X X 

11 0.54 X   X X   X X X X  

12 0.50 X X X X  X X X X X X X 

13 0.47 X   X X X X  X X X X 

14 0.43             

15 0.40             

16 0.37     X X X X X X X  

17 0.33 X X X X  X X X X X X X 

18 0.28        X     

R2 0.803 0.888 0.914 0.935 0.971 0.970 0.966 0.939 0.953 0.974 0.975 0.954 

Note: X denotes selected ESF eigenvector. Bold italic X (X) denotes ESF eigenvectors common to all years. 
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Figure 13 

Components of the random effects term. Left (a): SSRE. Right (b): SURE. The 
magnitude of the numbers is directly proportional to the darkness of the grayscale 
 

 
4.4 A summary of comparative findings for two eigenvector space-time filter 
conceptualizations 

Both ESTF conceptualizations result in roughly the same amount of variance being 
accounted for in the binomial random variable; the contemporaneous conceptualization 
is better by only 2%. Table 5 summarizes articulation differences between them for the 
ESF eigenvectors. The ESTF for the lagged conceptualization contains more common 
geographic structure, whereas that for the contemporaneous conceptualization contains 
more geographic structure in general. In a mixed model specification, both reduce excess 
binomial variation by almost exactly the same amount; unfortunately, considerable 
overdispersion still remains. The SSRE for the lagged conceptualization captures more 
common spatial autocorrelation across time. In addition, the lagged conceptualization has 
information concentrated into fewer eigenvectors (15 of 99 versus 21 of 204). 
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Table 5 

Differences between Tables 3 and 4 
Vector MC 1899 1910 1920 1930 1935 1940 1950 1960 1970 1980 1990 2000 

1 1.09 T4 T4    T3  T4     

2 1.05  T4 T4 T3   T3   T4  T3 

3 0.91             

4 0.85             

5 0.83 T4 T4 T4 T3     T3  T4  

6 0.81 T4 T4           

8 0.70    T4 T4   T4 T4 T4 T4  

9 0.61     T3 T3 T3     T3 

10 0.57      T3       

11 0.54 T4   T4  T3 T3  T4 T4 T4 T3 

12 0.50     T3    T4  T4  

13 0.47 T4   T4        T3 

14 0.43             

16 0.37 T3  T3 T3  T4  T4    T3 

17 0.33     T3        

18 0.28       T3 T4 T3 T3 T3 T3 

|R2 difference| 0.156 0.222 0.122 0.048 0.02 0.022 0.009 0.137 0.075 0.042 0.121 0.044 

Note: T3 denotes that the eigenvector appears in Table 3 only; T4 denotes that it appears in Table 4 only 

Figure 14a furnishes a graphical comparison of the two ESTFs. Although very similar 
(they have roughly 68% common variance), they are not the same; the scatterplot 
(Figure 14a) suggests that the relationship between them is slightly nonlinear. Figure 
14b furnishes a graphical comparison of the two random effects terms. The SSRE are 
completely different (they have no common variance). This finding may seem 
surprising, because these two variates share two eigenvectors. But these two 
eigenvectors respectively account for only 5.3% of the variance in the 
contemporaneous, and 2.7% of the variance in the lagged, random effects term. The 
respective ESFs account for 13.5% and 28.5% of the variance in, respectively, the 
contemporaneous and lagged random effects terms. Presumably these components are 
compensating for relatively inconsequential spatial structure deficiencies in their 
respective ESTFs; as expected, they have little relationship to their respective ESTFs 
(Figure 14c). And, the SURE are very similar (they have roughly 71% common 
variance).  

In summary, eigenvector space-time filtering successfully accounts for spatial and 
temporal autocorrelation in space-time data. It highlights that spatial autocorrelation 
changes through time, and that a random effects term captures heterogeneity with little 
spatial structure (i.e., the ESTF effectively captures virtually all of the spatial structure). 
The contemporaneous conceptualization appears to outperform the lagged 
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conceptualization on selected criteria, but its filter is less parsimonious. Meanwhile, 
with regard to percentage of urban population in space and time, large amounts of 
overdispersion are attributable to: space-time dependencies, random effects (i.e., 
heterogeneity), and some unknown source (i.e., overdispersion still remains).  

Figure 14 

A comparison of the lag and the contemporaneous ESTFs. Left (a): the total filters. 
Middle (b): SSRE and SURE components of the filters. Right (c): the total filters 
versus the time invariant SSREs. STF-l denotes the lagged ESTF; STF-c denotes 
the contemporaneous ESTF 

5. Implications and conclusions 

Eigenvector filtering offers a flexible and powerful tool for dealing with correlated data. 
It is competitive with ARIMA modeling for time series, and geostatistical and 
autoregressive modeling for spatial series. Once a matrix is posited that articulates the 
connectivity structure of linkages tying observations together so that they can become 
correlated, eigenvectors extracted from a modified version of this matrix (i.e., pre- and 
post-multiplied by a projection matrix) offer control variables that can be introduced 
into a model specification to identify and isolate the stochastic dependencies among 
observations, allowing model building to proceed as if the observations are independent. 

This approach offers advantages over more traditional approaches. Foremost, it allows a 
much wider range of non-normal random variables to be employed in analysis. Second, 
it allows spatial and temporal components to be better isolated and described. Third, it 
supports mixed modeling, furnishing eigenvectors as fixed effects. Fourth, it functions 
well in both interpolation and extrapolation situations. Fifth, it relates to conventional 
multivariate analysis vis-à-vis principal components analysis. And, sixth, it enables 
model specifications that are infeasible within an autoregressive formulation (e.g., the 
auto-Poisson specification). 

The single most conspicuous weakness of filtering is that the eigenvectors need to be 
selected with a stepwise regression procedure. Drawbacks of stepwise multiple 
regression include: parameter estimation bias, inconsistencies among model selection 
algorithms, a need to adjust for multiple hypothesis testing, and an obsession with 
identifying a single best model (e.g., see Derksen and Keselman, 1992). The first of 
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these is minimized with eigenvector filtering because the eigenvectors involved are 
mutually orthogonal and uncorrelated. The last also is less relevant, because frequently 
those eigenvectors selected last account for very little of the variance, and may or may 
not need to be included, depending upon the behavior of other model properties. Table 1 
suggests that the second and third concerns may not be very relevant to eigenvector 
filtering, although these topics merit serious future research attention. Of note is that 
these concerns cannot be minimized by increasing sample size. Moreover, as sample 
size increases, filters tend to include larger numbers of eigenvectors, in part because the 
standard errors asymptotically go to 0. 
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