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Abstract 

This study addresses the problem of using isomorphic expressions to specify and 
identify spatial econometric models. It then studies the selection of a dynamic 
process underlying a (multiple) time series; use of a flexible discount function 
reveals itself to be a precious aid in selecting an appropriate specification. 
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1. Introduction 

Spatial econometrics addresses not often specification and identification problems as 
such; ρW linear models, and β-convergence ones are galore. 

This study treats two of the problems mentioned, on the one hand by revealing some 
isomorphisms, on the other hand by investigation dynamic misspecifications (sections 2 
and 3). General conclusions and references follow as usual. 

2. Some isomorphisms 

Very often the search for isomorphisms suggests new solutions to specification problems; 
two examples will be exposed hereafter.  

2.1 Consistent spatial modeling 

In Paelinck, Das Gupta and Kelekar (2010) it has been shown how the topological 
structure of the set of spatial units can assist in identifying certain parameters; it will be 
shown here how this idea can be applied to a complete spatial econometric model. 

Take the extended SAR model 

 y = Ay + Xb + ε  [1] 

The first fact to be noted is that the y variables have all the same definition, GRP, for 
instance, contrary to the classical non-spatial model Ay Xb   , where the vector y 
consists of different variables. A second fact is that model [1] is isomorphic to the 
classical input-output model 

 y Ay f   [2] 

where A is the input coefficients matrix, f the final demand vector. 

The difficulty with the spatial econometric model, compared to the input-output one, is 
that the input coefficients are known from statistical observation, which is not the case 
of the A matrix in model [1]; for instance, from equation [2] total relative inputs can be 
computed as a' i'A ; this leads to the following suggestion for the spatial econometric 
model. 

The assumption is that total received impacts by a spatial unit i (ai from vector a' above) 
are a function of its production level, the higher that level, the higher the impacts; this 
allows for cross influences of receiving and impacting regions, the latter resulting from 
the first right-hand side of equation [1]. The proposed function is 

 ( )1- ay i
ia e  [3] 
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where yi is the production level of region i; of note is that the exponent in [3] 
compensates dimensionally. The coefficient a is to be estimated jointly with the 
coefficients of matrix A. 

Model (1) will now be applied to the contiguity data of Table 1 (in fact, a starting point 
for a matrix W), and Gross Regional Product data (105 Euros of 2000) of Table 2, both 
for Belgium. 

Table 1 

Contiguity degrees of the Belgian provinces 
 A BW VB OV WV LIM H N LU LIE BC 

A 0 2 1 1 2 1 2 3 3 2 2 

BW 2 0 1 2 2 2 1 1 2 1 2 

VB 1 1 0 1 2 1 1 2 2 1 1 

OV 1 2 1 0 1 2 1 2 3 2 2 

WV 2 2 2 1 0 3 1 2 3 3 3 

LIM 1 2 1 2 3 0 2 2 2 1 2 

H 2 1 1 1 1 2 0 1 2 2 2 

N 3 1 2 2 2 2 1 0 1 1 3 

LU 3 2 2 3 3 2 2 1 0 1 3 

LIE 2 1 1 2 3 1 2 1 1 0 2 

BC 2 2 1 2 3 2 2 3 3 2 0 

Abbreviations in ascending alphabetical order: A, Antwerpen; BW, Brabant Wallon; 
BC, Brussels Capital; H, Hainaut; LIM, Limburg; LIE, Liège; LU, Luxembourg; N, 
Namur; OV, Oost Vlaanderen; VB, Vlaams Brabant; WV, West Vlaanderen. 

Table 2 

Gross Regional Products of the Belgian spatial units, 1995 
Units A BW VB OV WV LIM H N LU LIE BC 

Values 416028 62919 211584 255118 226222 143460 191433 64851 37976 173063 424381 

The spatial units have then been split into three categories: high (A, B, C), medium, and 
low (BW, N, LU) GRPs, with 11 ria coefficients: 1 2 3, ,a a a : zero order contiguity (own) 

impact; 4 5 6, ,a a a  first order; 7 8 9, ,a a a : second order; 10 11 12, ,a a a : third order. The so 

created mixed contiguity order has been translated into the matrix A, allowing to set up 
the 11 constraints [3]. 

As the system is underdetermined, and moreover might be partially inconsistent, the 
estimation solution was sought along the following lines: the sum of the absolute 
differences between the values of Table 2, and values guaranteeing consistency, was 
minimized (the method so chosen discarding possible outliers), which changed the 
coefficient of OV to .7080, the one of LIM to .6901, and the one of LIE to .7259; this 
lead, under conditions [3], to the coefficients of Tables 3 and 4, the value of coefficient 
α being 6.2550E-6 
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Table 3 

Values of equation (3) 
Units A BW VB OV WV LIM H N LU LIE BC 

Val. .9257 .3251 .7335 .7970 .7568 .5921 .6977 .3332 .2113 .6610 .9294

Table 4 

ria  coefficients 

Coef. α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 

Val. .0954 .0886 .0640 .0837 .0699 .0651 .0790 .0520 0 .0921 .0802 .0042 

The impact of exogenous variables could then be computed from y* (I - A)y ; X from 
equation [1] was constructed as a binary three sector (agriculture, industry, services) 
matrix (Table 5). 

Table 5 

The X matrix 
Units\Sector A I S 

A 0 1 1 

BW 1 0 0 

VB 1 1 1 

OV 1 1 0 

WV 1 0 1 

LIM 1 0 0 

H 0 1 0 

N 1 0 1 

LU 1 0 0 

LIE 0 1 0 

BC 0 1 1 

The result (with OLS) was vector b=[-73161; 109175; 106678; constant=-11687]' with 
R2= .6807, significant at the 5% level. The coefficients have admissible signs, 
agriculture depressing regional products; given the binary construction of X, significant 
coefficients were hardly to be expected. 

Now, a very curious fact was observed: the correlation between y of equation [1], and 
y* as defined above, is extremely high (R2 = .9968), and the regression of y on y* gives 
a slope of .9939 and a constant of 151123; this means that if one takes y as the 
regressand rather than y* the difference is approximately only a constant. Indeed one 
has 

  *   y y i Xb i   c c  [4] 
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The regression of y on X results indeed in a slightly higher R2 (.7028) and the 
parameters (-67785; 115417; 108489; constant=131475) show indeed slopes of the 
same order of magnitude as above with a significant higher constant. This means that 
the results of Thompson and Mattila (1959) obtained without any interregional 
feedback, might in fact have been the reduced form of [1], so unwittingly taking into 
account spatial interdependencies. 

How about forecasting? This should be performed in an iterative way, given that A 
depends on y via equation [3]. 

Concluding it could be said that a common rule of certain econometric models –to wit 
input-output ones– can be an important help, together with topological information (see 
also Paelinck and Klaassen, 1979, in particular pp. 8-9 and footnote 21), in identifying 
and estimating a multi-regional model. 

2.2 Lotka-Volterra systems as generalized logistics 

Let us first introduce generalized Lotka-Volterra systems (GLVSs); a generalized 
GLVS can be written in matrix-vector notation as 

 ˆu u(Au a)    [5] 

where u is a column-vector of (endogenous) variables, û its diagonal matrix version, A 
a square matrix, and a is a column-vector of fixed coefficients; the •-notation denotes 
the time derivative, / t  . 

Given equation [5], the variables u describe a time path that can take all the cha-
racteristics of general continuous dynamic processes (e.g., convergence, divergence, 
limit circles; see Braun, 1975, §4.9; Gandolfo, 1996, in particular §24.4; Peschel and 
Mende, 1986). A sufficient condition can be derived (Griffith and Paelinck, 2009, 

Chapter 12) for equation [5] to converge to its focus, 1--A a , by constructing a Lyapunov-
function (Hahn, 1963). 

From the differential specification of the classical logistic 

 ˆ(1 ) *u = a u + λu  [6] 

one can derive its generalization 

  * ˆˆu uA (i u)    [7] 

In expression [6] --1 is the value of the asymptote, to be generalized to the elements of 
matrix  in equation [7]. 

The equivalence of [5] and [7] can be shown as follows. Define 

 *A i a  [8a] 
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and 

 *ˆA A   [8b] 

i being the unit column-vector. This implies 

  -1 * ˆu A i u  [9] 

- being the asymptotic vector. It is indeed equal to the classical equilibrium vector (if 

the system converges) 1--A a as 

 *a  A i A    [10a] 

hence 

 1 1- --A a -A A -     [10b] 

which implies that no matrix inversion is necessary to compute the possible focal point. 

These developments will now be applied to a four variable case borrowed from Griffith 
and Paelinck, 2011, chapter 16; Table 6 presents the data. The case was about a two-
region two-sector model. 

Table 6 

Logistic data 
RS\Par. 1 2 3 4 Ct 

1.1 -6.1627 44.1253 -6.6102 2.0707 3.3528

1.2 11.7884 3.3036 2.5080 -3.8460 -6.9309

2.1 9.9394 4.1536 -7.9713 -10.9558 2.2372

2.2 -13.3512 -8.3467 3.4470 6.1802 6.0663

Application of equations [10] lead to the vector λ=(.5098,5214; .5023,5026); the figures 
are shares of sectoral data per spatial unit, so the possible equilibrium values are fifty-
fifty deals. It should be noted that the figures have originally been computed for an 
integral logistic specification. About convergence it can be seen that trA = -4.6501, so 
that sufficiency conditions for convergence could be satisfied (they are that the real 
parts of all the eigenvalues should be strictly negative), but it has to be reminded that 
those conditions are only sufficient. 

One more interesting point is that equation [7] can be easily generalized to higher order 
polynomials, e.g. the following quadratic specification between parentheses (see von 
Bertalanffy, 1973, pp. 60 a.f.) 

  * ˆˆ ˆ ˆu uA (i u - uu)     [11] 
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The change of signs has been introduced to have an economically meaningful (non-

negative) range for the vector y, which is the range 0,  20 2 1 1 4*
i i i i iy , / /          ; 

Figure 1 shows the phase diagram. 

Figure 1 

Phase diagram 

In conclusion it should be mentioned that a study of the family links between spatial 
econometric specifications is a valuable topic to be envisaged for further study; an 
intrusion into general system theory could also be advocated. 

3. Space- and time misspecifications 

As spatial econometrics is about economic behavior, special attention has to be given to 
the specification of the underlying model, the first moments of some distributions, so to 
speak; this important point will be introduced at first, so as to set the stage for this 
study. 

The standard model in spatial econometrics can be said to be the spatial lag model 

 y Wy    [12] 

with W a spatial weight matrix, and ρ a spatial lag parameter; it is in fact a (time) static 
model. This raises the question of how a static model is generated from inherently 
dynamic (causal; on their links see Heyde, 1957 and Casti, 1997, pp. 189 a.f.) behavior. 
As an example to illustrate this point, assume the following simple one-equation one-lag 
model 

 1 t t - ty ax   [13] 

and assume further that observations are only available over a double period, so 

 1t
*

t ty y y   [14.a] 

 1 1 1( ) ( )
t
* *

t t t t ty ax a x x          [14.b] 

iy

*y y
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where 1
*
t t- tx = x + x ; the model is supposed to be fitted as a static one.  If the error term 

has the usual properties, its sum would have zero expectation and double variance (on 
the influence of spatial aggregation on the error terms, see Paelinck, 2002; and on the 
influence of dynamic misspecification, Balestra, 1982); but there is a residual term in 
the x-variable, and assumptions should be made about that two-period difference. It 
could be a constant, or a constant plus a stochastic term; there could be a constant rate 
of growth, a random walk; anyhow, the dynamics cannot be ignored and has to be 
specified. Maybe the problem could be neglected if the aggregation process runs like 

  1 1  *
t t ty y y   [15] 

with  close to 1, in which case the second term of the right hand side of [14.b] turns 
into 1 1(1 )( )t ta x x    which might produce only a negligible bias in the estimation of 

parameter a. Anyhow, caution is advocated, and this is the reason why next section will 
be concerned more in detail with space-time specifications. 

As to aggregation over space, it has been treated extensively in Paelinck (2002) referring 
to a problem studied in particular by spatial statisticians as the "Modifiable Areal Unit 
Problem" (MAUP), the possible use of territorial units of different sizes. In a genuine 
econometric spirit, this can be treated as a spatial aggregation problem, producing some 
disturbing consequences for the spatial econometrician. One of these consequences may 
be summarized as follows: “The important result is that in general econometric 
aggregation, if only one macro-aggregate is considered, just one parameter bias is present 
in the macro-model; in meso-aggregation, as it took place here, every meso-area has its 
own specific aggregation bias, which leads to parameter variability between meso-areas, 
and this might result, in econometric estimation, in some sort of (biased) average value, 
depending on the characteristics of the sample being investigated and the particular spatial 
aggregation specification”.  

In larger models the implicit bias will be even more complex; moreover, the stochastic 
terms of a model will reveal heteroscedasticity and spatial autocorrelation under very 
general conditions. Of note here is that resulting conclusions impose the use of 
appropriate specifications adapted to each problem at hand; a possible technique for 
achieving this end is that of composite parameters —at least when the number of 
degrees of freedom is adequate—in order to take account of the specific bias inherent in 
each meso-economic spatial unit included in a cross-section analysis (Ancot et al., 
1978). But then, how to sort out spatial heterogeneity and spatial bias? Recently 
filtering data for observational errors, and then for spatial aggregation bias, was 
proposed in Griffith and Paelinck (2010, Part 2, Chapter 18); the method was applied to 
a series with maximal spatial complexity, after which complexity was reduced by two 
thirds, and a simple linear model could be fitted to the filtered data. 
  



Jean H.P. Paelinck  Specification and Identification in... 43 

 

V
o

l. 
54

. N
ú

m
 1

77
 / 

20
12

 

3.1 Specifications 

Several model specifications will be analyzed hereafter from the aggregation point-of-
view. 

3.1.1 Only exogenous variables 

Starting with a one exogenous variable model like in equation [13], assume that the true 
specification is 

 1 2(1 )t t ty ax ax      [16] 

which means a shared overlap of the impulse over two partial periods. Assuming

1t tx ax  , there comes 

 1
1(1 )t ty a x  

      [17] 

over- or under-estimating a depending on the sign and magnitude of α if model [17] is 
substituted for model [16]. If a static model (xt as exogenous variable) is used, the result 
would be 

 1 1(1 )t ty x           [18] 

again or a constant ratio ρ between successive values of the exogenous variable, leading 
to the same conclusions as above. α being known, a can only be identified if  is also 
known, which generally is not the case. 

3.1.2 Dynamic processes 

Going back to the problem raised around equation [13], assume the true model to be 

 1t t -y ay b   [19] 

and again two subsequent periods to be aggregated; there comes 

    1 1 2 2 2t t t- t- t t-y y a y y a y y b        [20a] 

    2
1 1 2 2 1t t t- t-y y a y y a b       [20b] 

In principle a and b are identifiable if knowledge is available about process [19] and the 
aggregation procedure, but as knowledge about [19] is rather dubious, only result [20b] 
can be obtained. 

If now the underlying process is 
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 1 2
*

t t- t-y ay a y b    [21] 

and one estimates a one-lag model, yt-2 can be substituted by the instant ratio rv=yt-1/yt-2, 
leading up to 

  1
1

*
t v t-y a r a y b    [22] 

but then the coefficient obtained for the lagged variable (in model [21] yt-1) will be 
variable over the estimation period as a result of varying rv, and anyway both 
coefficients a and a* could not be identified. 

3.1.3. Multiple variable case 

Here space and the W matrix can be reintroduced, generalizing [12] to 

 -1 -2 +*t t ty y y  W W b  [23] 

and estimating only a one-lag model, one obtains 

  -1
t-1   ˆ*ty W Wr y b  [24] 

with 1r̂- the diagonal matrix generalizing vr of equation [22]. Here the static case can 

be envisaged, leading up to 

  * 1 1ˆ ˆ*t t    y r W Wr y b  [25] 

with an obvious interpretation of * 1r̂ - , but in the resulting condensed specification 

 **y Wy b t t  [26] 

**  is not identifiable for row-normalized W (Paelinck, Das Gupta and Kelekar, 2010). 

3.2 Simulations 

In order to get some insight into the order of magnitude of empirical biases, the 
coefficients of models [22] and [24] have been estimated, starting from simulated 
underlying models [21] and [23]. 

3.2.1 Models [21]-[22] 

The true model [21] has been numerically specified as 

 -1 -21.1 - 0.15 1     t t ty y y  [27] 
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and simulated with starting points (10, 11), Table 7 hereafter listing the ten next figures. 
Of note is the fact that a negative coefficient has been chosen for the second order lag. 

Table 7 

Results of simulating equation [27] 
yt Values 

1 11.60 

2 12.11 

3 12.58 

4 13.02 

5 13.44 

6 13.83 

7 14.20 

8 14.54 

9 14.87 

10 15.17 

Process [27] can be shown to be convergent to the value 20. 

Equation [22] was reduced to just a first order lag process, and its parameters estimated 
from the data of Table 7 by SDLS (Griffith and Paelinck, 2011, Part 2, Chapter 12); as 
progressively less data for the past are available, reduced potentials were computed, but 
with (equally spaced) linearly decreasing weights, down to .1 (sometimes full past data 
are available: Agarwal, 2009). This produced a lag parameter of .9396 and a constant 
equal to 1.2022, which corresponds to the result of equation [22] for * 0a  and rv>0.  

In Section 3.4 the analysis will be continued. 

3.2.2 Models [23]-[24] 

To implement model [23] the W matrix for two regions has been chosen as in Table 8. 

Table 8 

W matrix 
.5 .5 

.1 .9 

This resulted in the following equations, with .8   and 5* .2     and constants .3 and .5: 

 1 1, 1 2, 1 1, 2 2, 2.40 .40 .125 .125 .3t t t t ty y y y y- - - -= + + + +  [28a]  

 2 1, 1 2, 1 1, 2 2, 2= .08 .72 .025 .225  .5t t t t ty y y y y- - - -+ + + +  [28b] 

The system has two real negative roots, and two complex conjugate roots outside the 
unit circle, so is not convergent. 

Simulations with stating point (10,11;5,5.2) produced Table 9. 
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Table 9 

Results of simulating equations [16] 
y1t , y2t Values of y1t Values of y2t

1 8.66 6.50

2 839 7.32

3 8.48 8.12

4 8.90 8.88

5 9.49 9.64

6 10.17 10.42

7 10.93 11.22

8 11.74 12.06

9 12.59 12.92

10 13.48 13.81

Estimating the parameters of specification [24] ― again with the weighting mentioned 
in section 3.2.1 ― resulted in the figures of Table 10. 

Table 10 

Parameter results for equation [24] 
Parameters Variable y1 Variable y2 

Condensed ρ 1.0414 1.0414

Constant -.0153 .1815

Remarkable is the fact that the condensed  ρ is 25% higher than the original first order 
one, which is in line with the results shown by equation [24]; again Section 3.4 will 
continue the analysis.  

3.3 Solutions 

Various suggestions could be made neutralize time and space biases present in spatial 
econometric work. 

One possibility is to test, if possible, given the data, several underlying specifications 
against each other, but the alternatives are rather numerous. 

Another way of attacking the problem is to introduce time- and space flexible discount 
functions; some ideas about this follow. 

The shape of a – spatial or temporal – lag function can be quite sophisticated; in fact, 
the W matrix of equation [12], normalized or not, can often be considered as an 
oversimplification of spatial interaction effects, and the same applies to time interaction. 
The reason is that distances, which are often implied, should not necessarily concern 
"physical" ones, but mostly refer to "functional" distances. e.g. economic structures 
(Kocornik-Mina, 2007) 

Flexibility in this case can be introduced using some appropriate functional form, e.g. 
the well-known one-parameter Poisson (distribution) function f(n) = e-μμn/n!, where n is 
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the time-lag degree; use of the latter in time series has shown that a first-order lag is not 
necessarily dominant (Agarwal, 2009). 

The same applies to spatial lags; different possibilities exist for introducing flexibility, 
e.g. the use of a so-called Tanner function, specified as follows 

 ( ) *, df d de-= gg g  [29] 

with d an appropriate distance function, 0g ³ , and *g  the usual normalizing constant 

( )2g- . 

Another possibility is the use of the following function 

 ( ) ( ) ( )
** 1(1 ) **, ln 1 1    f d e dgg g g g -- é ù= + + +ê úë û

 [30] 

with again 0g ³ . Both functions allow for a maximum effect, equation [30] showing it 

at a distance 
*** (1 ) 1d e g g-æ ö÷ç= - ÷ç ÷çè ø

, so for 0g =  the maximum effect operates at d =¥ , 

and for g=¥ at d=0 (further details in Ancot and Paelinck, 1983).  

Data sometimes allow to compute intermingled space and time reactions (panel data, 
e.g.); how space and time have been combined will be illustrated by way of a bi-variate 
statistical approach. The specification problem can be approached as follows (Griffith 
and Paelinck, 2009). 

As a distance function the degree of contiguity was selected, and years as time units. 
This implies that a discrete bi-variate function should be picked out, and a simple choice 
was the bi-variate Poisson function. 

The non-normalized bi-variate Poisson distribution is specified as 

 ( ) 11 2 1/2
1 2 1 2 1 2 1 2 11 21( , , ) ! ! 1 ( ) ...n nf n n r m m n n r m m p p

- é ù= + +ê úë û , [31] 

where n1 and n2 are the degrees of time- and space-lags, and where  is the correlation 
coefficient between n1 and n2, p11 and p21 

being the Charlier type B polynomials (Ord, 
1972) defined as: 

 ( )
0

1 ,
k

jk j
k j

j

k
p m n

j
-

=

æ ö÷ç ÷= -ç ÷ç ÷çè øå  [32] 

with nj denoting the frequency corresponding to index j. In the present case, n1j and n2j 
represent the relevant (space and time) lags.  
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The model was applied to eleven Belgian spatial units over the years 1995-2002; the 
following results show its applicability. 

Parameters 1m and 2m were strictly positive, at the same time showing widely divergent 

values; ρ was lying between -1 and +1, as it is required to do. Spatial parameters were 
all positive, again varying widely in value, and so were time parameters but with three 
exceptions; a mixed space-time parameter –together with ρ typical for the space-time 
effect– was mostly negative, with four exceptions, the same applying for ρ, with three 
exceptions.  

In terms of the lag coefficients, two spatial lags were peaking at contiguity 4, one at 
contiguity 3 and three at contiguity 2; for all other regions, the impact declined with 
increasing spatial lag, so altogether a striking variety of effects, due to the specific 
characteristics of the local economies considered. This is one of the main features of 
applied spatial econometrics; this point will be encountered frequently in spatial 
econometric work. In terms of the time lags, the farthest away peak was 7; another 
region peaked at 3, and four others at 2 all other regions showing a declining time 
effect. These latter results are classic, but the first ones mentioned are really astonishing. 

As to ρ of equation [31] and the mixed space-time parameter, this being the first 
occasion on which they seem to appear in combined space-time dynamics, little can at 
this time be said about their relative values, as more experience with them has to be 
gathered. 

3.4 Applications 

The discussion of Section 3.3 will now be applied to the simulations of Section 3.2. 

3.4.1 Models [21]-[22] 

A Poisson distribution specification will be used as a spatial discount function; remember 
its functional form f(n)=e-μμn/n!, where n here denotes the degree of a time lag. 

Using again the data of Table 7, and estimating by SDLS –with the weighting 
mentioned in section 3.2–  resulted in a= .9524, a*=1.2058 and μ= .0268, results hardly 
different from those of Section 3.1, except for a slight increase in a. But the weakness of 
μ shows that there is very probably no positive second order effect, which invites to try 
a negative value for that effect, which would of course lead to the values of the 
parameters in equation [22].  

3.4.2 Models [23]-[24] 

The figures of Table 9 will again be used, again with the weighting of section 3.2. As 
there is only one "neighboring spatial unit" (the other series), no bi-variate Poisson 
distribution could be used, but two different distributions were used, one for the own 
time-lag, the other for the time lag of the other series. Table 11 presents the results of 
the SDLS estimation of the parameters, whose meanings are the following: a (own 
reaction parameter), b (pure contemporaneous spatial effect), c (reaction parameter to 
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the other series), d (constant), μ (own Poisson lag parameter), μ* (Poisson lag parameter 
of the other series); there is no correlation coefficient involved, as the two Poisson 
effects are not joint. 

Table 11 

Parameters of re-estimating  
equations [28] 
Parameters Series 1 Series 2

a .3955 .1049

b .7803 .7332

c -.1632 .1949

d -.1117 .4073

μ .0354 .3931

μ* .5646 1.7152

Considering the first series, coefficient a is practically equal to that of equation [28a], 
.40, with a dominating first order effect (μ<1). The coefficient for the other region (c) is 
negative, but this fact is compensated by the pure contemporaneous spatial effect (b), 
which has to be taken into account in the dynamics, due to the series' serial correlation; 
the Poisson parameter shows once more a dominating first order lag. 

As to the second series, the effect of the other series is dominating, at the same time 
through b and c, with a significant second order lag effect (μ* >1). Without reproducing 
exactly equation [28b], the overall tendency of that equation is confirmed. 

3.5 General approach  

The problem could still be approached from a more general point of view. 

Suppose there to be observations over R regions and T time periods; excluding own 
contemporary coefficients −for identification reasons− and also expectation-forward -effects, 
there are C=R2T estimable coefficients, including region-specific constants. As there are 
O=RT observations, there remain M=RT(R-1) missing observations. 

Supposing all lagged observations to be available (these observations not appearing as 
endogenous variables; see the remark down Table 7, two possibilities remain. Either the 
parameters are considered to be non region-specific, in which case R–1=0, and all 
coefficients can be interpolated. Another possibility is to select RT region-specific 
parameters, on the basis of an appropriate criterion; in the exercise to follow, the 
variation coefficient of the absolute parameter values, σ/μ, was maximized, so as to 
obtain maximum contrasting impact effects (using real values might imply a μ near 
zero, with possible indeterminacy; this was the case with the figures of Table 11, 
leading up to μ= .0231 and σ/μ=56.8695). 

These two possibilities were applied to the figures of Table 12. 
  



50 Jean H.P. Paelinck  Specification and Identification in... 

 

V
o

l. 
54

. N
ú

m
 1

77
 / 

20
12

 

Table 12 

Data for an application 
T\R 1 2 3 

-1 4 2 10 

0 5 4 11 

1 7 6 13 

2 8 6 14 

3 `10 7 14 

Only time periods 1, 2 and 3 were used in the calculations, periods 0 and -1 allowing 
only to estimate the lag parameters without discounting (see section 3.2); Table 13 
presents the results. 

Table 13 

Calculation results 
Coeff.\Reg. All R R1 R2 R3 

a1 -.3110 -.4091

a2 .8645 1.8333

a3 -.3110 -.1500 .6667

a4 .8645 .0300 -2.1667

a5 .1652

a6 -.1561 .0700

a7 17.1641

a8 -1 .0500

a9 -.5237 .3182

σ/μ - .8632

Column R refers to the first possibility (non region-specific parameters), columns R1, R2 
and R3 to the other case (as the parameters are region-specific, the 9 equations in the 
system are made up of three groups of three separate equations; appropriate binary 
variables assure the right split). a1 and a2 are the own first and second order lag 
coefficients; a3 and a4 apply to the same lags for the effects 1 2R R , 2 1R R , 1 3R R , 

a5 and a6 to those for 3 1R R , 3 2R R , 2 3R R ; a7 is the constant; a8 is the spatial 

autoregression coefficient for 2 1R R , 2 1R R , 1 3R R and a9 the one for 3 1R R , 

3 2R R , 2 3R R . 

A typical equation is the following, where x refers to R1, y to R2, and z to R3 

 1 1 2 2 3 1 4 2 5 1 6 2 7 8 9 + +t t t t t t t t tx a x a x a y a y a z a z a a y a z- - - - - -= + + + + + +  [33] 
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As to the coefficients, one notices large differences according to the specifications, and 
also the absence of a constant in the region-specific case; this is again an example of 
multiple regimes ruling interregional behavior (Griffith and Paelinck, 2011, Part 2, 
Chapter 13). Of note also is the fact that the region-specific parameters should include 
the effects of the relevant topology. 

4. General conclusions 

From the spatial econometric exercises reported in this study, a certain number of 
conclusions have been drawn which will be reported here again. 

It has been shown first that a common rule of certain econometric models –to wit input-
output ones– can be an important help, together with topological information, in 
identifying and re-estimating a multi-regional model. More generally it has been 
concluded that a study of the family links between spatial econometric specifications is 
a valuable topic to be envisaged for further study, and that an intrusion into general 
system theory could also be advocated. 

Concerning the use of flexible spatio-temporal weight functions (see the earlier 
mentioned Ancot-Paelinck, 1983, and Griffith-Paelinck, 2011, studies), only a few tests 
are available but they tend to show that the choice of such functions can correctly 
specify complex space-time reaction patterns. An obvious extension would be the 
choice of more complex functional expressions (bi-variate polynomials, e.g.), a topic for 
further investigations. As to the region-specific case treated in section 3.5, the 
availability of large T multi-regional series should allow to increase the number of 
region-specific parameters, limiting e.g. the lags to only a few orders. 
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