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Abstract 

The purpose of this paper is to illustrate the use of a new non-parametric test for 
spatial causality, between two series, in a pure cross-section. The basis of the 
proposal, as in the case of the Granger test, measures the quantity of information 
added by the variable supposed to be cause with respect to the second variable, 
supposed to be the effect. The test is robust to possible nonlinearities that may 
affect the relation. The performance of the new test is adequate under a large 
variety of situations. Moreover, the test is simple to obtain because we only need 
some basic probabilities. In order to facilitate the interpretation of the test, we 
include three examples. Two of them use simulated data whereas the third 
corresponds to the debate between unemployment and migration. 
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Algunos ejemplos sobre el uso de un nuevo test de causalidad 
espacial 

Resumen 

El objetivo del trabajo es presentar un test no paramétrico dirigido a contrastar no 
causalidad entre dos series espaciales utilizando un único corte transversal. El 
contraste se basa, al igual que el test de Granger, en una medida de la cantidad de 
información aportada por la variable supuesta causa con respecto a la variable 
supuesta efecto. El test es robusto a posibles no linealidades que puedan afectar la 
relación y su comportamiento es el adecuado para una gran variedad de casos. 
Además, su obtención es simple porque únicamente necesitamos estimar una serie 
básica de frecuencias. Incluimos tres ejemplos para facilitan su interpretación. En 
dos de ellos utilizamos datos simulados mientras que el tercero trata sobre la 
relación entre desempleo y migración. 

Palabras clave: Causalidad; Entropía simbólica; Desempleo frente a Migración. 

Clasificación JEL: C21, C50, R15  

Clasificación AMS: 62F03 

1. Introduction 

Detection of causal relationships among variables has been one of the key challenges of 
econometrics since the seminal works of Haavelmo (1943) and Jan Tinbergen (1951). 
Two main tendencies can be appreciated after them: the stochastic approach, 
emphasizing the principles of regularity and asymmetry between cause and effect, and 
the structural approach where identification is the basic premise. The contribution of the 
Cowles Commission was fundamental in the development of the last one whereas 
Granger causality test and the vector autoregression approach are ultimate results of the 
first. The process is well documented by Morgan (1991). Hoover (2004) puts numbers 
into the discussion with a very impressive result: 70% of the articles in the JSTOR 
archives, published in 2001, contain words ‘in a causal family (“cause”, “causes”, 
“causal”, “causally” or “causality”)’. The percentage increases up to 80% if the 
search is restricted only to articles in econometrics.  

Indeed, thereis a huge literature devoted to the topic (see, for example, Bauwens et al, 
2006, and references from there), but causality is not as simple as it seems (Pearl, 2009). 
The list of problems is recurrent: symmetry versus asymmetry, invariance and 
identificability, common causes, counterfactuals, observational studies, etc. The 
principle of temporal precedence constitutes a helpful assumption, but is also a 
restriction that limits the notion of causality. In this sense, the absence of an explicit 
time ordering of spatial data partly explains the null impact of this topic on the most 
popular textbooks of Spatial Econometrics. Our impression is that the spatial 
econometric methodology cannot avoid the notion of causality even if the data are 
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purely cross-sectional (see Weinhold and Nair, 2001, Hurlin and Venet, 2001, Hood et 
al, 2008, or Tervo, 2009, for the case of spatial panel data). 

Our proposal is in line with the notion of ‘incremental predictability’ as stated by 
Granger (1980): the variable supposed to be the cause must contain unique information 
about the variable supposed to be the effect. It is the same idea proposed by Wiener 
(1956): ‘For two simultaneously measured signals, if we can predict the first signal 
better by using the past information from the second one than by using the information 
without it, then we call the second signal causal to the first one’. 

The question now is finding the formula to translate the concept of predictability to a 
single cross-section of contemporaneous data, without temporal perspective. We 
explore the possibilities of a non-parametric method for measuring causal information 
transfer between systems, called transfer entropy as proposed by Schreiber (2000). 
Marschinski and Kantz, (2002), or Dicks and Panchenko, (2006), work in the same 
direction. 

In fact, our own proposal is based on entropy (see Joe 1989 a and b, Hong and White, 
2005, and references from there), a flexible non-parametric technique aimed at finding 
regular patterns in large collections of data. Matilla and Ruiz (2008) introduce symbolic 
dynamics, with the purpose of summarizing fundamental pieces of information, and 
symbolic entropy, as a way of measuring the quantity of this information. 

Section 2 sets the notation, definition and basic elements of our approach. In Section 3 
we introduce the test of spatial causality, which is based on the comparison of two 
measures of conditional entropy. In Section 4 we discuss the problem of how a series 
can be symbolized. In Section 5the method is applied to the case of the relation between 
employment and migration, using a set of Italian data. Main conclusions appear in the 
sixth section. 

2. Preliminaries 

Let us assume a spatial process s s Sx , where S is a set of points or locations in space. 

We say that x is embedded in an m-dimensional space (m א N with m ≥ 2) in reference 
to the following (mx1) vector: 

   0m 0 m - 1s s10
(s ) , ,..., for Ss x x x x  [1] 

where s1,s2,...,sm-1 are the m-1 nearest-neighbors to s0, ordered according to distance 
with respect to location s0. If some locations are equidistant to s0, they are ordered 
counterclockwise. 

Let Γn = {σ1,σ2,...,σn} be a set of n symbols and assume that there is a map: 

 m
nf : R   [2] 
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such that each element xs is associated with a single symbol f(xs)=σis with 

si {1, 2, . . . , n} . We say that location s א S is of the σi-type, in relation to  s s Sx , if 

and only if x
m if ( (s)) x  . We call f the symbolization map. 

Moreover, by p (σ) we mean the probability of observing symbol σ. The set 

 np( );p( );...;p( )  1 2  is the discrete probability function for the set of symbols, whose 

information content can be assessed with, for example, the Shannon (1948) entropy 
measure: 

 
n

h ln( )p p


    


 [3] 

The lower bound is attained if only one symbol occurs; the upper bound corresponds to 
the case where all the symbols appear with the same probability. It is conventionally 
assumed that 0 log 0 = 0. 

This measure depends on a sequence of unknown probabilities, p , that should be 

estimated from the data. Using the results of the symbolization map of [2], we may 
define the absolute frequency of a given symbol for the x data: 

  x
i

x
in # s S s is type for     x  [4] 

which coincides with the cardinality of the subset of S formed by all elements of σi-type. 

The relative frequency of a symbol, x
ni  , is a consistent estimate of its probability, 

for a great variety of cases: 

 
 

x
i

x
m ix

i

# s S f( (s))
p( ) p

S




 
 

x
 [5] 

where |S| denotes the cardinality of set S. Using this (estimated) probabilities, we can 
measure, for a given embedding dimension m ≥ 2, the Shannon entropy for the  s s S

x  

process: 

 x x
i ix

ni

m(X) ln( )p ph  
 

    [6] 

Consider now a bivariate process   s s s s S
,


Z X Y . We define a new set of joint 

symbols, n, as the direct product of the two univariate sets 2
n n nx   , with typical 
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elements  yx
ij i j;   . The symbolization function is a mere generalization of the 

univariate case: 

 2
ns s Sg( )  z  [7] 

Where: 

  yx
s s s s s iji jg( ( , )) (f( );f( )) ;     z X Y x y  [8] 

The measure of joint entropy for the bivariate process is, formally, the same  

 
2
n

m( ) ln( )p ph


 


  z  [9] 

We can define the conditional entropy of one variable, say y, conditional on the 
realization of a certain symbol in the other, for example σx in x: 

 
y

n

x y x y x
m( ) p( )ln(p( ))h

 
    


  y  [10] 

And also the conditional symbolic entropy of y given x  

 
x y

n

y x y x
m( ) p( ; ) ln(p( ))h

  
   

 
   y x  [11] 

It can be shown that: 

 
x

x x
m m( ) p( ) ( )h h

 
 



 y x y  [12] 

The same as before, the different probabilities that appear in expressions [9]-[12] can be 
estimated by means of the relative frequencies: 

 ij
yx

yx ji
i ijj

n
p( ) ; p( ) ; p( )

S S S
      [13] 

3. A Procedure for Testing Spatial Causality (in information) 

As said, testing for causality is not simple. Difficulties increase in a spatial cross-section 
where, habitually, the relations are simultaneous. The absence of a previous ordering of 
the data is a serious constraint that limits our possibilities. The approach that follows is 
simple and is based on the information content provided by one variable, supposed to be 
the cause, with respect to another variable, supposed to be the effect, once all the 
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information existing in the Space in relation to the ‘caused’ variable has been taken into 
account. That is, the first variable must contain unique information in relation to the 
second variable. 

Previously, we have to make sure that (1)- Space is relevant to interpret the information 
of the two series and (2)- The two series are not independent. If both series are spatially 
independent, the Space is not relevant for them, so a traditional causality approach for 
cross-sections can be used. Besides, if the two series were independent, it would not 
make sense to think about causality. The proposal that follows assumes that both 
clauses are satisfied (space is relevant and the two series are related). Figure 1 shows the 
sequence of actions. 

Figure 1 

Testing for causality between spatial series 
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The Granger notion of causality builds upon the concept of incremental predictability, 
in the sense that: 

 t+1 t t+1 t tP P -      y Ω y Ω x  [14] 

P[-] being a measure of probability, {t} refers to the knowledge available at time t, 
including the past history of the variable supposed to be ‘caused’, ytt, and {t -
yt} is the knowledge in the Universe available at time t except the information 
corresponding to variable x up to time t, {xt}. However, the concept of predictability is 
not well developed yet for the case of pure cross-sections (in spite of, for example, 
Kelejian and Prucha, 2007). We prefer to think in terms of incremental information. 
The measures of entropy introduced in the last section offer us an adequate framework 
to progress in this direction. 

In relation to the formalization of the space, we follow the usual reasoning in terms of 
sequences of weighting matrices. By spatial dependence structure we mean the set 
formed by all relevant weighting matrices that may intervene in a causal relationship 
between the two processes, x and y,    j, j J W x y W , J being a set of indices. 

 ,W x y , contains a finite, and usually small, set of elements. Then, we can define the 

sets of spatially lagged information for both variables: 

 
 
 

j j

j j

( , )

( , )

 

 

W

W

x W x yW Wx

y W x yy W W
 [15] 

Finally, we propose the following definition of spatial causality, in information: 

We say that  s s Sx  does not cause  s s Sy , under the causal spatial structure W(x,y), if 

 m mw w w;h hy y y y x  [16] 

This definition leads us to the following non-parametric test for the null hypothesis of 
non-causality: 

 

   

W W

s ss S s S
0

A 0

 does not cause ,  
H  : 

under the causal spatial structure  and 

H  : No  H

x y  





yx  [17] 

and to the following statistics: 

 
W WW W Wmm

ˆˆ ˆ( ) ( ; )( ; ) h h  y yy yy xx  [18] 
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Obviously, if 
Wx  does not contain extra information about y then w w

ˆ( ; ) 0 y x , 

otherwise w w
ˆ( ; ) 0 y x  

The distribution function of the statistic w w
ˆ( ; ) y x  is unknown. In order to test the 

hypothesis (17) as an approximation, we propose bootstrapping the data under the null 
hypothesis of no causality. The procedure, with a number of B replicas, consists of the 
following steps: 

1. Compute the value of the statistic w w
ˆ( ; ) y x  from the original sample. 

2. Re-sampling  s s Sx  and  s s S
y   we obtain two bootstrapped series b

s
s S

x and 

 bs s S
y , where b is the number of bootstrapped samples. 

3. For series  b
s

s S
x  and  bs s S

y , estimate the statistic: b
w w

ˆ ( ; ) y x . 

4. Repeat B-1 times steps 2 and 3 to obtain B-1 bootstrapped realizations of the statistic

 Bb
w w b

 
ˆ ( ; )

1
y x  

5. Compute the estimated bootstrap p-value: 

B
b

w ww w
b 1

w wboots

ˆˆ ( ; )( ; )
ˆ( ( ; ))p

B
value

 
 

  
 

 y xy x

y x  

Where     is an indicator function that takes the value 1 if the inequality inside the 

brackets is true and 0 otherwise. 

6. For a significance level α, reject the null hypothesis that s s Sx does not cause 

 s s Sy under the spatial structure  ,W x y  if 

w wboots
ˆvalue( ( ; ))p   y x  

Herrera (2011) studies the behaviour of the w w
ˆ( ; ) y x  test under different 

circumstances through a large Monte Carlo. The conclusions of this study are promising 
in the sense that it enables us to determine (1)- the existence, or not, of causality 
between a pair of series and (2)- to identify, unequivocally, the direction of the 
information flow between series. For small sample sizes (100 observations) the test 
works better in the case of linear relationships between the variables; for large sample 
sizes (400 observations), the test is fairly robust to the functional form. 
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4. Symbolizing the series 

This section is devoted to the problem of symbolizing a (spatial) series. The 
specification of a symbolization map is a prerequisite for apply the methodology 
presented in the last section, which allows us to solve the inference in the space of 
symbols instead of the sampling space. The decision is of paramount importance 
although in a given situation there will surely be various alternatives. The procedure 
shown below has proven useful for analyzing causality in pairs of spatial processes; 
however, it can be adapted and refined according to the requirements of the problem at 
hand. 

Denote by Me the median of the spatial process  s s Sx and define the indicator 

function: 

 s
s

x0 if Mex
1 otherwise
  


 [19] 

As before, let m ≥ 2be the embedding dimension that allows us to build the m-
surrounding of each location in space. Let us remind that each m-surrounding contains 
the observation at point s plus the m-1 nearest-neighbors In continuation, the following 
indicator function, for each si with i = 1, 2, . . . ,m-1, is defined: 

 S i
Si

S
S

0 if

1 otherwise

  


  [20] 

We are in a position of specifying a symbolization map for  s s Sx  simply as: 

 
Si

m 1
si 1

f( )



 sx  [21] 

The set of symbols is  m 0;1;2, ;m-1   with cardinality equal to m. In sum, this 

symbolization process consists in comparing, for each location s, the value of the 
indicator function (19),  s , with the same indicator for the points included in the m-

surrounding of location s,  is
. The symbols measure the number of coincidences. 

In continuation we present two examples that show the use of the above methodology to 
test for spatial causality between two spatial variables. The sample size is 100 and the 
coordinates of the observation points, abscissa and ordinate, are randomly distributed in 
the unit interval. 

The first example corresponds to the case where one variable, y, is caused in a 
unidirectional way by another variable, x. We have used the following equations to 
obtain the data: 
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 0 1(I ) x

iidN(0,1); iidN(0,1)

Cov( , ) 0

      


 

 

-1y W Wx u

x u

x u

 [22] 

where ρ=0.5; β0=1 and β1=2 (different values produce similar results). The values 
obtained for y and x are represented in the 5 quintiles of Figure 2 (darker color, higher 
quintile). 

Figure 2 

Example 1. There exists a causality relation from x to y 

 Spatial distribution of y  Spatial distribution of x 

The w w
ˆ( ; ) y x statistic (18) is a difference between two measures of conditional 

entropy. The same as with probabilities, these conditional entropies can be obtained as 
the difference between the corresponding joint and the marginal entropies.  

 
W WW W W

W WW W W W

mm

m m m m

ˆˆ ˆ( ) ( ; )( ; ) h h

ˆ ˆ ˆ ˆ( ; ) ( ) ( ; ; ) ( ; )h h h h

  

        

y yy yy xx

y yy y y yx x
 [23] 

For the case m=4, there are 4 symbols to symbolize one variable,  4 0,1,2,3  , 16 if 

two series are symbolized  2
4 44 (0.0);(0.1);...(3.2),(3.3)      and 64 in the case of 

symbolizing three variables 3
4 4 44         (0,0,0);(0,0,1);...(3,3,2),(3,3,3) . Table 

1 shows some of the data included in Figure 2 and, as a mere example, the 
symbolization of two series, y and yW, and the obtaining of the bivariate symbols, in the 
last column of the Table. 

  



Marcos Herrera et alii  Some examples of the use of a new test... 63 

 

V
o

l. 
54

. N
ú

m
 1

77
 / 

20
12

 

Table 1 

EXAMPLE 1. Symbolization process for two series afected by a causality relationship 
(Continues) 

Coordinates Data 3-surroundings y(si) yw(si) 

N
ob

 

yc
 

xc
 

y x s 0
 

s 1
 

s 2
 

s 3
 

y (
s 0

) 

y (
s 1

) 

y (
s 2

) 

y (
s 3

) 

y w
(s

0)
 

y w
(s

1)
 

y w
(s

2)
 

y w
(s

3)
 

1 0.98 0.64 1.85 0.33 1 62 18 91 1.85 1.49 1.82 1.97 1.76 1.88 1.77 1.65 

2 0.56 0.18 -1.34 -1.77 2 74 54 67 -1.34 -1.20 0.55 -0.59 -0.42 -0.01 -0.35 -0.66 

3 0.03 0.73 0.92 -2.27 3 60 76 29 0.92 1.14 -0.12 -0.71 0.10 0.29 0.47 1.00 

4 0.36 0.91 0.55 -1.32 4 25 66 8 0.55 -0.28 -0.09 0.30 -0.03 -0.19 0.32 -0.39 

5 0.29 0.68 -1.80 0.47 5 22 28 43 -1.80 0.85 1.04 0.01 0.63 -0.39 -0.31 0.03 

…. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. 

95 0.91 0.27 1.06 0.99 95 37 83 27 1.06 1.49 0.11 0.16 0.59 1.03 1.18 0.89 

96 0.13 0.12 -0.12 -0.81 96 92 57 73 -0.12 0.92 -0.24 -0.66 0.01 -0.34 -0.02 0.17 

97 0.87 0.92 0.07 1.56 97 10 85 12 0.07 0.68 0.11 2.10 0.96 0.82 0.29 -0.12 

98 0.97 0.05 -0.36 -0.07 98 21 27 95 -0.36 -0.61 0.16 1.06 0.20 0.29 0.89 0.59 

99 0.41 0.02 -1.18 0.80 99 64 89 56 -1.18 0.51 -1.03 -0.44 -0.32 -0.88 -0.76 0.36 

100 0.64 0.94 -1.71 0.75 100 88 93 20 -1.71 0.92 -1.34 0.28 -0.05 -0.31 1.10 0.50 

 

   (Conclusion) 

y(si) yw(si) y(si) yw(si) ηij
 

Nob τso

 
τs1 

 
τs2 τs3 τso τs1 τs2 τs3 ιso s1 ιso s2 ιso s3 ιso s1 ιso s2 ιso s3 

 
i

x j
y 

 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 

2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 3 3 

3 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 

4 0 0 1 0 0 0 1 0 1 0 1 1 0 1 2 2 

5 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

…. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. 

95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 

96 0 0 0 0 0 0 0 0 1 1 1 1 1 1 3 3 

97 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 2 

98 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 

99 0 0 0 1 0 0 0 1 1 1 0 1 1 0 2 2 

100 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 

This information allows us to obtain the estimated probabilities for the univariate 
symbols of y and x: 

 

 p(0) p(1) p(2) p(3) 

y 0.03 0.14 0.23 0.60

x 0.10 0.26 0.34 0.30
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The probabilities corresponding to bivariate symbols are simple to obtain: 

 

p(
0,

0)
 

p(
1,

0)
 

p(
2,

0)
 

p(
3,

0)
 

p(
0,

1)
 

p(
1,

1)
 

p(
2,

1)
 

p(
3,

1)
 

p(
0,

2)
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p(
3,

2)
 

p(
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3)
 

p(
1,

3)
 

p(
2,

3)
 

p(
3,

3)
 

y,yW 0.02 0.00 0.00 0.01 0.00 0.05 0.07 0.02 0.01 0.09 0.08 0.05 0.00 0.04 0.08 0.48 

x,xW 0.00 0.08 0.02 0.00 0.03 0.12 0.10 0.01 0.04 0.15 0.13 0.02 0.03 0.08 0.15 0.04 

as well as the probabilities for the 64 symbols of the trivariate case, 
Ww( ; ; )y y x . The 

results that we obtain for this example are: 

   
W W WW W W W Wm m m m

ˆ ˆ ˆ ˆ ˆ( ; ) ( ; ) - ( ) - ( ; ; ) - ( ; )h h h h

1.836 -1.025 - 2.597 - 2.229 0.443

        
 

y yy y y y yx x x
 

   
W W W W WW W Wm m m m

ˆ ˆ ˆ ˆ ˆ( ; ) ( ; ) ( ) ( ; ; ) ( ; )h h h h

= 2.394 -1.308 - 3.156 - 2.229 = 0.160

         x xy y yx x x x x
 

The p-value of the first statistic, WW
ˆ( ; ) y x , after a random permutation, is 0.02 

whereas that of the second, WW
ˆ( ; ) y x , is 0.31 which allows to state that variable x 

causes (in information) variable y under the spatial structure defined by the 3 nearest-
neighbors criterion and using a spatial surrounding of m=4. 

Figure 3 presents the case of two independently generated series: 

  

iidN(0,1)

iidN(0,1)

Cov( , ) 0




 




y

x

x y

 [24] 

Figure 3 

Example 2. There is no causal relationship between x and y 

 Spatial distribution of y  Spatial distribution of x 
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The estimated probabilities for the symbols of y and x are: 

 p(0) p(1) p(2) p(3) 

y 0.11 0.23 0.28 0.38

x 0.09 0.25 0.39 0.27

And the probabilities corresponding to the bivariate symbols are: 
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y,yW 0.02 0.04 0.05 0.00 0.00 0.13 0.09 0.01 0.02 0.12 0.12 0.02 0.06 0.05 0.18 0.09 

x,xW 0.01 0.07 0.01 0.00 0.04 0.10 0.09 0.02 0.05 0.22 0.11 0.01 0.01 0.07 0.12 0.07 

From the measures of probability we obtain: 

   
W W WW W W W Wm m m m

ˆ ˆ ˆ ˆ ˆ( ; ) ( ; ) - ( ) - ( ; ; ) - ( ; )h h h h

2.394 -1.305 - 3.436 - 2.552 0.205

        
 

y yy y y y yx x x
 

   
W W W W WW W Wm m m m

ˆ ˆ ˆ ˆ ˆ( ; ) ( ; ) ( ) ( ; ; ) ( ; )h h h h

2.377 -1.284 - 3.406 - 2.552 0.239

         
 

x xy y yx x x x x
 

Clearly the two are not significant. The p-values are 0.185 and 0.221. 

Before continuing, we must recognize that, in the process of symbolization, some 
information will be lost. The symbols offer a coarse description of the data, they are 
very flexible and the inference will be, in general, easier in the symbols space than in 
the sampling space. However, it is clear that they will retain only a part of the sampling 
characteristics. The idea it is that the user must make a judicious choice in order to 
assure that the information maintained after the symbolization will be the most 
important in relation to the hypothesis that we are testing (Lopez et al, 2010). 

5. Migration vs. unemployment. An application to the Italian case 

This part of the paper applies our methodology to a real case, the relation between 
migration and unemployment using data for the Italian provinces over the period 1996-
2005.  

The characteristics of this relation are controversial in the literature. Many colleagues 
argue that immigration is the cause of high unemployment in regions receiving large 
number of migrants. Assuming, from a neoclassical perspective, that labor is 
homogeneous and there is perfect competition on the goods market, workers move to 
prosperous regions, increasing the labor supply there (this is the direct effect). In turn, 
immigrants increase the consumption of local goods, improving labor demand (this is the 
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indirect effect). According to the neoclassical perspective, the direct effect prevails over 
the indirect effect, resulting in an increase in unemployment. 

New Economic (Krugman, 1991) also supports the existence of causal relationships 
between migration and unemployment. Assuming imperfect competition on the goods 
market and rigidity on the labor market, Epifani and Gancia (2005) show that the forces 
that generate agglomeration also determine the spatial disparities in unemployment. 
Regional integration results from diminishing transport costs, which stimulate migration 
to prosperous regions. The migration flows create agglomeration economies (home-
market effect), more activity and, therefore, an increasing demand for labor. In this case, 
the indirect effects of immigration on labor demand will prevail over the direct effect. 
The core-periphery dichotomy is being reinforced, with immigration reducing the 
unemployment rate in the region of destiny. 

Other colleagues suggest that, on the contrary, unemployment is the cause of migration. 
Pissarides and Wadsworth (1989) argue that people move from places where they are not 
employed to places offering greater possibilities to get a job. Unemployment in the place 
of origin also increases the probability of migration, as people are more likely to become 
unemployed or continue in unemployment.  

In sum, there are important arguments supporting both directions of causality. This is an 
interesting study case in the literature, especially for our approach to spatial causality 
(see Herrera, 2001, for a more thorough discussion). 

We use annual data for the NUTS 3 regions obtained from the Italian National Statistics 
Institute (ISTAT) for the period 1995-2006. The unemployment rate is unemployed 
divided by labor force. The net migration rate is the average net migratory balance, new 
migrants minus the number of migrants leaving municipal censuses, divided by the total 
population (aged 15-64). In sum, we have the average for the period 1995-2006 for both 
variables and for the 103 Italian provinces. The situation is shown in Figure 4. 

The average unemployment rate during the period was 9.28% in a clearly declining 
process, from as 10.73% at the beginning of the period to a 7.59% over the last years. 
The average migration is 0.55% with a rising profile (which doubled the rate of the first 
years, 0.27% to 0.64% at the end). The spatial distribution of the data is very 
characteristic, with a huge concentration of unemployment in the southern provinces 
which also show a negative migratory balance. This picture has remained the same, with 
only slight variations over the last decades. 
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Figure 4 

Migration and Unemployment in the Italian provinces  
(annual average of the period 1995-2006) 

We use a row-standardized weighting matrix build on the three nearest-neighbors 
criterion, which allows us to confirm that both variables are not randomly distributed 
over the Italian provinces and that, indeed, they are dependent. In Table 2 we include 
the Moran’s I for the univariate test of spatial dependence (Moran, 1950) and the 
bivariate Moran’s I (Czaplewski and Reich, 1993) for the test of spatial independence 
between the variables of unemployment and migration. 

Table 2 

Unemployment vs Migration. The Italian case (1995-2006) 
 Unemployment Migration 

Univariate Moran’ I 0.432 
(0.000) 

0.661 
(0.000) 

Bivariate Moran’s I -0.780 
(0.000) 

CAUSALITY ANALYSIS Unemp. Migra. Migra.  Unemp. 

0.042 
(0.681) 

0.153 
(0.000) 

NOTE: pvalues in parenthesis. The symbol “ ” means “no-causes”. 

According to the results shown in Table 2, there is a clear causal relationship (in 
information), for the case of the Italian data by provinces, from net migration to 
unemployment. The conclusion is clear and, according to Herrera (2011), this relation 
has been fairly stable for the different sub-periods. 
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6. Conclusions and further research 

To our knowledge, this is the first article, after Blommestein and Nijkamp (1981), 
which explicitly brings to the fore the problem of testing for causality between spatial 
variables, as a first step in the specification of a spatial econometric model. The next 
reference is Herrera (2011) to which we are clearly indebted. 

Our intention was to develop an empirically testable notion of spatial causality, using 
the generally accepted concept of incremental informative content. Intuitively, our 
definition establishes that causality implies that the cause variable should provide 
additional information about the effect variable. The key concept is the term information 
in the sense of “numerical quantity that captures the uncertainty in the result of an 
experiment to be conducted”. This definition makes direct reference to the measures of 
entropy of an information set. In this sense, the test of causality presented in this paper 
compares two measures of conditional entropy. The first uses as conditional variables 
all the information that exists in the space concerning the variable supposed to be the 
effect; the second measure uses the same set of conditioning variables but the variable 
supposed to be the cause. The test is intuitive, simple to obtain and does not need any 
hypothesis about functional form, distribution function, or other aspects of the 
specification. It is a fully non-parametric causality test. 

Future research will enhance the analysis by including more than two variables, in order 
to approach the common cause principle. Another strand of future research points 
towards the inclusion of time in this framework, in order to deal with spatio-temporal or 
panel data. 
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