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Abstract 

This article proposes a model which includes a global spatial trend in an SAR 
specification to take into account both large-scale spatial dependencies and local 
spatial autocorrelation. We use penalized splines to estimate the model, as they 
can be represented as mixed models. As a result we can (i) deal with complex non-
linear trends, which are very common in spatial phenomena, (ii) estimate short-
range spatial correlation together with the large-scale spatial trend, (iii) 
decompose the systematic spatial variation into these two components and (iv) 
estimate the smoothing parameters together with the other parameters of the 
model. We call this model the P-spline-SAR model. Based on the simulation of 
2000 datasets generated by a P-spline-SAR (using both linear and non-linear and 
non-separable global spatial trends), we conclude that (i) the P-spline-SAR model 
provides much better estimates of both the global spatial trend and also the spatial 
autocorrelation term than the pure P-spline or SAR specifications, irrespective of 
whether the true trend is linear or non-linear; (ii) the estimations of the observed 
values yielded by the P-Spline-SAR model are equally as accurate as those 
provided by the best competing alternative. We also empirically illustrate how 
well the P-spline-SAR model performs using the augmented Harrison and 
Rubinfeld (1978) hedonic pricing data for Boston SMSA.  
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Modelos SAR con tendencia espacial no paramétrica. Un enfoque  
P–spline 

Resumen 

Este artículo propone un modelo que incluye una tendencia espacial global en una 
especificación SAR para estimar tanto las dependencias espaciales a gran escala 
como la autocorrelación espacial local. Para la estimación del modelo se utilizan 
splines con penalización, debido a que pueden ser representados como modelos 
mixtos. De esta manera, (i) pueden considerarse complejas tendencias no lineales, 
muy habituales en los fenómenos espaciales, (ii) se puede estimar tanto la 
tendencia global como la correlación espacial a pequeña escala, (iii) se puede 
descomponer la variación espacial sistemática en los dos componentes anteriores y 
(iv) se pueden estimar los parámetros de suavizado junto con los demás 
parámetros del modelo. A este modelo se le denomina P-spline-SAR. A partir de 
la simulación de 2000 conjuntos de datos generados por un P-spline-SAR 
(utilizando tanto una tendencia lineal como una tendencia no lineal y no 
separable), se concluye que (i) el modelo P-spline-SAR proporciona estimaciones, 
tanto de la tendencia como del parámetro de autocorrelación espacial, mucho 
mejores que las de las especificaciones puras P-spline y SAR, independientemente 
de si la verdadera tendencia es o no lineal; (ii) el modelo P-spline-SAR siempre 
proporciona estimaciones de la variable observada tan buenas como las del mejor 
de los modelos competidores. El buen comportamiento del modelo P-spline-SAR 
también se ilustra empíricamente a partir de la base de datos (aumentada) de 
precio de la vivienda de Harrison y Rubinfeld (1978) para Boston SMSA.  

Palabras clave: P-splines, SAR, autocorrelación, tendencia espacial  global. 

Clasificación JEL C14, C15, C21 

Clasificacion AMS: 91B72, 93E14, 65D07, 62M30, 62G08 

1. Introduction 

The analysis of spatial (and more recently spatio-temporal) data is currently of great 
interest to statistical modeling, especially from the econometrics and geostatistical 
perspectives. Problems related to meteorology, environmental pollution, ecology, 
epidemiology and economics, among other scientific disciplines, demand the use of 
statistical models for spatial data. 

Here we focus on the econometrics perspective and more specifically on the well known 
Spatial Autoregressive (SAR) model. SAR models (also cited in the literature as mixed 
regressive-spatial autoregressive models and spatial lag models) account for spatial 
autocorrelation expressly by incorporating a spatial term into the standard regression 
model (see Anselin, 1988, 2007, LeSage and Pace, 2009). Essentially an SAR model 
expresses the notion that the value of a variable at a given location is related to the 
values of the same variable measured at nearby locations, reflecting some kind of 
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interaction. However, it may not be the best option when a global spatial trend exists 
and such a spatial trend is complex, non-linear and this non-linear structure is unknown. 

The large-scale variation is crucial when searching for global spatial patterns, as they 
help to both understand the spatial structure of our datasets and also discover the main 
features of the phenomenon under study. As stated in Crujeiras and Keilegom (2010), 
linear trend specifications are not realistic for the trend of most real phenomena that 
evolve in space and non-linear trends that are present in many examples involving 
spatially dependent data. For instance, in soil science Snepvangers et al. (2003) describe 
a sigmoid growth curve for modeling the relationship between irrigation and soil water 
content; in environmental science, Haas (1996) considers a non-linear trend model for 
sulphate deposition; and in meteorology, Verkatram (1988) derives a non-linear model 
for acid deposition, based on a differential equation system. As the case of unknown 
complex non-linear spatial trends is common in phenomena which evolve in space, in 
this paper we deal with data generated by combining a global spatial trend and spatial 
autocorrelation derived from an SAR process. Our approach, rather than requiring an a 
priori specification of the trend model form, lets the data suggest the form of the model, 
which results in a highly flexible technique and penalizes over-parameterization. More 
specifically, the specification we propose comprises a global spatial trend (which can be 
both complex and non-linear and could include covariates), a spatial signal that captures 
the spatially autocorrelated deviations from the global spatial trend and a spatially non-
autocorrelated noise term. 

The estimation of a trend in the spatial context is not a new problem and several 
approaches have been proposed in recent years. Here, we will consider the use of 
penalized splines (Eilers and Marx, 1996) to smooth spatial data (Lee and Durbán, 
2009). These methods are well established for smoothing data in one or more 
dimensions (Currie et al., 2006) and have been used in different applications. Penalized 
splines (or P-splines) are low-rank smoothers that use a basis for regression and impose 
a penalty so that adjacent coefficients vary smoothly. They have become very popular 
due to their representation as mixed models (Currie and Durbán, 2002). This makes it 
possible to include non-linear trends in many models. In particular, P-splines are very 
attractive in the context of spatial models, since short-range spatial correlation can be 
estimated together with the large-scale spatial trend. They have been studied in smooth-
CAR models (Lee and Durbán, 2009) and here we propose their use in SAR models. 
The paper is organized as follows. Section 2 introduces P-splines and their mixed model 
representation in one and two dimensions. Section 3 extends the SAR model by 
incorporating a two-dimensional P-spline to account for the large-scale trend. A 
simulation study is carried out in section 4 in order to compare several competing 
models. Section 5 includes an empirical case study and we conclude with a discussion 
in section 6. 
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2. Splines with Penalties: P-splines 

Suppose that the vector y depends smoothly on a vector x (covariate). Then, a smooth 
model for the data would be given by:  

2( ) ~ ( , ),f N    y x Bθ 0 I    

where θ is a vector of coefficients and ( )B B x is a regression basis constructed from 
the vector x. The basis can be chosen in different ways. Here we will use a B-splines 
basis. The P-splines approach (Eilers and Marx, 1996) modifies the likelihood function 
by adding a penalty term for the adjacent coefficients to control the smoothness of the 
fit. The penalty matrix is λ P D D= , where D is a difference matrix (in general, 

differences of order two are used), and   is a smoothing parameter. Then, the 
coefficients θ are chosen to minimize:  

S( ) ( ) ( )    y B y B P      

For a given  , the solution to the penalized sum of squares is:  

-1ˆ = ( + ) .θ B B P y  

2.1 P-splines as mixed models 

The connection between non-parametric regression and mixed models goes back to the 
early nineties (Speed, 1991). In the late nineties and the beginning of the last decade, the 
topic of smoothing with mixed models was developed in the framework of smoothing 
splines (Brumback and Rice, 1998, Verbyla et al., 1999, among others) and in the 
context of P-splines with truncated lines as a basis (Wand, 2003). However, the 
representation of P-splines as mixed models using B-splines as a basis was not studied 
until recently (Currie and Durbán, 2002) The use of B-splines has the advantage of 
resulting in a more stable basis for the mixed model.  

Given a standard smooth model:  

 2( ),+ N y Bθ 0 I= ,   1 

where B is the B-spline regression matrix, the aim is to look for a new basis that allows 
the representation of 1 as a mixed model:  

 2( , ) ( , ),N N y X β Zα α 0 G 0 I = + +    2 

where X is the matrix of the fixed effects, Z is the matrix of random effects and G is a 

diagonal matrix which depends on the random effects variance 2
 . As usual, 2  is the 

variance of the disturbances. 
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One possible way to find the new basis is to use the singular value decomposition 
(SVD) of the penalty D D  to partition it into a null penalty (which corresponds to the 
fixed part of the model) and a diagonal penalty (for the random part), i.e., D D U U   . 
Now, D D  has rank c-q (where q is the order of the penalty and c the number of columns 
of B, in general q=2), and so,   is a diagonal matrix with q eigenvalues equal to zero. 
Then, we define1:  

 [ : ] ,sX 1 x Z BU= =  3 

where Us are the eigenvectors corresponding to the non-zero eigenvalues of  . Now, 
we can immediately establish the connection with a mixed model like 2 where

2 1= ( ) G   is the covariance matrix of the random effects and  is the diagonal 

matrix of the non-zero eigenvalues of  . The smoothing parameter is 2 2= /    , and 

so the degree of smoothness can be estimated using standard mixed models 
methodology. In the context of mixed models, the usual method for estimating the 
variance parameters is the residual maximum likelihood (REML) presented in Patterson 
and Thompson (1971),  

 2 2 -1 -1 -1 1 1 11 1 1
( , ) = log | log ( ( ) ) ,

2 2 2R - -       V X V X y V V X X V X X V y - - -| | | -  4 

where 2V ZGZ I.'=  The vector of parameters β and the vector of random 

effects  are estimated as:  

 -1 -1 -1(  β X V X) X V y=  5 

 -1( - )α = GZ V y Xβ  6 

 2 -1 -
2

( - ( + ) ).


 -1 11
V = I Z Z Z G Z  7 

2.2 Spatial smoothing with P-splines 

For simplicity, let us assume a normally distributed response variable y, depending on 
two spatial coordinates x1 and x2 corresponding to geographic longitude and latitude 
respectively. A smooth model for the data would be given by:  

 2
1 2= ( , ) , ( , ),f  y x x Bθ 0 I     8 

where  is a vector of coefficients and 1 2( )B B x x,  is a regression basis constructed 

from the covariates 1 2( , )x x .  

                     
1 The matrix X could be augmented with covariates, as usual in regression models 
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In the case of two-dimensional smoothing (as is the case of spatial data), the choice of 
the basis and penalty is even more important and the differences between the 
approaches are significant. Some authors, like Ruppert et al. (2003) and Kammann and 
Wand (2003), proposed the use of radial basis functions and mention the connection 
with other smoothers like thin plate splines (see Wahba, 1990, and Green and Yandell, 
1985, for details on thin plate splines). However, these bases have the limitation of 
being isotropic smoothers; in addition, the selection of knots to construct the basis is not 
trivial and relies on reduced knots or low-rank kriging approximations based on  space 
filling algorithms. Other authors, such as Lang and Brezger (2004), Wood (2006a), 
Currie et al. (2006) and Lee and Durbán (2009), propose the use of tensor product of  
B-spline basis functions with equally spaced knots. This is the approach we take here. 

In the case of scattered spatial data (see Eilers et al., 2006, for details, the basis is 
constructed from the tensor product of marginal B-spline bases, defined as the Box-Product 
or "row-wise''. Kronecker product of the individual bases, which is denoted by  :  

 
1 22 1 2 1= ( ) ( ),c c  B B B B 1 1 B=    9 

where B1 and B2 are the B-spline bases along the longitude (x1) and latitude (x2) 
coordinates. 

The P-spline approach for two-dimensional data also differs from other methods in the 
penalty applied to the coefficients. Currie et al. (2004, 2006) proposed a penalty matrix 
based on the penalties associated with each of the marginal bases. More specifically, the 
bidimensional case is, 

 2 2 2 c 1 c 1 11 2
,     P D D I I D D  10 

where 1 and 2 are smoothing parameters which tune the smoothness in each direction 
separately, so that this penalty allows for  anisotropy. The formulation as a mixed 
model is again based on a reparameterization of the model. We need to find a one-to-
one transformation from B to Xβ+Z, so that the composed matrix of X and Z has full 
column rank. This transformation is not unique. We follow a similar approach to that of 
Lee and Durbán (2009) and Lee (2010), and use the SVD of P in Eq. 10 (as a function 
of the SVD of the individual penalties 1 1D D  and 2 2D D ). Then, the mixed model 

matrices are:  

  n n 1 2 n 2 1: : :X 1 1 x x 1 x x    11 

  2 n 2 1 n 1 2 1 2 1: : : : .Z Z 1 Z x 1 Z x Z Z Z      12 

Matrices Zi, i=1,2, are the matrices for the random effects (defined in 3) associated 
with each of the marginal bases. The covariance matrix of random effects now becomes:  
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



 
2 1

1

2 22
2

11 2

1 21 c 2 2 2

.

c



 

 



 

 
 
  
 
    

I

G I

I I





 

 13 

The estimation of fixed and random effects is carried out as in the one-dimensional case. 

3. P-spline-SAR model 

We define the P-spline-SAR (PS-SAR) model for the bi-dimensional case as:  

 2
n ( , ),N   y Bθ W y 0 I    14 

where 1 2,B B(x x )  is the bi-dimensional regression basis, Wn is a row-standardized 

spatial weights matrix which takes into account the n closest neighbours, Wn y captures 
the spatial lags of the dependent variable and  is a spatial parameter that measures the 

existing spatial dependence of y.  has length c1 x c2 which indicates that the model is 
clearly over-parameterized. This is the reason why the coefficients are penalized in the 
form  P   with P defined in Eq. 10. 

The model 14 can also be presented as a linear mixed model:  

 2= + + ( , ) ( , ),N N A y Xβ Zα ε 0 G 0 I    15 

where:  

 n n= - ,ρA I W  16 

and the other matrices are defined in equations 11 to 13. 

It is important to note that in the data generation process (DGP) given by:  

 
 

-1 -1
1 2

-1 2 -1 -1

= ( , )

+ + ( , ) ( , ),N N  

y A B x x A

= A Xβ Zα u 0 G u 0 A A

 

 
 17 

 the variable y will show spatial dependencies in the systematic part, given by  
A-1B (x1, x2), as well as in the vector of errors, u, although originally the vector of errors 
 did not show any spatial dependence. Moreover, if the spatial trend, f(x1, x2), is 
captured by the regression basis, B (x1, x2), this model is able to factorize the systematic 
variation as the product of the trend by the dense matrix A-1. It is worth noting that 
neither the pure P-spline model (PS) nor the SAR specification provide such a 
factorization in the case where, as usual, the true spatial trend is unknown. In addition, it 
should be taken into account that the terms representing both types of spatial 
dependencies share the matrix A-1 and, as a consequence, interact. 
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The parameter vector 
1 2

2 2
2

1 22 2
, , ,

 

    
 

 
  
 
 

 can be estimated by modifying the 

REML function as follows: 

 

2 -1
1 2

-1 -1 -1 -1 -1

1 1
( , , , ) = log | | log | | log | |

2 2
1

( ( ' ) ' ) .
2

R       

  

V X V X A

y A V V X X V X X V Ay


 18 

The modified REML function above can be maximized using numerical algorithms. As 
usual, the vector of fixed effects, , and the vector of random effects, , are estimated as:  

 -1 -1 -1ˆ ˆˆ ˆ= ( ) β X V X X V A y  19 

 -1ˆ ˆ ˆˆˆ = ( - ),α GZ V Ay Xβ  20 

 where the inverted covariance matrix -1V  is the same as in 7. 

4. Simulation study 

In this Section, the performance of PS-SAR models is compared to the performance of 
PS and pure SAR models. For this purpose, we simulated 2000 datasets generated by a 
PS-SAR model with two types of spatial trends: non-linear and non-separable (case 1) 
and linear (case 2). Then, we estimated the three foregoing models. These two types of 
spatial trends were chosen as opposite cases, so that, predictably, the DGP could be 
close to a pure PS process (case 1) or to a pure SAR process (case 2). This way, the 
behavior of the proposed PS-SAR strategy can be checked in the two more extreme 
cases. 

More specifically, the data generating process2 (DGP) is given by:  

 2
1 2 n= ( , ) ( , ),f N  y x x W y 0 I   21 

where x1 and x2 were generated from a uniform distribution in (0,1). Two types of trend 
generating processes (TGP) have been considered:   

 Case 1: Non-linear trend. In this case, the trend, f (x1, x2), is computed as in [15], that is:  

                     
2 All computations were made using R software. More specifically we used the packages spline, spdep, mgcv and 
scatterplot3d, see R Development Core Team, 2011, Bivand et al., 2011, Wood, 2006b, Ligges and Mächler, 2003, 
respectively. The codes are available upon request. 
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   

 
1 2 1 2

1 2

2 2 2 2
1 2 x x 1 x 2 x

2 2 2 2
1 x 2 x

, = 10πσ σ 1.2exp -( - 0.2) / σ - ( - 0.3) / σ +

+0.8exp -( - 0.7) / σ - ( - 0.8) / σ ,

f x x x x

x x
 22 

with 
1

0.3x   and 
2

= 0.4x .  

Case 2: Linear trend. In this case, the trend is given by an x1x2-plane, that is:  

  1 2 1 1 2 20f , = β + β + β ,x x x x  23 

with 0 1 2= 2.5, = -0.5 and = -0.1.    

The set of parameter values chosen for the simulation procedure is = (0,0.25,0.5,0.75)  

and = (0.5,1) . This way, we consider both the pure PS case ( = 0) and the cases where 

positive spatial autoregressive dependence is high (values of  equal to or above 0.5, as 
in many real situations). 

The simulation algorithm is composed of the following five steps:   

1. Generate the random vectors x1 and x2 (length n=200). Compute the trend values, 
which remain fixed in all the simulations. Generate the contiguity matrix Wn on the 
basis of the simulated coordinates. The elements of Wn are 1 for the five closest 
neighbors and 0 otherwise. As usual, Wn is used in row-standardized form.  

2. Choose a couple of values for both  and  and generate n values of 2( , )N 0 I . 

Then, compute the values of vector y as in Eq. 21.  

3. Make a REML estimation of the model parameters for PS and PS-SAR models. In 
both cases, the matrix of regressors B(x1, x2) is built with B-spline basis matrices, 
the number of knots being set at 10. As usual in this type of models, second-order 
penalties are used. Finally, estimate an SAR model (ML estimation) including x1 and 
x2 as independent regressors (that is, as if a linear trend were known for both 
coordinates). In both the SAR and PS-SAR models the contiguity matrix is the one 
specified in step (1).  

Compare the estimates of the trend values obtained with the three models to the 
simulated trend values, f(x1,x2). Also compare the estimates of the observed 
(simulated) values with the values obtained from the DGP.  

4. Return to step (2) and repeat the process m=250 times for each possible combination 
of  and  values.  

5. Compute, as follows, the mean squared error (MSE) for both the estimated trend 
values and the estimated values of the response variable. 
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     2

trend 1 2 1 2MSE = , , / nf f   x x x x  24 

where  

 
1 2

0 1 1 2 2

ˆ ˆ+  in PS and PS SAR
, =

ˆ ˆ ˆ  in SAR
f

  

 


 

Xβ Zα
x x

x x
 

   2

resp.var. 1 2
ˆMSE = , / nf 

  Ay x x  25 

where  

n

n n

 in PSˆ =
ˆ in PS SAR and SAR


  

I
A

I W
 

Tables 1 to 4 (in the appendix) and Figures 1 to 3 summarize the simulation results. 
Next, we highlight the main findings regarding the variance of the error term, the spatial 
dependence parameter, the estimation of the trend and the estimation of the observed 
(simulated) values of the dependent variable.  

Figure 1 

Box-Plot of the estimates of . 
Case 1: The DGP includes a non-linear trend.  Case 2: The DGP includes a linear trend. 
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Figure 2 

Box-Plot of the MSE when estimating the trend with PS-SAR and SAR models. 
Case 1: The DGP includes a non-linear trend. Case 2: The DGP includes a linear trend. 
 

Figure 3 

Box-Plot of the MSE when estimating the response variable with PS-SAR, PS and 
SAR models.  
Case 1: The DGP includes a non-linear trend. Case 2: The DGP includes a linear trend. 
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When we focus on the spatial dependence parameter, , we have to distinguish case 1 
from case 2. In case 1 (a non-linear trend), Table 1 and Figure 1 show that the estimate 
provided by PS-SAR tends to be slightly below the true value of the parameter, whereas 
the estimate provided by the SAR model tends to be close to unity, irrespective of the 
true value of . More specifically, the larger the true value of , the closer the SAR 
estimate is to unity. This upward bias is especially pronounced when  takes low 
values, indicating that the SAR model is not a proper model to separate global spatial 
dependence (represented by f(x1,x2)) and local spatial dependence (given by ). 
However, the PS-SAR model overcomes this drawback. In case 2 (a linear trend), 
Figure 1 indicates that, as expected, the SAR model does not present a systematic 
positive bias in the estimation of . This is due to the fact that, unlike in case 1, now the 
trend is well specified because the SAR model includes a linear trend. The estimates 
provided by the PS-SAR model are similar to the estimates obtained in case of a non-
linear trend, which indicates that the PS-SAR estimates of local spatial dependence are 
the proper estimates, irrespective of the form of the true trend. 

The performance of the three competing models when estimating the global trend 
clearly depends on whether such a trend is linear or non-linear. In case 1, Table 2 and 
Figure 2 show that the MSE of the PS estimates increases as  increases; and for values 
of above 0.5, the PS model can be considered useless for trend estimation (PS estimates 
are not included in Figure 2 for the sake of a clear visualization). By contrast, the PS-
SAR estimates (which also lead to an increasing MSE as the spatial dependence 
parameter increases) are certainly much more accurate than those obtained by PS. The 
only exception is when =0  because in such a case the DGP is precisely a PS. As can 
be observed in Table 2, the gap between PS and PS-SAR estimates becomes 
considerably larger as the true value of  increases. As for SAR trend estimates, their 
MSE always exceeds the MSE obtained with a PS-SAR estimation; however, SAR-
MSE only exceeds PS-MSE in the case of values of   below 0.5. The reason is that the 
true trend is non-linear; thus, the PS and PS-SAR models provide better trend estimates 
than the SAR model. In the case of a high value of , the worst trend estimates are 
provided by PS. As mentioned previously, when spatial autocorrelation is high, this 
model is not able to factorize the spatial variation into a global trend and local spatial 
dependencies; instead, PS trend estimation is a mixture of both large and small scales. 
In effect, in Figure 4 it can be observed that the PS model overestimates the trend when 
the parameter of spatial dependence takes relatively high values. This result is quite 
logical because, as in section 3, the systematic variation in this model is given by 

-1
1 2( )f ,A x x  and the PS model is unable to factorize both terms. 
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Figure 4 

True and estimated trends. Case 1: Non-linear trend. 
Black: true trend; Grey: estimation.  

As expected, the performance of the SAR model improves significantly in the case of a 
linear global trend (case 2). Figure 2 reveals that the SAR estimation of the trend is 
substantially better in case of a global linear trend than when the global trend is non-
linear. However, the estimates provided by the PS model are as poor as in case 1, 
especially for high values of . However, the really important finding is that the PS-
SAR trend estimates are similar to the SAR estimates even when the DGP coincides 
with the SAR model. In other words, even in the extreme case of a linear trend, the PS-
SAR model remains a good strategy to accurately estimate the global spatial trend. 

Finally, regarding the estimation of the observed values in the case of a non-linear 
global trend, Figure 3 and Table 2, PS and PS-SAR provide similar estimates and are 
more accurate than SAR estimates. This is a logical result, since both PS and PS-SAR 
models approximate the DGP better than the SAR specification in the case of a non-
linear trend. However, it is worth highlighting that, while the PS estimates are in reality 
the result of aggregating both the true values of the trend and the local spatial 
autocorrelation component, the PS-SAR is able to factorize both sources of dependence 
correctly. In summary, in the case of a non-linear trend, although the PS and PS-SAR 
estimates of the observed values are similar, only the PS-SAR model provides an 
adequate decomposition of the global and local variation. 

In the case of a linear global trend, the performance of the SAR model improves 
significantly and there appears to be no significant difference in the estimates provided 
by the three competing models (Figure 3). The only exception takes place in case of 
high values of . As can be seen in Figure 3 and Table 4, for =0.75 the PS estimates 
are significantly worse than the SAR and PS-SAR estimates. 

As for the variance of the error term, both the PS model and the PS-SAR strategy 
estimate the   parameter properly (albeit with a downward bias), see Tables 1 and 3. In 
contrast, the SAR model over-estimates  . This is not an unexpected result, as the SAR 
model does not properly capture the simulated trend and assigns part of it to the error 
term of the model. 
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In summary, from the simulation results it could be concluded that the PS-SAR model is 
a robust alternative for specifying the global spatial trend. The performance of the 
model is certainly very acceptable both in case of a simple linear trend and when the 
true global trend is complex and non-linear. However, the goodness-of-fit of the other 
two alternative pure models –PS and SAR– clearly depends on the DGP, performing 
well when the DGP accommodates the model, but very poorly otherwise. The good 
performance of the PS-SAR model is corroborated by the fact that, irrespective of the 
DGP, this mixed strategy is always able to correctly decompose the spatial 
dependencies into a global trend component and a local spatial autocorrelation 
component. 

The great advantage of the PS-SAR model for trend estimation diminishes considerably 
when it comes to estimating the observed values. But, in any case, the robustness of the 
PS-SAR strategy is noteworthy, as it always provides estimates of similar quality to that 
of the best of the two alternative specifications in each trend context. 

5. Empirical Case 

This section illustrates the performance of the PS-SAR model empirically using the 
classical Harrison and Rubinfeld (1978) hedonic pricing data for Boston SMSA 
augmented and corrected by Pace and Gilley (1997). The augmented and corrected 
database can be found in the spdep library. It includes 506 observations (one 
observation per census tract) of the dependent variable (median value of owner-
occupied homes in 1,000s of dollars) and 16 independent variables: levels of nitrogen 
oxides, particulate concentrations, average number of rooms, proportion of structures 
built before 1940, black population proportion, lower status population proportion, 
crime rate, proportion of area zoned with large lots, proportion of nonretail business 
areas, property tax rate, pupil-teacher ratio, location contiguous to the Charles River, 
weighted distances to the employment centers, index of accessibility, and latitude and 
longitude of the census tract where the house is located. 

This database has been widely used to estimate the willingness to pay for clean air, to 
examine robust estimation, normality of residuals, nonparametric and semi-parametric 
estimation and other interesting methodological issues. We use it to compare the 
performance, in terms of MSE, of 8 competing models: 1) The regression model 
including the 14 original independent variables considered in Harrison and Rubinfeld 
(1978) (OLS-NST); 2) the regression model with a linear spatial trend (OLS-LST), 
which includes latitude and longitude among the independent set of variables; 3) the 
regression model with a quadratic trend (OLS-QST), which was estimated in Pace and 
Gilley (1997); 4) the SAR model without a trend (SAR-NST); 5) the SAR model with a 
linear trend (SAR-LST); 6) the SAR model with quadratic trend (SAR-QST); 7) the PS 
model; and 8) the PS-SAR model. 

Table 5 reports the MSE resulting from the estimation of the competing models. Figure 
5 depicts the spatial trends estimated by the SAR-LST, SAR-QST and PS-SAR models. 
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Table 5 

MSE in the estimation of the response variable. 
Model  MSE ̂  

1̂  2̂  

OLS-NST  0.03420

OLS-LST  0.03384

OLS-QST  0.03290

SAR-NST  0.02228 0.479   

SAR-LST  0.02207 0.486   

SAR-QST  0.02160 0.480   

PS-SAR  0.02143 0.474 147,355.6 18,802.9 

PS  0.03252  14,172.8 95,544,573.0 
MSE is computed as in equation 25. 

Figure 5 

Estimated trends. 
Black: PS-SAR estimation; Dark grey: SAR-QST estimation; Light grey: SAR-LST estimation. 

 

The following general conclusions may be drawn from Table 5:   

1. The spatial models (SAR and PS-SAR) fit the data better than the non-spatial 
strategies. This result confirms the finding of Pace and Gilley (1997).  

2. The models including a spatial trend (OLS-LST, OLS-QST, SAR-LST, SAR-QST 
and PS-SAR) provide better estimates than their counterparts of the same name but 
without a spatial trend. More specifically, OLS-QST and SAR-QST are the OLS and 
SAR specifications that provide the best fit.  

3. The models including a non-parametric spatial trend are preferred to the best models 
with a parametric trend. In other words, PS is preferred to OLS-QST and PS-SAR is 
preferred to SAR-QST. The last finding is not an unsurprising result: Figure 5 shows 
that the spatial trend estimated with PS-SAR lies between the trends estimated with 
SAR-LST and SAR-QST, but is much closer to the latter.  

4. As a result of the foregoing comparisons, PS-SAR is the specification that provides 
the lowest MSE.  
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5. Although the MSE obtained with SAR-QST is close to that estimated with PS-SAR, 
the great advantage of PS-SAR is that it does not need to impose a priori any 
specific form of spatial trend.  

Thus, the PS-SAR model is applied with great success to the augmented and corrected 
Harrison and Rubinfeld (1978) hedonic pricing data. This specification is able to reduce 
the MSE by: 35% compared to the best OLS model (OLS-SQT), 4% compared to the 
pure SAR, 3% compared to SAR-LST and roughly 1% compared to SAR-QST. Finally, 
the value of  in PS-SAR (0.474) is similar to that estimated in the different SAR 
specifications (0.479 in pure SAR, 0.486 in SAR-LST and 0.480 in SAR-QST). This 
indicates a certain robustness when estimating short range correlation, whichever the 
spatial model. 

6. Conclusion 

SAR models have become very popular specifications for expressing the notion that the 
value of a variable at a given location is related to the values of the same variable 
measured at nearby locations, reflecting some kind of interaction. The way SAR models 
account for large-scale spatial variations is by including the coordinates in the set of 
covariates, allowing for simplistic polynomial structures or, when the form of the spatial 
trend is known, more complex forms. 

However, simplistic trends are not realistic specifications for the trends of most of the 
real phenomena that evolve in space. Complex non-linear trends with unknown 
structure are present in many examples involving spatially dependent data. This is the 
main reason why we propose the PS-SAR specification, which rather than requiring an 
a priori specification of the trend model form, lets the data suggest such a form. The 
proposed PS-SAR model results in a highly flexible technique, penalizes 
overparameterization and estimates the penalty degree from the data. Our mixed 
strategy makes it possible to factorize the systematic spatial variation into a global 
spatial trend component and a local spatial autocorrelation term. 

The performance of PS-SAR models when it comes to estimating the global spatial 
trend, observed values and local correlation has been compared to the performance of 
PS and pure SAR models. For this purpose, we have simulated 2000 datasets generated 
by a PS-SAR model with two extreme types of spatial trends: (i) non-linear and non-
separable and (ii) linear. 

It can be concluded from the simulation results that the PS-SAR model is a robust 
alternative for specifying the global spatial trend. It performs very well both in the case 
of a simple linear trend and when the true global trend is complex and non-linear. 
However, the goodness-of-fit of the other two alternative pure models –PS and SAR– 
clearly depends on the DGP, performing remarkably well when the DGP accommodates 
the model and very poorly otherwise. As a consequence, if one of the objectives of the 
analysis is to decompose the systematic part of the model into a global spatial trend and 
a component reflecting the existing local spatial autocorrelation, the PS-SAR 
specification can be considered a good choice. 
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However, the great advantage of the PS-SAR over the PS approach when estimating the 
global trend diminishes considerably when it comes to estimating the observed values. 
In any case, the PS-SAR specification always provides estimates of similar quality to 
those of the best alternative model, regardless of the form of the trend. 

The advantage of the PS-SAR over OLS models and SAR specifications has also been 
confirmed in an empirical case study. We used the classical Harrison and Rubinfeld 
(1978) hedonic pricing data for Boston SMSA augmented and corrected by Pace and 
Gilley (1997). The results obtained show once again that PS-SAR, which does not need 
an a priori specification of the spatial trend, is able to obtain a better fit to the data than 
the pure SAR, SAR-LST and SAR-QST models. 

There are several possible avenues for future research. Some include empirical 
applications of PS-SAR, extending the model to non-Gaussian responses, studying of 
PS-SAR consistency against different misspecifications of the Wn matrix, comparing 
between the PS-SAR and geostatistical alternatives and incorporating the temporal 
dimension into the model.  
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Appendix of tables 

Table1 

Summary of   and   estimates. Case 1: Non-linear trend. 

True param.  measure  estim.  estim. 

    PS PS-SAR SAR PS-SAR SAR 
0.5  0   average   0.492  0.484  0.604  -0.096  0.784 

    std. dev.   0.027  0.030  0.031  0.150  0.022 

0.5  0.25   average   0.481  0.488  0.587  0.173  0.860 

    std. dev.   0.027  0.028  0.029  0.123  0.015 

0.5  0.5   average   0.482  0.490  0.586  0.436  0.921 

    std. dev.   0.030  0.028  0.028  0.093  0.009 

0.5  0.75   average   0.542  0.492  0.600  0.721  0.969 

    std. dev.   0.036  0.026  0.027  0.046  0.005 

1  0   average   0.993  0.976  1.119  -0.119  0.546 

    std. dev.   0.054  0.060  0.057  0.164  0.053 

1  0.25   average   0.971  0.979  1.087  0.143  0.695 

    std. dev.   0.052  0.055  0.054  0.140  0.035 

1  0.5   average   0.968  0.987  1.071  0.399  0.820 

    std. dev.   0.057  0.054  0.051  0.113  0.023 

1  0.75   average   0.980  0.987  1.057  0.687  0.925 

    std. dev.   0.066  0.054  0.053  0.071  0.012 

DGP:    1 2
2

n n= , ,f N  y x x W y 0 I   where x1, x2 have been generated from a U(0,1) and  f (x1, x2) 

represents the spatial non-linear trend given in [22]. 250 simulations have been generated for each 
combination of  and  values.  
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Table 2 

Summary of MSE when estimating the trend and the response variable.  
Case 1: Non-linear trend. 
True param.  measure  MSE (Trend) MSE (Response Variable) 
    PS PS-SAR SAR PS PS-SAR SAR 

0.5 0 average  0.026 0.276 5.233 0.214 0.205 0.366

  std. dev.  0.007 0.347 0.264 0.024 0.027 0.038

0.5 0.25 average  0.921 0.326 5.587 0.199 0.208 0.346

  std. dev.  0.089 0.496 0.245 0.023 0.025 0.035

0.5 0.5 average  8.073 0.441 5.964 0.192 0.210 0.345

  std. dev.  0.402 0.916 0.230 0.026 0.026 0.033

0.5 0.75 average  72.112 0.404 6.441 0.222 0.212 0.361

  std. dev.  2.762 0.744 0.256 0.034 0.023 0.033

1 0 average  0.087 0.429 2.918 0.904 0.867 1.255

  std. dev.  0.028 0.458 0.430 0.104 0.115 0.128

1 0.25 average  0.991 0.521 3.328 0.846 0.872 1.185

  std. dev.  0.187 0.663 0.418 0.095 0.105 0.117

1 0.5 average  8.297 0.848 3.756 0.813 0.885 1.149

  std. dev.  0.789 1.144 0.464 0.103 0.104 0.109

1 0.75 average  72.631 1.216 4.390 0.765 0.885 1.120

  std. dev.  5.282 1.832 0.515 0.117 0.103 0.113

DGP:    1 2
2

n n= , ,f N  y x x W y 0 I   where x1, x2 have been generated from a U(0,1) and  f (x1, x2) 

represents the spatial non-linear trend given in [22]. 250 simulations have been generated for each 
combination of  and  values. Then the MSE has been computed from the estimation of the trend and the 
response variable. 
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Table 3 

Summary of   and   estimates. Case 2: Linear trend. 
True param. measure  estim.  estim. 

    PS PS-SAR SAR PS-SAR SAR 

0.5 0 average  0.499 0.497 0.495 -0.071 -0.042

  std. dev.  0.025 0.026 0.025 0.135 0.125

0.5 0.25 average  0.500 0.496 0.494 0.155 0.191

  std. dev.  0.027 0.026 0.026 0.108 0.101

0.5 0.5 average  0.530 0.501 0.497 0.420 0.447

  std. dev.  0.033 0.026 0.026 0.093 0.088

0.5 0.75 average  0.593 0.504 0.500 0.690 0.715

  std. dev.  0.080 0.024 0.024 0.067 0.060

1 0 average  0.997 0.992 0.988 -0.086 -0.054

  std. dev.  0.053 0.053 0.053 0.124 0.120

1 0.25 average  1.008 0.999 0.995 0.156 0.194

  std. dev.  0.055 0.053 0.052 0.114 0.106

1 0.5 average  1.046 0.994 0.989 0.416 0.451

  std. dev.  0.068 0.053 0.053 0.091 0.086

1 0.75 average  1.178 1.009 1.001 0.681 0.710

  std. dev.  0.146 0.057 0.056 0.069 0.059

DGP:    1 2
2

n n= , ,f N  y x x W y 0 I   where x1, x2 have been generated from a U(0,1) and  f (x1, x2) 

represents the spatial non-linear trend given in [23]. 250 simulations have been generated for each 
combination of  and  values. 
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Table 4 

Summary of MSE when estimating the trend and the response variable.  
Case 2: Linear trend. 
True param.  measure  MSE (Trend) MSE (Response Variable) 
    PS PS-SAR SAR PS PS-SAR SAR 

0.5 0 average  0.005 0.127 0.094 0.244 0.242 0.245

  std. dev.  0.004 0.181 0.121 0.025 0.026 0.025

0.5 0.25 average  0.604 0.203 0.134 0.245 0.241 0.245

  std. dev.  0.073 0.278 0.190 0.026 0.026 0.025

0.5 0.5 average  5.330 0.328 0.229 0.274 0.246 0.248

  std. dev.  0.322 0.474 0.363 0.035 0.026 0.026

0.5 0.75 average  47.762 0.692 0.415 0.335 0.249 0.251

  std. dev.  2.078 1.264 0.870 0.099 0.024 0.024

1 0 average  0.024 0.146 0.108 0.974 0.964 0.980

  std. dev.  0.015 0.217 0.184 0.103 0.103 0.105

1 0.25 average  0.649 0.238 0.149 0.993 0.978 0.994

  std. dev.  0.146 0.338 0.224 0.110 0.105 0.104

1 0.5 average  5.363 0.355 0.220 1.060 0.968 0.980

  std. dev.  0.660 0.524 0.391 0.147 0.105 0.104

1 0.75 average  47.589 0.834 0.449 1.315 0.996 1.005

  std. dev.  4.492 1.479 0.733 0.363 0.113 0.114

DGP:    1 2
2

n n= , ,f N  y x x W y 0 I   where x1, x2 have been generated from a U(0,1) and  f (x1, x2) 

represents the spatial non-linear trend given in [23]. 250 simulations have been generated for each 
combination of  and  values. Then the MSE has been computed from the estimation of the trend and the 
response variable. 


