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Abstract 

In real populations, the qx values (the probabilities of dying with age x before 
reaching age x+1) are unknown and must be estimated from experience. To improve 
estimates, the relationships between consecutive qx values are ordinarily exploited 
using graduation techniques. In Baeza and Morillas (2011, 2016) the authors delve 
with graduation wavelet to estimate qx underlying values. Their approach and others 
as kernel graduation, however, suffers with small datasets due to their discrete 
approach and the nonlinear behavior of mortality. Hence, we propose a procedure 
that, via Piecewise Polynomial Harmonic interpolation (PPH), a nonlinear scheme 
of interpolation, generates information synthetically avoiding undesirables effects, 
such as Gibbs phenomenon and discontinuities. 

Keywords: life table, nonparametric graduation, nonlinear interpolation, wavelets. 

AMS classification: 62P05 (others: 62P25, 62G08, 62G99) Applications to actuarial 
sciences and financial mathematics. 

El Riesgo de Muerte: un Método de Graduación en dos etapas 
utilizando Wavelets e Interpolación Harmónica 

Resumen 

En poblaciones reales es habitual que las probabilidades de muerte, qx (con edad 
cumplida x antes de alcanzar la edad x + 1) sean desconocidas y deban estimarse 
empíricamente. Para mejorar las estimaciones iniciales suelen utilizarse técnicas de 
graduación, por ejemplo explotando las relaciones entre valores próximos de qx 
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(estimación-núcleo). Así, en Baeza and Morillas (2011) se introduce el concepto de 
graduación-wavelet y en Baeza and Morillas (2016) se profundiza en la estimación 
de los valores subyacentes de qx mediante esta aproximación discreta. En este 
sentido, y debido a la naturaleza no lineal de la mortalidad, las técnicas de 
graduación presentan problemas si el conjunto de datos disponible es pequeño. Para 
superar esta limitación, proponemos un procedimiento bietápico que genera 
información sintética vía Interpolación Harmónica Polinomial (PPH), reduciendo 
fenómenos como el de Gibss o reduciendo ruido que se introduce por falta de 
información. 

Palabras Clave: tablas de mortalidad, graduación no paramétrica, interpolación no 
lineal, wavelets. 

Clasificación AMS: 62P05 (others: 62P25, 62G08, 62G99) Aplicaciones a ciencias 
Actuariales y Financieras. 

1. Introduction 

The study of the mortality is considered socially relevant. Among other issues, the 
incidence of the mortality is used to estimate the number (and the amounts) of the 
retirement pensions. Likewise, a correct forecasting of the incidence of the mortality by 
age permits the insurers to make a correct pricing and an appropriate provisioning 
(reserves) in life insurance. The instrument that summarize the study of the survival or 
death are the life tables or mortality tables. Those tables collect information about age of 
death, risk of dying at age x, the number of persons who survive or die at each age or the 
probability of dying between ages, among others features. 

It is relevant to remark that the value of risk of death at an exact age is generally unknown. 
This fact has generated a great number of papers studying how to estimate the underlying 
value of the risk of death at each age x. We recall (for the demographic and actuarial 
fields) the importance that has to obtain proper estimates of these probabilities using the 
observed number of deaths via crude rates. The estimation of the underlying risk can be 
used to estimate premiums of several types of insurance policies; as well as to estimate 
the Sustainability Factor used in public pension systems, Meneu et al. (2013). 

A way to simplify the study of the mortality is to consider that the biometric functions are 
continuous. Other common assumptions, which we consider, are: (i) the underlying 
probabilities cannot be observed directly, we only can perceive the true values plus a 
random fluctuations, and they are indistinguishable; (ii) the rates have a structural 
behavior [see Ayuso et al. (2007), Heligman and Pollard (1980)]. The first assumption 
justifies the extensive development of graduation techniques, in this sense, we propose a 
method based in the multiresolution wavelet decomposition, combining it with 
thresholding and Piecewise Polynomial Harmonic (PPH) techniques. The second 
hypothesis permits us to articulate the numerical method for the validation of the proposed 
method. 
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Haberman and Renshaw (1996) define graduation as “the principles and methods by 
which a set of observed (or raw) probabilities are adjusted in order to provide a smooth 
base that will allow us to make inferences and also practical calculations of bonuses, 
reserves, etc”. 

The reason why we have to change, and therefore graduate our initial sequence of 
estimates, is based [see London (1985)] on that we can obtain a sequence of initial values 
which, often, present abrupt changes between adjacent ages in the same period, or 
between the same age in adjacent periods. These facts may be due to the concreteness of 
the random behavior of the mortality. In this sense, graduation emerges as a necessary 
methodology and has an eminently statistical estimation nature. 

The topic of the graduation has been treated widely in the literature and we can find 
different types of graduation techniques. It is usual to consider two types of these 
techniques: parametric and non-parametric. The parametric graduation adjusts the raw 
data to a family of functions that depend on one or more parameters. In this context, the 
accepted mortality laws are known, examples include: De Moivre law (1724); Gompertz 
laws [see Gompertz (1825); Makeham (1860); Weibull (1939)]. These laws are applied 
only to adult ages, and many of them fail to properly represent the hump of accidents in 
adulthood. Often, the study of the mortality must be applied over the entire age range 
(demographic previsions), in this case, the Heligman and Pollard [see Heligman (1980)] 
is a recommended model. Other types of techniques are called as semiparametric, such as 
splines graduation [see Forfar, McCutcheon and Wilkie (1988)]. The last group of tech- 
niques, non-parametric techniques, is characterized by assuming non functional forms for 
the behavior of the data. In this case the mortality rates are obtained by applying 
smoothing methods, by combining adjacent death rates (for example kernel graduation 
[see Ayuso et al., 2007]). Some classical examples can be found in Copas and Haberman 
(1983), Felipe, Guillen and Nielsen (2001) or Gavin, Haberman and Verral (1993). 
Recently, a (new) wavelet graduation method (non-parametric technique) was proposed 
in Baeza and Morillas (2011), and improved in Baeza and Morillas (2016). 

This work focuses on non-parametric techniques and has as main objective to generalize 
the results obtained in Baeza and Morillas [see Baeza and Morillas (2011)]. In that paper, 
the graduation was obtained using the Daubechies wavelet family to graduate the 
logarithm of the mortality rates of all ages above 30. There, it was determined that the 
best results were obtained with the Db3 by performing 3 scales of the multiresolution 
scheme. In that work, the graduation was obtained as follows: (i) the initial data are 
represented via wavelet transform, obtaining two subsets of values: wavelet part and 
scaling part, (ii) the wavelet part is treated using the thresholding technique, the values 
that were smaller to the threshold (0.25 in that case) were replaced by zero, and (iii) the 
inverse wavelet transform is applied using the original scaling part jointly with the 
modified wavelet part via thresholding. These three steps provide the graduated values. 
This work presents an alternative technique to the one introduces in Baeza and Morillas 
(2016). With the aim to validate the proposed technique, a numerical procedure based in 
the Heligman and Pollard law is articulated. Some numerical indicators are used as 
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measure of goodness-of-fit for recovering true probabilities and to compare with the 
kernel graduation technique. 

The work is structured as follows. The next section presents (briefly) the wavelet 
graduation approach and introduces some problems to apply it in all range of ages. Section 
3 describes the PPH interpolation. In section 4 we introduce the Wavelet-PPH graduation 
and we compare it with kernel graduation. In this section we assess the capacity to recover 
the underlying values of mortality, values obtained from a Heligman and Pollard law.The 
last part of this section shows an application to real data using information from the 
Spanish population of both genders corresponding to year 2014. The work ends with the 
conclusions section. 

2. Some concepts about mortality and wavelets 

A description of the mortality phenomenon is presented in this section: the biometrics 
functions considered, its interpretation and its graphical representation. Also, in this 
section we introduce some basics concepts on wavelet, and the wavelet-graduation, which 
are not usual in the study of this topic. 

2.1 Consideration about mortality 

The biometrics functions that we consider in this study are: the number of exposed to risk 
at age x, lx; the number of deaths at age x, dx; and the probability of dying at age x, qx. The 
last function is estimated using the observed mortality at each age and the number of 
exposed to risk (raw rates o crude rates). 

Graphically, the mortality experience of a region (or period) is represented in logarithmic 
scale. We can see in Figure 1 (on a logarithmic scale) an example of a mortality 
experience with actual data provided by the Spanish National Statistics Institute (INE). 
The experience shows that the behavior is similar in several regions or periods, and shows 
that there exists key points in the graphic representation. It is usual to split the experience 
of death into three components (see Figure 1), which they are known as adaptation to 
environment, social hump and natural mortality. The first part, with a fast decay, 
represents the infant mortality; the second one represents mortality in adult ages, which 
includes deaths by accident or maternity, and it is characterized by an excess of the 
mortality risk (at adult ages) with to respect the third component. The third component 
reflects the increasing risk of death due to natural causes. In this sense, the Heligamn & 
Pollard model (see Heligman, L. and Pollard, J) reproduces correctly the issues 
commented above. These features motivate the use of this model in the numerical 
validation procedure. 
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Figure 1 

Crude rates of death for the Spanish population in 2014. Both genders. Source: 
Authors using data published by INE 

As we says at Introduction section, in this work it is assumed that every experience is 
composed of two terms (additives and indistinguishable): the true values of the series 
(unknowns), and the random fluctuations. The wavelet graduation aims to recover the 
true values of the biometric function considered; it is usual to treat the random 
fluctuations as noise to use some techniques of another fields (engineering). Let us briefly 
introduce what a wavelet is. 

2.2 Some concepts about wavelets 

The concept of "wavelet" covers a set of techniques used with several purposes. 
Classically, wavelets have been applied to several topics such as signal reconstructions, 
treatment of images and, in more recent applications, to Economy, Temporal Data 
Analysis or to determine the existence of Chaos in numerical series [see Mallat (1980), 
Mallat (2009), Xiea, Yua and Rannebya (2009), Benítez, Bolós and Ramírez (2008)]. 

There are two main approximations to the concept of wavelet: in the continuous sense 
and in the discrete one. In this work, we present the discrete approximation as a particular 
case of the continuous one. It is important to note that these two approximations use the 
same elements: the wavelet family, the wavelet transform, and the inverse of the wavelet 
transform. 

To understand the concept and the methodology that we propose, it is first necessary to 
introduce (briefly) the concepts of space (functional o vectorial) and base. We consider 
the set of all square integrable functions, denoted by	ܮଶሺԹሻ. Into this space, we consider 
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the inner product as	〈݂, ݃〉 	ൌ ׬	 ݂ሺݔሻԹ 	݃	ሺݔሻ	݀ݔ, if	݂, ݃ ∈  ଶሺԹሻ. A base in this space isܮ
a set of functions (minimal in some sense), ሼ݁ଵ, ݁ଶ, …	ሽ such that an arbitrary function f 
can be rewritten in this base (without ambiguity) as ݂ ൌ 〈݂, ݁ଵ〉݁ଵ ൅ 〈݂, ݁ଶ〉݁ଶ 	൅
〈݂, ݁ଷ〉݁ଷ ൅…The terms	〈݂, ݁௜〉௜ୀଵ,ଶ,... are known as coefficients of the representation. 
There exist several procedures to construct bases of functions, in particular to construct a 
wavelet base. A wavelet base is constructed using a generator element,	߰ሺݐሻ called 
wavelet mother. Then, obtaining dilations and translations of		߰ሺݐሻ we generate an 
(orthonormal) base of the ܮଶሺԹሻ-functions. In the case that we treat, we consider as 
wavelet base the set of functions known as Biorth3.3. In general, a wavelet base can be 
split up in two complementary subsets, named scaling and wavelet parts. We consider 
߰ሺݐሻ as a function of real variable t which should range in time and well localized (it 
decays to zero when the variable	ݐ	 → ∞ሻ. Using this mother wavelet, we construct a 

family of elements,	൛߰௔,௕ሺݐሻ, ܽ ൐ 0, ܾ ∈ Թ	ൟ, via the expression: 

߰௔,௕ሺݐሻ ൌ
1

√ܽ
߰ ൬

ݐ െ ܾ
ܽ

൰ , ܽ, ܾ ∈ 	Թ, ܽ ൐ 0 

In this construction, the parameter a is the parameter of scale, and the parameter b is 
related with the translation of the distribution of energy. The scaling parameter is 
associated to the stretching or compression of the mother wavelet (we note that ߰௔,଴ሺݐሻ 
keeps the same shape than ߰ሺݐሻ but in a different support); the translation parameter b, 
"locates" temporary the distribution of energy. 

The functions ߰௔,௕ሺݐሻ  are used to define the Continuous Wavelet Transform of ݂ሺݐሻ via 
the following expression: 

௙ܹሺܽ, ܾሻ ∶ൌ 〈݂ሺݐሻ, ߰௔,௕ሺݐሻ	〉 ൌ න ݂ሺݐሻ, ߰௔,௕തതതതതതሺݐሻ
ஶ

ିஶ
 ,ݐ݀

where, ߰௔,௕തതതതതതሺݐሻ	denote the complex conjugate of ߰௔,௕ሺݐሻ. 

In the same way we can define the Inverse Continuous Wavelet Transform, ෡ܹ௙, that 
verifies ෡ܹ௙ ௙ܹ ൌ ݂. 

It is a common way to use dyadic values, to do dilations. That is, taking ܽ ൌ 2௝ and	ܾ ൌ
2௝݊. Mathematically, for each b (depending of j and n), we define	 ௝ܹ ∶ൌ
,௅మሺԹሻ൛߰௝,௡ݏ݋݈ܿ ݊ ∈ Ժൟ, [see Baeza and Morillas (2016)]. 

In these context, ܮଶሺԹሻ can be decomposed as a direct sum of the spaces ௝ܹ (the 
information that contains one term is complementary with the information contained in 
other). Using this fact, and defining (for each	݆ ∈ Ժ) the closed subspaces ௝ܸ as	 ௝ܸ ൌ ⋯൅

௝ܸିଶ ൅ ௝ܸିଵ,	݆ ∈ Ժ, we have some interesting properties [see Baeza and Morillas (2016)]. 
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Also, the theory (Mallat (1980)) indicates that exist a function ߶ ∈  ଶሺԹሻ such that: (i)ܮ
ሼ߶ሺݐ െ ݊ሻሽ௡∈Ժ is a basis of ଴ܸ and, (ii) all ௝ܸ subspaces are generated from dilations and 
translations of	߶: 

߶௝,௡ሺݐሻ ൌ
1

√2௝
߶ ቆ

ݐ െ 2௝݊
2௝

ቇ 

The function ߶ is called scaling function and it is used to obtain the trend of a function f. 
These “trend” information is supplemented with the information that provides the wavelet 
transform, and then it provides the "details". From these facts, the scaling functions jointly 
to the subspaces ௝ܸ (that satisfy the previous properties) provide us the called 
multiresolution analysis. This work use this type of analysis to do the graduation 
procedure. 

A classical and simple example of wavelet basis use the Haar function. In Haar (1910) 
the author constructs a constant piecewise function such that the dilations and translations 
of this function 	ሺ߰௡,௝	with	ܽ ൌ 2௝, ܾ ൌ ሺ2௝݊ሻ	and	ሺ݆, ݊ሻ 	∈ Ժଶ generates an orthonormal 
basis of	ܮ	ଶሺԹሻ. The expression of these functions are, to the mother wavelet function: 

߰ሺݐሻ ൌ

ە
ۖ
۔

ۖ
ۓ
1

√2
	݂݅	0 ൑ ݐ ൑ 1

2ൗ

െ1

√2
	݂݅	 1 2ൗ ൑ ݐ ൑ 1

.݁ݏ݅ݓݎ݄݁ݐ݋								0 ۙ
ۖ
ۘ

ۖ
ۗ

 

And the expression to the associated scaling function: 

߶ሺݐሻ ൌ ൝
1

√2
	݂݅	0 ൑ ݐ ൑ 1

.݁ݏ݅ݓݎ݄݁ݐ݋			0
ൡ 

In the discrete framework, focus of this paper, a piecewise constant approximation can be used. 
In that case, ݃ ∈ V௝			݂݅			݃ ∈ ݐ	ሻ is constant forݐሺ	ଶሺԹሻ such that ݃ܮ ∈ ሾ݊2௝, ሺ݊ ൅ 1ሻ2௝ሿ, 
whit	݊ ∈ Ժ. 

Thus the data that we work can be considered as a vector of	Թே. So, the Haar vectors are: 

ଵݓ
ଵ ∶ൌ ൬

1

√2
,
െ1

√2
, 0, … ,0൰							ݒଵ

ଵ ∶ൌ ൬
1

√2
,
1

√2
, 0,… ,0൰

ଶݓ		
ଵ ∶ൌ ൬0, 0,

1

√2
,
െ1

√2
, 0, … ,0൰					ݒଶ

ଵ ∶ൌ ൬0, 0,
1

√2
,
1

√2
, 0, … ,0൰

ேݓ ଶ⁄
ଵ ∶ൌ ൬0,… ,0,

1

√2
,
െ1

√2
൰						ݒே ଶ⁄

ଵ ∶ൌ ൬0,… ,0,
1

√2
,
1

√2
൰

 

These two set of vectors, jointly form a system of N orthonormal vectors, that is, 
.௡ݓ	 ௠ݒ ൌ ௠ݓ.௡ݓ ൌ .௡ݒ ௠ݒ ൌ 0, ∀݊,݉ ൌ 1,… ,ܰ 2	ܽ݊݀	݊ ് ݉; ܽ݊݀	⁄ .௡ݓ ௡ݓ ൌ
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.௡ݒ ௡ݒ ൌ 1 for all n. This implies that the family ൛ݒଵଵ, ଶݒ
ଵ, ேݒ ଶ⁄

ଵ , ,ଵଵݓ ଶݓ
ଵ, ேݓ ଶ⁄

ଵ 		ൟ is an 
orthonormal basis of vectors in	Թே. 

So, we can express any vector of 	Թே as: 

݂ ൌ ሺ݂. ଵݒ
ଵሻݒଵ

ଵ ൅ ሺ݂. ଶݒ
ଵሻݒଶ

ଵ ൅ ⋯൅ ൫݂. ேݒ ଶ⁄
ଵ ൯ݒே ଶ⁄

ଵ 					ሺ݈݃݊݅ܽܿݏ	ݐݎܽ݌ሻ 

൅ሺ݂.ݓଵ
ଵሻݓଵ

ଵ ൅ ሺ݂. ଶݓ
ଵሻݓଶ

ଵ ൅ ⋯൅ ൫݂.ݓே ଶ⁄
ଵ ൯ݓே ଶ⁄

ଵ 					ሺݐ݈݁݁ݒܽݓ	ݐݎܽ݌ሻ 

ൌ ܽଵ
ଵݒଵ

ଵ ൅ ܽଶ
ଵݒଶ

ଵ ൅ ⋯൅ ܽே ଶ⁄
ଵ ேݒ ଶ⁄

ଵ ൅ ݀ଵ
ଵݓଵ

ଵ ൅ ݀ଶ
ଵݓଶ

ଵ ൅ ⋯൅ ݀ே ଶ⁄
ଵ ேݓ ଶ⁄

ଵ  

So, we have that 

݂ ൌ ଵܣ ൅  ଵܦ

where A1 is the orthogonal projection of f onto subspace ܸଵ ൌ ݈݅݊൛ݒଵଵ, ଶݒ
ଵ, … , ୒ݒ ଶ⁄

ଵ ൟ	and 

D1 is the orthogonal projection onto ܹଵ ൌ ݈݅݊൛ݓଵଵ, ଶݓ
ଵ, … ୒ݓ, ଶ⁄

ଵ ൟ,	i.e., A1 contains the 
behavior average of f (or trend), and D1 contains the details. This process is known as the 
first level of multiresolution analysis of data f. 

Now, the second step of the multiresolution analysis repeat the descomposition process 
applying it again, but in this case to the scaling part. The results can be expressed as: 

௝݀
ଶ ൌ

ܽଶ௝ିଵ
ଵ ൅ ܽଶ௝

ଵ

√2
ൌ

ସ݂௝ିଷ ൅ ସ݂௝ିଶ

√2
൅ ସ݂௝ିଵ ൅ ସ݂௝

√2
√2

ൌ
ସ݂௝ିଷ ൅ ସ݂௝ିଶ ൅ ସ݂௝ିଵ ൅ ସ݂௝

2
	, 

௝݀
ଶ ൌ

ܽଶ௝ିଵ
ଵ െ ܽଶ௝

ଵ

√2
ൌ

ସ݂௝ିଷ ൅ ସ݂௝ିଶ

√2
െ ସ݂௝ିଵ ൅ ସ݂௝

√2
√2

ൌ
ସ݂௝ିଷ ൅ ସ݂௝ିଶ െ ସ݂௝ିଵ െ ସ݂௝

2
	. 

We obtain the orthogonal projection of f onto the subspaces	ܸଶ ൌ ݈݅݊൛ݒଵଶ, ଶݒ
ଶ, … , ୒ݒ ଶమ⁄

ଶ ൟ 

and ܹଶ ൌ ݈݅݊൛ݓଵଶ, ଶݓ
ଶ, … ୒ݓ, ଶమ⁄

ଶ ൟ, where 

ଵݓ
ଶ:ൌ ൬

1

√2
,
1

√2
,
െ1

√2
,
െ1

√2
	, 0, … , 0൰											ݒଵ

ଶ: ൌ ൬
1

√2
,
1

√2
,
1

√2
,
1

√2
	, 0, … , 0൰ 

ଶݓ
ଶ: ൌ ൬0, 0,

1

√2
,
1

√2
,
െ1

√2
,
െ1

√2
	, 0, … , 0൰											ݒଶ

ଶ: ൌ ൬0, 0,
1

√2
,
1

√2
,
1

√2
,
1

√2
	, 0, … , 0൰ 

ேݓ ଶమ⁄
ଶ :ൌ ൬	0, … , 0,

1

√2
,
1

√2
,
െ1

√2
,
െ1

√2
	൰											ݒே ଶమ⁄

ଶ : ൌ ൬	0, … , 0,
1

√2
,
1

√2
,
1

√2
,
1

√2
	൰ 

This process, enables us to obtain the decomposition	ܣଵ ൌ ଶܣ ൅ ݂	ଶ, and so onܦ ൌ ଶܣ ൅
ଶܦ ൅  ݂. Iterating	ଵ. This result give us second level of multiresolution analysis of dataܦ
the process m-times, we get the m-level of multiresolution analysis. 
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݂ ൌ ௠ܣ ൅ ௠ܦ ൅⋯൅ ଶܦ ൅  ,ଵܦ

Where ܣ௠	is the orthogonal projection of f onto ܸ௠ ൌ ݈݅݊൛ݒଵ
௠, ଶݒ

୫,… , ୒ݒ ଶ೘⁄
௠ ൟ and ܦ௠ is 

the orthogonal projection on ܹ௠ ൌ ݈݅݊൛ݓଵ
௠,ݓଶ

୫,… ୒ݓ, ଶ೘⁄
௠ ൟ 

We remark that in this paper we use the wavelet family Biorth3.3 and not the Haar family. 

The mathematical conceptual framework presented can be summarize as: the result of 
applying the Wavelet Transform (continuous or discrete) is formed by two functions (in 
the continuous case) or two discrete series (in the discrete case). The first part is known 
as scaling part, the second one as wavelet part. As we saw, scaling parts give us a first 
approach that includes the trend obtained but “loses” the details of the initial series. The 
details are contained in the wavelet part. This process can be applied iteratively in the 
scaling part (generally), then we obtain a new multiresolution level and the procedure is 
known as multiresolution scheme. 

We consider the observed data f, such that ݂ ൌ መ݂ ൅ :where,ݎ መ݂ is a value that we need to 
estimate (true), and r is a random fluctuation (error or not). In the context of the 
multirresolution scheme, it is usual to assume that the wavelet part (of	݂) contains some 
details necessaries to obtain መ݂ jointly with information about the random fluctuations. 
That is, a part of the differences between the original series and the one obtained by 
scaling (details) are considered disturbances. Hence, the procedure treat to remove (or 
reduce) the information about the random fluctuations, but it must preserve the 
necessaries details to recover the underlying risk. 

As we say before, the wavelet part and the scaling part are orthogonal when we use an 
appropriate family of wavelets, that is, the information contained in a part is not contained 
in the other. Hence, the elimination or reduction of noise (random fluctuation) is linked 
to the treatment of the wavelet part. The aim of the wavelet graduation is to reduce, or 
even eliminate, random fluctuations via thresholding. This method assume that there 
exists a value (threshold) which determines whether a value is or not considered as 
perturbation, reducing (soft thresholding) o removing it (hard thresholding). This 
procedure is applicable in our case because the nature of the random fluctuations can be 
consider of Gaussian type, and then, the thresholding method is appropriate [see Mallat 
(2009)]. 

2.3 Thresholding technique 

Now, we describe the simple thresholding procedure to obtain the graduated values, ݂௢of 
the initial series, መ݂ (true values plus a random fluctuation), to obtain an approximation of 
the true values, ݂ . 

The thresholding technique is based of the Donoho and Johonstone result [see Donoho 
and Johnstone (1994)] which stablish that if a series of data has Gaussian white noise 
(additively) of variance ߪଶ, this is, መ݂ ൌ ݂ ൅ܹ,ܹ~ܰሺ0,  ଶሻ, we can obtain anߪ
approximation to ݂ using the wavelet representation of the function መ݂ and discarding 
(hard thresholding) some coefficients of this representation. 
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We consider a wavelet (orthonormal) representation of	 መ݂: 

መ݂ ൌ ∑ 〈 መ݂, ݁௜〉	݁௜௜∈୻ ൌ 	 〈 መ݂, ݁ଵ〉݁ଵ ൅ 〈 መ݂, ݁ଶ〉݁ଶ ൅	〈 መ݂, ݁ଷ〉݁ଷ ൅ ⋯; 

And choose ܶ ൌ ඥ2ߪ log௘ ܰ (in the finite representation, N is the number of 
coefficients). Then, we construct an approximation of		݂, denoted it by	݂௢, considering 
only the coefficients of መ݂ such that	ห〈 መ݂, ݁௜	〉ห ൒ ܶ	. This is,	݂௢ ൌ ∑ 〈 መ݂, ݁௜〉௜∈୻ ݁௜	, where 
Γ் ൌ ൛݅ ∈ Γ ∶|〈 መ݂, ݁௜〉ห ൒ ܶൟ. The approximation obtained verifies that ‖݂ െ 	݂௢‖ is small 
enough and give us the graduated value.  

A key point of this procedure is that it must be applied on series containing a Gaussian 
noise. In the case of mortality data, using the biometric model which assumes that the 
random behavior of the mortality phenomenon has a Binomial law, they have different 
variance for each age and then, this is not directly applicable. To overcome this difficulty 
we transform the data via logarithmic transformation (another possible solution is to use 
Pearson transformation). This is a standard transformation to obtain a homoscedastic 
series of values and, then, to apply on them the thresholding procedure described above. 

2.4 Wavelet graduation problems 

The wavelet graduation may have more or less significant drawbacks according to the 
available information or the functional relationship of the data.  In the case of life tables, 
in Baeza and Morillas (2011), this technique only can be applied to ranges above 30 years 
of age. For younger age (0 to 20 years) mortality curve (logarithmic values) has a non- 
linear relationship that complicates the analysis because we have few data to recover its 
form. We consider important to highlight some aspects. 

• When we apply the wavelet technique, the incorporation of symmetric information at 
the ends of the series introduces noise by discontinuity. 

• The problem of discontinuity reappears if we use a wavelet family with a big support 
or if we make several scales of the process. 

• Some effect, similar to the Gibbs phenomenon, has also been detected by smoothing 
the central area, the accident hump. We can find after (and before) the accident hump 
values that are smaller (greater) than the relative minimum (maximum). See Figure 2 
details). 
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Figure 2 

Gibbs phenomenon (in the social hump) and noise by discontinuity at the tails 

With the aim to avoid the problems described, we incorporate information. In the case of 
this paper, the inter-annual mortality rates are interpolated via Piecewise Polynomial 
Harmonic interpolation (PPH). We can sure that the introduction of synthetic data using 
PPH interpolation soften the impacts of these problems. 

3. Piecewise Polynomial Harmonic interpolation 

The PPH interpolation is a fourth order nonlinear and data dependent interpolation 
scheme introduced in Amat, Busquier and Candela (2003), and it is based on a piecewise 
polynomial harmonic operator. 

The PPH polynomial value at ݔ௝ାଵ ଶ⁄  is given by the expression: 

෨ܲ௝൫ݔ௝ାଵ ଶ⁄ ൯ ൌ
௝݂ ൅ ௝݂ାଵ

2
െ
1
4
 ෩݄ଶܦ

where 

෩ܦ ൌ ൜
௝ାଵܦ௝ܦ		݂݅						௝ାଵܦ௝ܦ2 	൐ 0
݁ݏ݅ݓݎ݄݁ݐ݋																			0	

 

and ܦ௝ ൌ ,௝ିଵݔൣ݂ ,௝ݔ  ௝ାଵ൧ are the divided differences associates to the interpolativeݔ
scheme. 
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PPH interpolation has several desirable features like each polynomial piece is con- 
structed with four centered point as we can see in the formula. Another properties arise 
from the fact that the arithmetic mean and the harmonic mean of two values are very close 
for values of the same magnitude but the harmonic mean is always bounded in absolute 
values by twice the absolute value of the smallest of the two numbers. So, on smooth 
region it is as accurate as its linear equivalent, it does not introduce oscillations and it 
preserves the concavity/convexity of the function. In Figure 3 we compare the PPH inter- 
polation of the observed data, with polynomial (cubic) interpolation of them. The figure 
shows the Gibbs phenomenon slightly. 

These properties allow us to conjecture that the additional data that we introduce pre- 
serve the characteristics of the biometric feature what are we trying to graduate. 

As we have said, PPH-interpolation increases the information available.  In this sense, if 
the initial series has N = 100 values, using PPH-interpolation at the middle point of each 
consecutive pair of values, the initial information is increased up to N=200 values. In a 
similar manner, the process can be repeated on the previous results obtaining a new series 
of values with N=400 values, N=800 values,... Using this procedure, we consider several 
number of values to introduce (interpolate) and we determine the optimum (see Table 1 
and Table 2) using the indicators defined in the next epigraph.  We obtain that the 
optimum number of values to interpolate is 2 (and very close to 4); then, using the 
parsimonious principle, we consider 2 as the optimum value. 

Figure 3 

Comparative: PPH-interpolation vs polynomial and Gibbs phenomenon 
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4. The wavelet-PPH graduation 

In this section we summarize the procedure that we present, the measures that we use and 
the numerical method used to calibrate it and to do a comparison (in this paper with kernel 
graduation). 

4.1 The procedure 

This section describes the procedure and the calibration of it. The steps of the procedure are: 

• Step 1. We consider a sequence of observed (or synthetic) values. 

• Step 2. We transform the data via logarithmic transformation with the aim to obtain 
values with the same variance. 

• Step 3. With the aim to overcome the low number of data (series of approximately 100 
values) and to overcome some difficulties, we increase the information using PPH-
interpolation on the previously processed data. 

• Step 4. We transform the extended set of values using the wavelet transformation 
(Biorth3.3) and we obtain a scaling part and a wavelet part. 

• Step 5. On the wavelet part, we apply the hard thresholding technique and we obtain a 
modified wavelet part. 

• Step 6. Using the scaling part and the modified wavelet part, we apply the inverse 
wavelet transform to obtain the graduated values (in logarithmic scale). 

• Step 7. Finally, using the exponential function (anti-logarithmic) we obtain an 
approximation to the true values, the graduated values (we note that, in practice, the 
true values are unknown). 

4.2 Measuring and calibrating the procedure 

In this section we describe the numerical method articulated to overcome the difficulty of 
not knowing the true values of mortality risks (generally they are unknowns). Also, we 
define the measures used to calibrate the method, which we use to determine (i) the best 
family of wavelets to use, (ii) the optimal number of data to introduce via PPH- 
interpolation, (iii) the value of the threshold to apply the thresholding technique, and (iv) 
to compare with the kernel graduation technique. 

4.2.1 Synthetic values of death 

As has been indicated, graduation wavelet has problems when we apply it to the entire 
range of age of the biometric function. To solve this we will introduce some additional 
information for inter annual data. These new data will be given by the PPH interpolation 
since it allows incorporating additional data without introducing oscillations and 
preserving the concavity/convexity of the function. 

To test this combined graduation technique, we build 10000 “synthetic” death 
experiences, which are based on a particular biometric model with a numerically 
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generated random fluctuations. In this paper we use Heligman and Pollard’s law in 
generating synthetic death experiences. 

The process described below is carried out as many times as different experiences you 
want to generate. 

• We start the process using theoretical probabilities of death given ݍ௫ by the Heligman 
and Pollard’s law for and taking into account a random number of individuals l0 = 
10.000, 100.000, … 

• We use that the number of deaths1 at the age of x follows a binomial distribution: ݀௫ ∼
,ሺ݈௫	݅ܤ ,ሺ݈଴	݅ܤ	and we generate a random number given by the distribution	௫ሻݍ  ଴ሻ. It isݍ
the number of deaths at the age 0, ሚ݀଴ and we use it for the estimation of	 ሚ݈ଶ. 

• Then we become to generate a random number that follows a distribution	݅ܤ൫ሚ݈ଵ,  .ଵ൯ݍ
We obtain the number of deaths at age ݔ ൌ 1, ሚ݀ଵ and we use it for the estimation of	 ሚ݈ଶ. 

• Iterating this process, we generate random numbers from a binomial law with pa- 
rameters: the estimate number of survivors in the previous stage ( ሚ݈ଶ) and the risk of 
death at the age considered (ݍ௫), derived from the Heligman and Pollard’s law. In this 
way, we obtain ሚ݀௫ and	 ሚ݈௫ାଵ, this later one is used for the next step as input of a new 
random number of the distribution	݅ܤ	൫ሚ݈௫ାଵ, q௫ାଵ	൯. 

• The process ends when we obtain the last value	 ሚ݀ఠ. 

4.2.2 Measuring the graduation 

We use the next indicator and measures to compare the Wavelet-PPH technique with the 
usual Gaussian kernel graduation (to estimate the kernel graduation several bandwidths 
in rank [0.5,2] has been tested, the best result -near to 1- have been used in the 
comparisons): 

• Mean relative indicator (MRI): 

ሻݍሺܫܴܯ ൌ
1

ݓ ൅ 1
෍

௫ݍ| െ |ො௫ݍ

௫ݍ

௪

௫ୀ଴

 

• Mean squared relative indicator (MSRI): 

ሻݍሺܫܴܵܯ ൌ
1

ݓ ൅ 1
෍

௫ݍ| െ ො௫|ଶݍ

௫ݍ

௪

௫ୀ଴

 

• Whittaker-Henderson smoothness indicator [see London (1985) or Whittaker (1923)]: 

                     
1  dx are the number of individuals that are alive at the age x but they don’t at x + 1. dx = lx+1-lx, 
where lx is the number or survivor at age x. 
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ܵ ൌ |ܵሺݍො௫ሻ െ ܵሺݍ௫ሻ|,			ݐ݄݅ݓ		ܵሺݍ௫ሻ ൌ ෍ሺ∆ଶݍ௫ሻଶ
ఠିଶ

௫ୀ଴

 

The first two indicators are the traditional measures for the difference of two vectors. The 
last indicator uses second order divided differences to measure the smoothness and it is 
crucial for calculating the threshold because we use the one whose reconstruction is closer 
to the softness given by the theoretical of Heligman and Pollard law. We can see this 
election in the Figure 4 (the abrupt fall of the indicator at thr = 0.22). All indicators have 
been calculated using the values obtained by the graduation technique on ages x = 0, 1, 2, 
3,…, ω, and not using intermediate ages. 

Figure 4 

Evolution of the smoothness indicator of the reconstruction (by threshold) jointly 
with the theoretical (horizontal-gray line) 

In these definitions qx denotes the theoretical probability of death that the Heligman and 
Pollard law provided for the preset parameters and it is used for generating the experiences 
of mortality; ݍො௫	denotes the graded probability, the value obtained by applying the 
graduation to each generated realizations. We evaluate the ability of the technique in the 
recovery of the true values of the function. The defined indicators suggest that the lower 
value is the best estimation of the theoretical probability, suggesting another technical 
improvement in this regard. 
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4.2.3 Calibration and comparison 

The comparison between kernel graduation and wavelet graduation is performed for 
different bandwidth values in the interval [0.5,2]. Table 1 shows the comparison between 
the Wavelet-PPH graduation (biorthogonal wavelet family) and the Gaussian kernel 
graduation, for the most favorable results for the kernel graduation. To do the comparison. 
In columns 3 and 4 we can see the mean value of the indicators for the 104 synthetic death 
experiences. The last column presents the percentage of times that Wavelet-PPH obtains 
better results than Gaussian kernel graduation. 

Table 1 

Indicators. Comparison Wavelet-PPH vs. Kernel 
N (*)  Indicator Wavelet-PPH Kernel Better W-PPH (%)

100 IRM 0.033897700 0.039032110 86.74

 IRCM 0.003702560 0.008858980 99.84

 S 0.000581770 0.009453520 100.00

200 IRM 0.034489398 0.039280600 85.37

 IRCM 0.003280213 0.009398363 100.00

 S 0.000700086 0.009761079 100.00

400 IRM 0.034557725 0.039082103 82.74

 IRCM 0.003582433 0.009322405 99.96

 S 0.000870859 0.009986310 100.00

800 IRM 0.035888371 0.038810222 74.07

 IRCM 0.003695080 0.009175132 99.97

 S 0.002292422 0.010123821 100.00

(*) In Table 1 and Table 2, the parameter N indicates the number of data that we increase with 
the PPH-interpolation. The initial series has N=100 points and the interpolation. The initial 
data without The Table 2 shows the parameters for the Wavelet-PPH graduation. We opted for 
the biorthogonal wavelet family. Wavelet is selected by means of a criterion based on energy 
retention instead an exhaustive strategy like in Baeza and Morillas (2011). The measure is 

given by ܪ ൌ
‖௤ොೣ‖మ

‖௤ೣ‖మ
.	We work with a criterion for thresholding based on Mallat (1980). 

Table 2 

Parameters used in Wavelet-PPH technique 

N   Wavelet Scales Threshold reference 

100  Biorthogonal 3.3 2 0.15
200  Biorthogonal 3.3 3 0.20
400  Biorthogonal 3.3 4 0.25
800  Biorthogonal 3.3 5 0.30
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Figure 5 (left) shows (for the entire range of ages): the Heligman and Pollard series 
(theoretical model); an arbitrary random realization; and the two approximations by 
graduation, the kernel graduation and the Wavelet-PPH graduation (with N=400 and the 
parameters given by Table 2). In Figure 5 (right) we observe details of these functions 
more closely. 

Figure 5 

Left: Comparison (all range of ages). Right: Details. Source: Authors 

5 An Application to Observed (real) Data 

We apply the Wavelet-PPH technical data to actual mortality rate of Spain to check the 
results of this work. As the actual rates are unknown, we cannot compare it but, using 
different values of Table 2 and considering the results of the previous section we believe 
that the approach of Figure 6 is a good reconstruction of the mortality rate. This can be 
used by the different agents of actuarial science in their fields. 

On the other hand, the Figure 6 shows the behavior of the two types of graduation 
(wavelet and kernel), in the whole range of ages and a detail (Figure 6 - right) in an initial 
range. Qualitatively, we can observe that the wavelet graduation has a good result 
comparing it with kernel graduation. In the detail, the wavelet graduation presents less 
oscillations and more smoothness that the kernel graduation. However, both graduation 
techniques presents problems in the smoothness at three initial ages. 
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Figure 6 

Observed and graduated mortality rates from Spanish population 2014 (both genders) 
(the true values are underlying). Source: Authors using input data from INE 

6 Final Remarks 

In the study of mortality, life tables (or mortality tables) are tools widely used. This 
instrument summarizes the experience of mortality observed in a region (and period). It 
is common that the values {qx}, x = 0,…, ω (ω being the highest age considered in the 
study) are not known. 

This paper presents a new process in two stages to graduate mortality rates. The process 
combine wavelets and Piecewise Polynomial Harmonic interpolation (a nonlinear scheme of 
interpolation) trying to improve the results obtained in Baeza and Morillas (2011 and 2016). 

In the first stage, the PPH interpolation allows us to incorporate additional data preserving 
the concavity (or convexity) of the function to overcome the disadvantage of the limited 
information available2. The procedure introduces no spurious oscillations, it avoids some 
undesirables effects as Gibbs phenomenon or noise by discontinuity (at the tails of the 
data), and reduces the discontinuity by scale in the application of inverse wavelet 
transformation. 

The second stage of the process uses wavelets, via thresholding criterion, removing the 
noise (or random fluctuations) in order to recover the true values (underlying values) of 
the biometric function under consideration. 

The procedure has been validated numerically. Since the purpose of this work is to apply 
the method to the entire range of ages (from birth to ω), the Heligman & Pollard model, 
Heligman-Pollard (1980), provides a framework for testing the result of applying the 
proposed method, as well as for comparison with other techniques, in this work with 

                     
2  The impossibility of replicating the phenomenon of the mortality makes that the values of 
biometric functions to be unknown and that only estimations can be obtained 
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kernel graduation. The Heligman & Pollard law enables us to obtain an arbitrary number 
(and higher) of numerical simulation to apply the wavelet-graduation and evaluate the 
capacity of the approach for recovering the true probability of deaths (which are known 
in this synthetic case). 

The validation of the results, necessarily, uses measures of goodness-of-fit and smooth- 
ness. In this sense, all the indicators used in this work give better results for PPH-wavelet 
graduation than kernel graduation. Also, the graduation technique presented is more 
robust in the sense that follows. When the indicator considered is better (minus value) for 
the kernel graduation than wavelet-PPH technique, the relative difference is higher than 
if we consider the reverse relation. However, and in the same sense that kernel graduation, 
the two techniques considered have problems in the first ages (from 0 to 3 years), because 
the smoothness of the functions cannot be appropriate. However, this problem can be 
overcome using adaptive techniques, refining the mesh points in early ages, or using the 
technique iteratively (these techniques are usuals in this field). 

Finally, the procedure is applied to real (observed) data. The information used are the 
rates of death corresponding to the year 2014 for both genders of Spanish population. 
This information has been obtained from INE, National Institute of Statistics [see INE 
(2016)]. As shows the Figure 6, qualitatively we can say that the results are consistent 
with the previous numerical analysis. Also, comparing the wavelet-PPH graduation with 
the kernel graduation, we can observe that the smoothness, the fit and the ‘low’ 
oscillations, are better in the wavelet technique. 
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