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Abstract

Most monthly time series contain calendar effects due to the fact that some levels

of economic activity change over the days of the week and that the composition of the

calendar changes over year (so a particular month contains a different configuration of

days of the week each year). It is important to remove the calendar variation to allow

an effective assessment of the variation due to other factors. Several methods exist

which can adjust for trading-day and holiday effects in monthly economic time series.

This paper reviews these methods and shows the procedure for determining the calendar

adjustment carried out on the Industrial Turnover and New Orders Received Indices.
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1 Introduction

The industrial turnover comprises the value of the invoicing of the establishment in the

reference month, for sales of industrial goods and provision of industrial services, considering

both those carried out by the establishment itself, and those performed through subcontract-

ing with third parties.

According to this definition, turnover generally includes sales of finished products, semi-

finished products, subproducts, waste and recovered materials, packages and packaging, mer-

chandise (goods acquired for resale in the same state as that in which they were acquired),

as well as the income from the provision of services related to the ordinary activity of the

establishment. It also includes all other charges (transport, packaging, etc.) passed on to

the customer, even if these charges are listed separately in the invoice. Subsidies received

from public authorities or the institutions of European Union are not included. Turnover

excludes VAT and other similar deductible taxes directly linked to turnover, as well as all

duties and taxes on the goods or services invoiced by the unit. Reductions in prices, rebates

and discounts as well as the value of returned packing must be deducted. Price reductions,

rebates and bonuses that are applied afterwards, for example at the end of the year, are not

taken into account.

An Order is defined as the value of the agreement, regardless of the form in which it

is adopted (verbal, written, etc.), by which the producer agrees to supply some goods or

to provide some industrial services to a third party, whether they have been performed by

the producer or through subcontracting. The order is accepted if, by the judgment of the

producer, there is sufficient proof that it is a valid agreement. As the order implies a future

sale of goods and services, the headings to be considered in its definition are the same as

those of turnover. Industrial New Orders Received are considered as the value of the orders

received and firmly accepted by the observation unit during the reference period.

The Industry Turnover Index (ITI) and Industrial New Orders Received Index (INORI)

are value indices, in other words, they measure the joint development of quantities, qualities

and prices. Unlike what happens with the Industrial Production Index (IPI) or Industrial

Price Index (IPRI), these indices are not based on a basket of representative products, but

rather, the fundamental variable for their compilation is the main activity of the company. It

is the objective of the Turnover Index to show the evolution of companies that are part of the
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industrial sector. The Industrial New Orders Received Index has the objective of measuring

the evolution of the future demand aimed at the industrial branches.

The starting-point to calculate these indices are the fixed-base Laspeyres formula (cur-

rently base 2005), in which, each month, the current month is compared with the average of

the twelve months of the year 2005.

An elementary aggregate is the lowest grouping component for which indices are obtained.

In their calculation no weights are involved. Ratios of these aggregates are called elementary

indices, and their definition is according to the formula

2005I
mt
i =

∑
j fmt

ji∑12
m=1

∑
j fm2005

ji

12

× 100,

where

• The index i ranges across certain aggrupations of activities according the CNAE clas-

sification1 (originally, CNAE-93, but the series have been recalculated since January

2002, in base 2005 and with new CNAE-09),

• 2005I
mt
i is the index, referred to year 2005, to the elementary aggregate i, in the month

m of the year t,

• fmt
ji is the invoice (or new orders received) value of the establishment j corresponding

to elementary aggregate i,

•
∑12

m=1
∑

j fm2005
ji

12 is the average invoice (or new orders received) value in 2005 for all

establishments j corresponding to the activity (elementary aggregate) i.

However, in practice, the process of calculating the basic indices should consider the

possibility of non-response. In order to make uniform temporal comparisons, the information

used in the calculation of elementary index is that provided by establishments that have

collaborated in two consecutive months. Therefore, the elementary index is obtained by

applying the monthly rate of change in the invoice (or new orders received) of establishments

that have collaborated to the current and previous months

2005I
mt
i =2005 Im−1t

i

∑
j fmt

ji∑
j fm−1t

ji

,

1The Spanish version of the EU classification NACE.
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where the sums in numerator and denominator are across all units common to periods t and

t− 1 and

• 2005I
mt
i is the index, referred to year 2005, to the elementary aggregate i, in the month

m of the year t,

• 2005I
m−1t
i is the index, referred to year 2005, to the elementary aggregate i, in the

month m− 1 of the year t,

• fmt
ji is the invoice (or new orders received) value of the establishment j, in the month

m corresponding to elementary aggregate i,

• fm−1t
ji is the invoice (or new orders received) value of the establishment j, in the month

m− 1 corresponding to elementary aggregate i.

For each elementary aggregate the weight used is the ratio between the value of the

turnover of the industrial activity corresponding to this elementary aggregate and the total

of the invoicing of the industries that comprise the population scope of those indices (sections

B and C of the CNAE-09). These weights are computed with Structural Business Statistics

(SBS) estimates as

2005Wi = Turnover of the CNAE’s activities of the elementary aggregate i in 2005
Turnover of all manufactured products, mining and quarrying (sections B and C) in 2005 .

We need to take into account that, because we have not annual statistics that provide

data regarding new orders received, the weights used to obtain the aggregate indices of the

INORI are also calculated as the relation of the value of the invoicing of that basic aggregate

over the total invoicing.

For other functional aggregations the weights are obtained as the sum of the weights of

the elementary aggregates that compose them,

wA =
∑
i∈A

Wi.

The aggregate index, base 2005, for any functional aggregation or industrial sectors by

economic destination is obtained as the aggregation of elementary indices belonging to that

aggregation, with their corresponding weights. The index for the aggregate A is showed by
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the formula

2005I
mt
A =

∑
i∈A

2005I
mt
i 2005W

CNAE
i ,

where

• 2005I
mt
A is the index, referred to year 2005, to the aggregate A, in the month m of the

year t,

• 2005I
mt
i is the index, referred to year 2005, to the elementary aggregate i, in the month

m of the year t,

• 2005W
CNAE
i is the weight of the elementary aggregate i,

• 2005W
CNAE
i = Turnover of the CNAE’s activities of the elementary aggregate i in 2005

Turnover of all CNAE’s activities of the aggregate A in 2005 .

These indices are frequently influenced by the structure and composition of the calendar

and by other fluctuations which can difficult the identification of relevant movements in the

series, cause model misspecification and compromise the quality of the analysis. Hence, if

Industrial Turnover and New Orders Received Indices will be inputs for economic analysis,

it is important to remove the calendar effects from series to allow an effective interpretation.

In particular, monthly time series are affected by the length of the month and the com-

position of the month. In the first place, we should notice that the length of the month

is not completely absorbed into the seasonal component. Because of the existence of Leap

Years, the length of February is not the same every year. Thus, we have to remove the

month-length effect (or, more precisely, the part of it that is purely non-seasonal). On the

other hand, the month composition includes two other non-seasonal components, namely (i)

the trading-day variation2, that is, the variation in the monthly time series that is due to

the changing number of times each day of the week occurs in a month and (ii) the Holiday

variation. This last effect refers to the changes from year to year in the composition of the

calendar with respect to holidays.

The most frequently used calendar adjustment procedures are the method of the Bureau

of Census’ X-12 ARIMA and the TRAMO/SEATS method. The methodology used in these

programs is based on the discussion of calendar effects by Findley et al. (1998), using

regARIMA models (which are regression models with seasonal ARIMA errors) to adjust the
2Some authors include leap year effect into trading-day variation.
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series. However, almost all of the previous research on calendar effects has dealt with it in

relation to the seasonal adjustment. Specifically, X-11 ARIMA (Young, 1965) uses a method

based on modeling the residual component identified after removing the trend and seasonality.

Cleveland and Devlin (1980, 1981) also apply regression methods to the series once removed

the trend and seasonal component as X-11 ARIMA. This procedure has many drawbacks, so

we prefer to use a model with ARIMA noise structure where we simultaneously estimate the

regression and ARIMA parameters.

In the next section, we review the different methods present in the literature to remove

the calendar effects. In section 3 we describe the expression of the calendar component that

we use to adjust the series of the Industrial Turnover and New Orders Received Indices,

whereas in section 4 we describe the methodology used to build models. The focus in section

5 and 6 is to show the models that we finally choose to adjust the series of the Industrial

Turnover and New Orders Received Indices.

2 Different methods of adjustment

In this section we review the different methods in the literature to remove the calendar

effects from economic time series, taking into account the distinction between flow and stock

data. We also need to make a distinction between models where these effects are estimated

from regARIMA model, and the alternative approach of indirect estimation from a regression

model of the irregular component from a preliminary seasonal adjustment.

2.1 Methods of adjustment on flow series

The most used specification to describe trading-day effect is due to Hillmer (1982). He

assumes that this effect can be approximated by a deterministic model. The model he uses

is a sum of ARIMA and a regression model like the X-12 method. The effect attributable to

the trading day is

TDt =
7∑

i=1

ξiXit, (2.1.1)

where
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Xit, i = 1, ...., 7, are respectively, the number of Mondays, Tuesdays, etc. in the month t,

and

ξi i = 1, ...., 7, represent the average rates of activity on Mondays, Tuesdays, etc.

In order to reduce the correlations between the estimates, he performs a reparameteriza-

tion of this formula as

TDt =
7∑

i=1

βiTit, (2.1.2)

where

βi = ξi − ξ̄, i = 1, ..., 6 and β7 = ξ̄ with ξ̄ = 1
7

∑7
i=1 ξi,

Tit = Xit −X7t, i = 1, ..., 6 and T7t =
∑7

i=1 Xit.

Inference about the parameters can be made using asymptotic theory. To test if the daily

effects are different for the different days of the week we must test

H0 : ξ1 = ... = ξ7

H1 : not all ξi are equal.

This is equivalent to testing

H0 : β1 = ... = β6 = 0

H1 : at least one βi 6= 0, where i ∈ {1, ..., 6}.

Bell and Hillmer (1983) also propose a model for the holiday effects that accounts for the

daily impact of Easter on the level of the series. Then, the Easter effect in t, Et, is

Et =
K∑

i=1

α̃ini,t, (2.1.3)

where

α̃i denotes the effect on the ith day before the Easter,

ni,t =

 1 when the ith day before Easter falls in month t

0 otherwise
,
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K denote some suitable upper bound on the length of the effect in days.

The relationship (2.1.3) is expressed in terms of daily levels. Unfortunately, in most

situations, only monthly values are available, so it is difficult to estimate the coefficients.

Hence, they define a similar model where they group some terms using a behavior pattern.

Any grouping of the ni,t can be used as long as it produces explanatory variables that are

linearly independent. The new model with N groups is defined as

Et =
N∑

ι=1

αιnι,t, (2.1.4)

where

nι,t =
∑

i∈ι ni,t, ι = 1, ..., N , can be defined as the number of days of the time period ι that

fall in month t,

αι denote the effect on the series of the ι period of days before the Easter.

Later, William Bell (1984) proposes for the model (2.1.1) the decomposition of the trading-

day effect

TDt =
7∑

i=1

ξiXit =
6∑

i=1

βi(Xit −X7t) + β7

7∑
i=1

Xit (2.1.5)

=
6∑

i=1

βi(Xit −X7t) + β7LFt + β7ωt + β7(30.4375),

where

the value 30.4375 = 365.25
12 is the average month length over a 4-year cycle,

LFt =


−0.25 in a non-leap year February

0.75 in a leap year February

0 otherwise

,

ωt =


0.5625 in a month with 31 days

−0.4375 in a month with 30 days

−2.1875 in February

.
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The first two terms of the last equation belong to the trading-day effect and the third

term is purely seasonal.

Cleveland and Grupe (1981) also propose a regression model for the calendar effects and

an ARIMA model for the residuals. The basic equation for the effect of composition and

length of the month is the same that Hillmer defines (2.1.1). However, they rewrite this

expression to show a new decomposition to the trading-day effect as

TDt =
7∑

i=1

Xitξi −
Nt

7

7∑
i=1

ξi +
Nt − N̄

7

7∑
i=1

ξi +
N̄

7

7∑
i=1

ξi (2.1.6)

=
7∑

i=1

Xit(ξi − ξ̄) + (Nt − N̄)ξ̄ + N̄ ξ̄

=
7∑

i=1

(
Xit −

Xit

7
)
(ξi − ξ̄) + (Nt − N̄)ξ̄ + N̄ ξ̄,

where

Nt =
∑7

i=1 Xit is the length in days of month t, equal to the variable T7t defined above,

N̄ = 365.25
12 is the average month length over a 4-year cycle,

Nt

7 is the average number of days of each type in month t.

The first term of (2.1.6) corresponds to the effect of the composition of the month and

(Nt−N̄) represents the effect of the length. This effect can be expressed as a function f = Xυ

where X is a design matrix with T rows and υ is a vector of estimated coefficients. The first

seven columns of X are (Xit −Nt/7), i = 1, 2, ..., 7 and the eighth column is (Nt − N̄). The

first seven υi of vector υ are the differences ξi − ξ̄ and the last, υ8, is equal to ξ̄.

For U.S Bureau of Census’ X-12 ARIMA program we draw the information from Findley

et all (1998), Monsell (2010), Findley and Soukup (2000). X-12 ARIMA program uses a

regARIMA model where the calendar effects is accounted for by the (similar to (2.1.1))

formula

TDt =
7∑

i=1

ξiXit = ξ̄Nt +
7∑

i=1

(ξi − ξ̄)Xit (2.1.7)

= ξ̄Nt +
6∑

i=1

(ξi − ξ̄)(Xit −X7t).
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The equation (2.1.7) has a seasonal component that resides in the calendar month means

of ξ̄Nt. Hence, X-12 ARIMA program uses a deseasonalized formula obtained removing

calendar month means from (2.1.7). The deseasonalized calendar effect depends on the kind

of model specified (additive, multiplicative...). For the additive model, the new formula is

obtained by subtracting the calendar month means, ξ̄N∗
t , as

TDt = ξ̄Nt − ξ̄N∗
t +

6∑
j=1

(ξi − ξ̄)(Xit −X7t) (2.1.8)

= ξ̄(Nt −N∗
t ) +

6∑
i=1

(ξi − ξ̄)(Xit −X7t)

= ξ̄(Nt −N∗
t ) +

6∑
i=1

βi(Xit −X7t),

where N∗
t is the average length of the month of the year corresponding to t (that is, if t is

January, then N∗
t is the average length of January across years).

For the case of a multiplicative decomposition we deseasonalize and detrend the trading-

day effect by dividing (2.1.7) by ξ̄N∗
t . Setting β̃i = ξi/ξ̄ − 1, we have

Nt

N∗
t

+
6∑

i=1

β̃i

(
Xit −X7t

N∗
t

)
=
∑7

i=1(β̃i + 1)Xit

N∗
t

. (2.1.9)

Normally we work with log-additive models. For this kind of models, the deseasonalized

calendar effects can be obtained by taking the logarithm on the LHS of (2.1.9) and using the

approximation log(1 + x) ≈ x as

log

{
1 +

Nt −N∗
t

N∗
t

+
6∑

i=1

(ξi − ξ̄)
ξ̄

(
Xit −X7t

N∗
t

)}
≈ Nt −N∗

t

N∗
t

+
6∑

i=1

β̃i

(
Xit −X7t

N∗
t

)
.

(2.1.10)

From this equation we can obtain the four types of trading-day models used in X-12

ARIMA for log-additive models. The first model is given by

log Yt = λ0LYt +
6∑

i=1

λi(Xit −X7t) + Zt, (2.1.11)

where

LYt = Nt −N∗
t and,
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Zt denotes a process with a user-specified ARIMA structure.

The second model is similar but it has only six estimated trading-day coefficients because

the leap year coefficient, λ0, can be replaced by a constant equal to 1
N∗

t
, where N∗

t is the

February average, so the constant is 1/28.25 ≈ 0.0354.

A more parsimonious model, which was originally suggested by TRAMO (Gómez and

Maravall, 1996), arises from reducing the number of trading-day regressors from six to one

by assuming the daily effect of weekdays (Monday through Friday) is the same, and the daily

effect of weekend days (Saturday and Sunday) is the same. Thus, the number of weekend

days is subtracted from the number of weekdays, providing a single regressor. Noticing that∑7
i=1 λi = 0 with the constraints λ1 = ... = λ5 and λ6 = λ7 we can derive the regressor as

5∑
i=1

λi +
7∑

i=6

λi = 0 5λM−F + 2λS−S = 0 λS−S = −5
2
λM−F

TDt =
6∑

i=1

λi(Xit −X7t) + λ0LYt

=
5∑

i=1

λi(Xit −X7t) + λ6(X6t −X7t) + λ0LYt

= λM−F

5∑
i=1

Xit − 5λM−F X7t + λS−SX7t − λS−SX6t + λ0LYt

= λM−F

5∑
i=1

Xit −
5
2
λM−F (X7t + X6t) + λ0LYt

= λM−F (
5∑

i=1

Xit −
5
2

7∑
i=6

Xit) + λ0LYt.

Thus, the third model can be expressed as

log Yt = λ0LYt + λM−F

(
5∑

i=1

Xit −
5
2

7∑
i=6

Xit

)
+ Zt, (2.1.12)

where if we replace the leap year coefficient by a constant, 1
N∗

t
, we will have the fourth model.

The X-12 ARIMA program also includes Easter effect. The regressor for this effect

assumes that the fundamental structure of the time series changes for a fixed number of days

before Easter and remains at the new level until the day before Easter. For a given effect τ
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the Easter regressor is generated as

E(τ, t) =
nτ,t

τ
− µτ,t, (2.1.13)

where

nτ,t is the number of days before Easter of the total τ days of Easter that fall in the month

t,

µτ,t is the long-run monthly mean.

Monsell (2007) proposes some variations to the X-12 ARIMA Easter effect. The main

critic that Monsell makes of this Easter regressor is that assuming that the level of activity

is raised by a constant level for the τ days before Easter is unrealistic.

The first alternative form assumes that we can break down the Easter effect in two parts:

a pre-holiday effect from the τth days before Easter Sunday to the day before Good Friday,

and an effect of the period starting on Good Friday and lasting until Easter Sunday. Both

regressors are generated as

BE(τ, t) =
nBE

t

τ − 3
− µBE

τ,t (2.1.14)

DE(t) =
nDE

t

3
− µDE

t , (2.1.15)

where

nBE
t is the number of days from the τth day before Easter to the day before Good Friday

that fall in month t,

nDE
t is the number of days between Good Friday and Easter that fall in month t,

µBE
τ,t and µDE

τ,t are the long run monthly means used to center the regressors.

The next alternative regressor assumes that the level of activity before Easter increases

linearly before the holiday. The linear regressors for March and April are

LE(τ,March, y) =
n2

March,y

τ2
− µLE

τ,March (2.1.16)

LE(τ,April, y) =
(
1−

(n2
April,y

τ2

))
− µLE

τ,April, (2.1.17)

where
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nMarch,y and nApril,y are the number of days before Easter falling in March and April re-

spectively for year y,

µLE
τ,March and µLE

τ,April are the long run monthly means of the first part of the equations

(2.1.16) and (2.1.17) respectively.

These two regressors allow to distinguish between pre-holiday and during holiday effect

too. The final proposed regressor assumes that the change in the level of activity for the

weekend days is different than the change for the weekdays leading up to Easter.

WE(t) =
nwe,t

8
− µwe (2.1.18)

WD(t) =
nwd,t

8
− µwd, (2.1.19)

where

nwe,t is the number of days in month t that fall on a Friday, Saturday and Sunday in the

period of 16 days before Easter inclusive,

nwd,t is the number of days in month t that fall on a Monday, Tuesday, Wednesday or

Thursday in the period of 16 days before Easter,

µwe and µwd are the long-run monthly means of the first part of the equations (2.1.18) and

(2.1.19) respectively.

On the other hand, there are some methods of adjustment based on a regression model

for the irregular component. They are motivated by their historical success, by practical

considerations and by certain requests of statistical agencies and central banks in different

countries. These methods consist of deseasonalizing and detrending the original series to

obtain the irregular component and then, identifying the calendar effects over this compo-

nent. This implies that the regression models for the irregular component should also be

deseasonalized and detrended.

In this context, Cleveland and Devlin (1980) propose the following procedure for fitting

the calendar components:

a) calculate the month-length corrected monthly series,
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b) choose a power transformation,

c) remove trend and seasonal components,

d) estimate the calendar parameters.

Therefore, the first step is to calculate the average of the daily values of a series for each

month

x̄(t) =
∑

i X(i)
number of days in month t

,

where X(i) is the daily value of the series for the ith day. From x̄(t), they calculate the

month-length-corrected series x(t) = N̄ x̄(t) = 30.4375x̄(t).

The second step is to decide the value of the parameter p of the power transformation

(Box and Cox, 1964; Tukey, 1957) defined by

u(p) =


up if p > 0

log u if p = 0

−up if p < 0

.

They suppose that the power-transformed daily data, X(p)(i), has four additive compo-

nents X(p)(i) = T (i) + S(i) + C(i) + I(i), where T (i) is the trend component in the daily

series, S(i) is the seasonal component with a period of one year, I(i) is the irregular compo-

nent and C(i) accounts for a day of the week effect in series so that C(i) = πk, if i is the kth

day of the week, where
∑7

k=1 πk = 0. For the transformed monthly series, x(p)(t), depending

on the power transformation that we use the model can be exactly or approximately equal

to

x(t)(p) = t(t) + s(t) + c(t) + i(t), (2.1.20)

where

s(t), t(t) and i(t) are similarly defined as x(t), in other words, they are the aggregate values

of the respective components divided by the month length and multiplied by the average

month length,

c(t) =
∑7

k=1 πkdk(t), k = 1, ..., 7, represents the calendar effects,

dk(t) = (30.4375)d̄k(t) being d̄k(t) the fraction of times that the kth day of the week occurs

in the month t.
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They now apply a procedure, to remove the trend and seasonality, assuming that it can

be represented by a linear function L. Then, they estimate the coefficients πk regressing

Lx(p)(t) on the seven explanatory variables Ldk(t) k = 1, ..., 7 subject to constraint that∑7
k=1 πk = 0.

Young (1965) uses a similar method based on two main assumptions: (i) all residual

trading-day variation appears in the irregular component and (ii) the variation may be ex-

pressed in terms of 7 daily weights. First, he makes a preliminary seasonal adjustment to

obtain the irregular component, I, and deletes the extreme values from it. To the new ir-

regular component, Ĩ, the transformation (2.1.21) is applied to ensure that the estimated

weights sum zero, obtaining Ī as

Īt =

(
Ĩt

100
− 1

)
N∗

t , (2.1.21)

where N∗
t is the average number of days in that month. Usually, it is 31, 30 or 28.25 depending

upon whether month t is a 31-day, 30-day month or February. However he proposes to use

the average length of month N̄ = (30.4575 = 365.25
12 ) for all t if no allowance for the length

of the month is desired.

This variable is regressed as

Ī = Xb + E, (2.1.22)

where

Ī = [Ī1, Ī2, ..., Īn] is the vector of transformed irregular components,

E = [E1, E2, ..., En] is the vector of the true irregular series,

b = [b1, b2, ..., b7] is the vector of daily weights to be estimated,

X = [X1t, X2t, ..., X7t] is the matrix of independent variables where X1t, X2t, ..., X7t is the

number of Mondays, Tuesdays,...,Sundays in a giving month t,

n is the number of months included in the regression.

Since the weights add up to (
∑7

i=1 bi = 0), by definition b7 = −
∑6

i=1 bi, and so Ī = Xb+E

becomes Ī = T b̂ + E where b̂ = [b1, b2, ..., b6] and T = [T1t, T2t, ..., T6t] where Tit = Xit −X7t

or equivalently,
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Īt =
6∑

i=1

Titbi + Et (t = 1, 2, ..., n). (2.1.23)

2.2 Methods of adjustment for stock series

Many authors have developed models for calendar effects for series that represent stock

at the end of the month. Cleveland an Grupe (1981) define the stock at the end of the

month t, St, as St = St−1 +
∑

i Ft(i) where Ft(i) is the flow on the day i of the month t.

Hence, they propose that since (2.1.6) is intended to describe flows, it is related to the first

difference of stock data, so the same matrix X can be used. To transform the effect back to

the non-differenced data, the columns of X must be integrated to form W . The first row of

W is set to zero and the rest are formed recursively as w′
t = w′

t−1 +x′t−1 where w′
t is the row

t of W .

William Bell (1984) develops the model proposed by Cleveland and Grupe. Let Ft be a

monthly flow series and let It = I0 +
∑t

j=1 Fj be the end of the month stock series, starting

at t = 0. Assume the trading-day effect in I0 is zero. Then, if the trading-day effect in Fj is∑7
i=1 ξiXij , that in It is

t∑
j=1

7∑
i=1

ξiXij =
t∑

j=1

7∑
i=1

[(ξi − ξ̄)Xij + ξ̄Xij ] =
t∑

j=1

7∑
i=1

βiXij + ξ̄
t∑

j=1

Nj (2.2.1)

=
7∑

k=1

γkIt(k) + ξ̄

t∑
j=1

Nj =
7∑

k=1

(γk − γ̄)It(k) + γ̄ + ξ̄

t∑
j=1

Nj ,

where βi is as in (2.1.2),

It(k) =

 1 if the month t ends on a k-th day

0 otherwise
,

k0 is the type of day of the week just before the start of month t = 1,

Nj =
∑7

i=1 Xij , j = 1, ..., t,

γk =
∑k

i=1 βi + γk for k = 1, ..., 6 and γ7 = −
∑k0

i=1 βi,

γ̄ = 1
7

∑7
k=1 γk.
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Bell (1995) defines γ̃k = γk − γ̄ where
∑7

k=1 γ̃k = 0, and rewrites the first term of (2.2.1)

as
7∑

k=1

(γk − γ̄)It(k) =
7∑

k=1

γ̃kIt(k) =
7∑

k=1

γ̃k(It(k)− It(7)) + It(7)
7∑

k=1

γ̃k =
6∑

k=1

γ̃kI∗t (k), (2.2.2)

where I∗t (k) =


1 if the month t ends on a k-th day

−1 if the month t ends on Sunday

0 otherwise

, k = 1, ..., 6.

Findley and Monsell (2007) consider the one-coefficient weekly-weekend contrast that

arises from equality constraints between the weekday coefficients, ξ1 = ξ2 = ... = ξ5, and

between ξ6 and ξ7 in the model (2.2.1) (or equivalently β1 = β2 = β3 = β4 = β5 and

β6 = β7). If these restrictions, together with
∑7

i=1 βi = 0, are imposed to the model for

the flow series, we can derive a single regressor for the trading-day effect (as X-12 ARIMA

program (2.1.12)). However, in stock series it is not so easy. The restriction may be obtained

in terms of the parameters γ̃k. Through the relationship between the coefficients βi and γk

(explained below) the authors obtain the restricted model

3
5
I1t −

1
5
I2t +

1
5
I3t +

3
5
I4t + I5t. (2.2.3)

Now we explain the relationship between the flow and stock coefficients (βi and γk re-

spectively). We have the equation system

γ1 = β1 + γ7

γ2 = β1 + β2 + γ7

. . .

γ6 = β1 + β2 + β3 + β4 + β5 + β6 + γ7,

or in matrix notation

γ1 − γ7

γ2 − γ7

γ3 − γ7

. . .

γ6 − γ7


=



1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

. . .

1 1 1 1 1 1





β1

β2

β3

. . .

β6


,
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[γk − γ7] = Lβ k = 1, ..., 6.

Using
∑7

k=1 γk = 0, we observe that γk − γ7 = γ̃k − γ̃7 = γ̃k +
∑6

j=1 γ̃j = 2γ̃k +
∑

j 6=k γ̃j .

Thus [γk − γ7] = Mγ̃k, k = 1, ..., 6 where

M =



2 1 1 1 1 1

1 2 1 1 1 1

1 1 2 1 1 1

1 1 1 2 1 1

1 1 1 1 2 1

1 1 1 1 1 2


.

Therefore we have Lβ = Mγ̃, so γ̃ = M−1Lβ = Nβ. Taking into account the restriction

where β1 = ... = β5 and β6 = β7 (β = [1 1 1 1 1 − 5
2 ]′β5) we obtain

γ̃ =
1
7



1 −5 −4 −3 −2 −1

1 2 −4 −3 −2 −1

1 2 3 −3 −2 −1

1 2 3 4 −2 −1

1 2 3 4 5 −1

1 2 3 4 5 6





1

1

1

1

1

− 5
2


β5 =



−3

−1

1

3

5

0


1
2
β5.

Since γ̃5 = − 5
2β5, the relationship that describes the new model is

γ̃ = [ − 3
5 − 1

5
1
5

3
5 1 0 ]′γ̃5.

3 A model for calendar effects

In this section we describe the model that was finally chosen for the calendar effects in

the Industrial Turnover and New Orders Received Indices. This choice was largely a trade-off

between two kinds of requirements, namely (a) related to the quality of the adjustment and

(b) related to policies on consistency, comparability and standardization. Because of the

second kind of requirements, the adjustment of TRAMO/SEATS was considered (since its
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use is a practice recommended by Eurostat). Consistency and comparability also suggested

to use a similar adjustment to that of the Industrial Production Index (IPI).

There are important reasons for not using the TRAMO/SEATS adjustment. The program

deals with the trading-day effect as the variation in a monthly time series that is due to the

changing number of time each day of the week occurs in a month. However, we define the

trading-day effect as the variation due to the changes in the number of working and non-

working days in a month, taking into account not only the day of the week but also the

holidays.

Some adjustment methods used at the Institute are discussed in 3.1 and we describe the

model chosen for Turnover and New Orders Received in 3.2.

Since the form of the regressor used in the adjustment of IPI is different from that of the

finally chosen regressor, we considered that a theoretical analysis of the consequences of that

difference was in order. This matter is discussed in 3.3.

3.1 Some methods of adjustment used in the Spain National Statis-

tics Institute

In the Spain National Statistics Institute, different ways to correct the calendar effects of

time series are used, but all of them within the regARIMA framework. They are similar to

the regressors reviewed in section 2, but accounting for the holidays. For the treatment of a

series of Industrial Production Index, the model used for working day effect is

TDt = MFt −HOLt, (3.1.1)

where

MFt =
∑5

i=1 Xit,

Xit, i = 1, ..., 7 is the number of Mondays, Tuesdays, etc. respectively in the month t,

HOLt =
∑17

δ=1

(
wδ

∑Nt

i=1 Iiδt

)
,

wδ, δ = 1, ..., 17 is the weight of the Autonomous Community δ in industry value added for

2005,
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Iiδt =

 1 if the i-th day is holiday in the Autonomous Community δ

0 otherwise
.

For the Holy Week effect, they base the model in two main assumptions. One of them is

that Easter has a global duration of 8 days and the second is that this effect is not constant

along that period. Consequently, they identify three different periods of time that have

specific weights. The first period is composed by Monday, Tuesday and Wednesday before

Good Friday. The second extends from Holy Thursday to Easter Sunday. The last period

only consists on Easter Monday.

In the Retail Trade Index the methodology used to model the trading-day effect is similar

to the X-12-ARIMA program, taking into account the moving holidays, which change the

number of working days in a month and the characteristics of this sector. The proposed

model is

TDt = Ht − 5.59It (3.1.2)

It = X7t + NHt + Ct Ht =
7∑

i=1

Xit − It,

where

Ht and It are the number of working and non-working days respectively,

Xit, i = 1, ..., 7 is the number of Mondays,....,Sundays in the month t respectively,

NHt is the number of national holidays (except Good Friday and the holiday that fall in

Sunday) in the month t,

Ct =
∑17

δ=1 wδIδit where Iδit is 1 if the i-th day is holiday in the Autonomous Community

δ and 0 otherwise (except Easter Thursday and Monday), and wδ are the weights of

each Autonomous Community δ in the Retail Trade Index,∑7
i=1 Xit is the total number of days in the month t,

5.59 is the average of the relationship between working/non-working days calculated in the

sample period.

They consider that to the Easter effect is necessary to take as duration a period of five

days (from Easter Thursday to Easter Monday) taking into account that some Communities
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celebrate only Easter Thursday, or Easter Monday or both. So the Easter effect is represented

as

Et =
17∑

δ=1

hδ,twδ, (3.1.3)

where hδ,t is the proportion of Easter days that fall in the month t in the Autonomous

Community δ.

3.2 Modeling calendar effects

A. MODELING TRADING-DAY VARIATION

We assume that trading day effects can be approximated by a linear deterministic model.

Initially we part of the idea that each day of the month has a different effect on industrial

activity. If Dt denotes the accumulate effect of the days of month t then

TDt =
Nt∑
i=1

d∑
j=1

Xtijξj (3.2.1)

where Nt is the length of the month, we distinguish among d day groups (for example, d = 7

for the days of the week) and

Xtij =

 1 if the ith day of month t belongs to group j

0 otherwise

ξj is the average effect of a day from the jth group

We may rewrite (3.2.1) first as

TDt =
d∑

j=1

Ntjξj , (3.2.2)

where Ntj =
∑Nt

i=1 Xtij is the number of days of group j in month t and then

TDt =
d∑

j=1

Ntjβj + ξ̄Nt (3.2.3)

where βj = ξj − ξ̄ and ξ̄ represents the activity of an average day. This average can be

obtained either as a group mean

ξ̄ =
1
d

d∑
j=1

ξj (3.2.4)
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or as a long-term average

ξ̄ =

∑T
t=1

∑d
j=1 Ntjξj∑T

t=1 Nt

, (3.2.5)

where T is a long enough number of months. If we consider only the effect of the days of

the week, this choice is of not great consequence, but when we take into account the effect

of holidays, then there is a difference and (3.2.4) makes no much sense. On the other hand,

(3.2.4) and (3.2.5) imply respectively either

d∑
j=1

βj = 0 or
T∑

t=1

d∑
j=1

Ntjβj = 0, (3.2.6)

which we will use later.

Let us assume now that the level of industrial activity is the same for all working day

and for all non-working day, in other words, ∀j ∈ Ω (where Ω is the set of working days)

βj = βWD and ∀j ∈ Θ (where Θ is the set of non-working day) βj = βND. On the other

hand the βj coefficients have to satisfy the either part of (3.2.6) depending on the definition

of ξ̄. Let us assume that ξ̄ is the long-term average. Then

T∑
t=1

d∑
j=1

Ntjβj = βWD

T∑
t=1

∑
j∈Ω

Ntj + βND

T∑
t=1

∑
j∈Θ

Ntj = 0 (3.2.7)

so

βND = −
∑T

t=1 WDt∑T
t=1 NDt

βWD = −WD

ND
βWD

where WDt and NDt are the number of working and non-working days in month t respec-

tively3, and WD = (1/T )
∑T

t=1 WDt, ND = (1/T )
∑T

t=1 NDt are their long-term means.

Therefore,

TDt =
d∑

j=1

Ntjβj + ξ̄Nt = βWD

∑
j∈Ω

Ntj + βND

∑
j∈Θ

Ntj + ξ̄Nt =

βWDWDt −
WD

ND
βWDNDt + ξ̄Nt = βWD

{
WDt −

WD

ND
NDt

}
+ ξ̄Nt. (3.2.8)

We shall obtain a deseasonalized and level neutral version of (3.2.8) by removing calendar

month means. The monthly calendar repeats itself over any 400-year cycle or 28-year cycle
3If we distinguish only the days of the week, ξ̄ = (1/7)

∑7
j=1 ξj and we consider Monday to Friday as

working days, then we arrive at βND = −(5/2)βWD
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if we omit the fact that only one of each four secular year is leap year. Consequently, the

variables Ntj (the number of ith days in a month t for i = 1, ..., 7) are periodic with period

336(= 12 × 28), and the calendar month means (1/28)
∑28

k=1 Nt+12k,j have the same value

for all t and j. This implies that the calendar month means of the difference variables Ntj

are zero and so, the seasonal component of this part annihilates. However, if we take into

account the number of working or non-working days its means are not the same. So we

need to discount the calendar month mean of this variables of the calendar effects. There is

another seasonal component that resides in ξ̄Nt. Because the length of the month is repeated

every four years, Nt+48 = Nt, the calendar month means of ξ̄Nt is N∗
t = (1/4)

∑4
k=1 Nt+12k.

The final model where these components are removed is

TDt = βWD

[
(WDt −WDt)−

WD

ND
(NDt −NDt)

]
+ ξ̄LYt (3.2.9)

where WDt and NDt are the calendar month means of working and non-working days

respectively.

B. MODELING EASTER EFFECT

To the current Easter regressor we initially use a regressor similar to used by X-12 ARIMA

program (2.2.3) with special proportions based on the behavior of the Industrial Turnover.

We assume that Easter has a five days global duration, and there are three different periods of

time. The first period consists of Holy Thursday, the second runs from Good Friday to Holy

Sunday and the last is composed by Easter Monday. Each one has its own weight depending

on whether the day is working or non-working in the different Autonomous Communities.

The Easter regressor is generated as

Et =
17∑

δ=1

wδhδ,t − µt, (3.2.10)

where hδ,t is the proportion of Easter days that fall in the moth t and µt is the long run

monthly means. It is important to point out that Easter Sunday and Saturday would not

be taken into account in this proportion because they are already included as non-working

days.
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3.3 Relationship between different types of calendar adjustment

The form of the regressor used in IPI is very different from the one used in Turnover

and New Orders Received –or the TRAMO/SEATS regressor. This difference can make one

believe that the adjustment is necessarily very different. In this section, we will compare

theoretically a simplified version of the Turnover regressor, that is, the one in 3.2.8, without

removing the long-term averages, with the IPI regressor. We will not take into account the

details of holidays, but we focus on what are the consequences of subtracting a multiple of

the number of non-working days to the number of working days.

When a model is used to adjust the calendar effects we follow two steps:

STEP 1:

We build a model for the variable of interest which includes as an independent variable

one that is a function of composition of days of the month. For example:

yt = f(ct, εt), (3.3.1)

where ct represents the composition in days and εt is the random part.

STEP 2:

This step (which is sometimes overlooked in describing the method of adjustment) consists

of using the model of the previous step to estimate the value that would have taken the

variable of interest if the composition of the month had been a certain reference

one. This estimate is what we call adjusted for calendar.

The result of the adjustment depends therefore on: (i) the model and (ii) the reference

composition of days.

We will say that two models are equivalent when applied to the same period of time

(or actually, to two periods which months have exactly the same composition of days) and

varying its parameters, yield the same family of distributions for the dependent variable.

As an example, suppose that we have the following models:

yt = β0 + β1Xt + εt εt ∼ ARIMA(p, d, q;P,D,Q) (3.3.2)

yt = γ0 + γ1Zt + εt εt ∼ ARIMA(p, d, q;P,D,Q) (3.3.3)
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Since the random part is common, the two models are equivalent if for any values β0 and

β1, there are values of γ0 and γ1 such that γ0 + γ1Zt = β0 + β1Xt.

The main idea that we need to take into account to understand the relationship between

different methods of adjustment is: if the models are equivalent and the reference composition

of days used is the same for every t, then the result of the adjustment will be the same.

Let us compare in this terms two ways to make the calendar adjustment.

Model 1:

δ(B){yt − βTD1
t } = εt εt ∼ ARMA(p, q;P,Q)

where TD1
t is the number of working days of the month t.

Model 2:

δ(B){yt − γTD2
t } = εt εt ∼ ARMA(p, q;P,Q)

where TD2
t is the number of working days of the month t minus 5/2 times the number of

non-working days.

It holds that

TD2
t = TD1

t

{
1 +

5
2
}
− 5

2
Dt,

where Dt is the total number of working and non-working days of the month. Assuming no

leap years, Dt is periodic of period 12. So, if δ(B) contains a seasonal difference, the model

2 can be written as

δ(B)yt − γδ(B)TD2
t = δ(B)yt − γ

{
1 +

5
2
}
δ(B)TD1

t = εt.

Therefore, the two models are equivalent and the results of the estimation will be

β̂ = γ̂
{
1 +

5
2
}
.

Now, to make the adjustment, we have to perform step 2: to set a reference composition

of days. We consider the following two options:
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(a) Set a unique composition.

(b) Set different compositions for each month.

Adjustment (a):

If we consider a unique type of month and we replace TD2
t and TD1

t by the value of the

reference month, the model 1 changes to

yt = βTD1
t +

θ(B)
δ(B)ϕ(B)

at,

replacing TD1
t by a constant TD1 we obtain

ỹTD1

t = β̂TD1 +
θ(B)

δ(B)ϕ(B)
at = yt − β̂

(
TD1

t −DL
)
.

In a similar fashion to model 2 we obtain

ỹ
(2)
t = yt − γ̂

(
TD2

t − TD2
)
.

Since we know the relationship between TD1 and TD2, we can substitute it and get

ỹ
(2)
t = yt − γ̂

(
TD2

t − TD2
)

= yt − β̂
TD2

t − TD2

1 + 5/2
= yt − β̂

{
TD1

t −
5
7
Dt +

2
7
TD2

}
. (3.3.4)

Hence, since TD2 ≈ 0,

ỹ
(2)
t ≈ yt − β̂

{
TD1

t −
5
7
Dt

}
. (3.3.5)

Comparing (3.3.4) and (3.3.5), we can observe that the difference is that in the adjustment

ỹ
(2)
t the raw data are replaced by an estimation of the value that we have get if the month

t would have had the average proportion of working days and the total number of days

(working and non-working days) that in fact had month t.

By contrast, the adjusted data ỹ
(1)
t equals the value that the model would have yielded if

the number of working days of month t had been that of the reference month. Consequently,
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we are also discounting the effect of different lengths of the months. For a logarithmic model,

the annual rate would be equal, but the index would have a deterministic seasonal component

in ỹ
(2)
t that would not be present in ỹ

(1)
t .

However, if we want to preserve the seasonal component, we can do it using the regressor

TD1
t if we choose the adjustment (b). Suppose we choose for each month t, a reference

composition having the average proportion of working days, but the actual length of the

month, Dt

ỹ
(1)
t = β̂

5
2
Dt +

θ(B)
δ(B)ϕ(B)

at = yt − β̂
{

DLt −
5
2
Dt

}
= ỹ

(2)
t .

Thus, by doing the adjustment with a variable composition of days, we get the same effect

both in ỹ
(2)
t as ỹ

(1)
t .

If the leap year is taken into account the relationship between TD1 and TD2 can be

rewritten as

TD2
t = TD1

t

{
1 +

5
2
}
− 5

2
D∗

t −
5
2
LYt, (3.3.6)

where D∗
t is the total number of days in the month t including all Februaries with 28

days, in other words, is a periodic function with period 12.

There are different cases according to the inclusion of the variable LYt or not.

CASE A:

If we include the variable in both models:

δ(B){yt − β1TD1
t − β2LYt} = εt εt ∼ ARMA(p, q;P,Q) (3.3.7)

δ(B){yt − γ1TD2
t − γ2LYt} = εt εt ∼ ARMA(p, q;P,Q)

Since we have the relationship (3.3.6), then

 TD2
t

LYt

 =

 1 + 5/2 −5/2

0 1

 TD1
t

LYt

− 5
2

 D∗
t

0

 .
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Thus, both models are equivalent if there is a seasonal difference.

CASE B:

If we include the variable LY only in one model, then this one nests the other one.

CASE C:

If we do not include the variable LY in any of the models, then we will have not the same

models even when applying a seasonal difference, since

∇12TD2
t = ∇12TD1

t

{
1 +

5
2
}
− 5

2
∇12Dt.

To decide which method is more appropriate in this case, we would have to make some

assumptions about the true behavior of the series. The analysis of this case remains for

future research.

4 ARIMA model-building procedure

In this section we describe the methodology used to build models for the different series

of Industrial Turnover and New Orders Received Indices. We describe in 4.1 the class of

models we are considering and in 4.2 the modeling procedure, that is an extended form of

the methodology originally proposed by Box and Jenkins, stated in its latest edition in Box

et al. (1994). The choice of the software used for the identification, estimation and diagnosis

of the models is discussed in 4.3.

4.1 Structure of the Model

The variable Zt can be decomposed in two components, one of them a deterministic

component, and other purely stochastic, as

Zt = δt + Nt,

where the deterministic component, δt, includes the variables of the calendar effects defined

in the previous sections as well as the intervention variables that we consider necessary, and

the stochastic component Nt is represented by an ARIMA(p, d, q)(P,D,Q)s model.
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The stochastic part could be modeled in different ways. We decided to use the family

of ARIMA processes, specifically multiplicative seasonal ARIMA models, because it allows

modeling the seasonal dependence (which is associated with observations separated by s

periods, where s is the number of observations per year), modeling the regular dependence

(which is associated with consecutive observations) and treating non-stationarity in half. The

ARIMA(p, d, q)(P,D,Q)s representation of the purely stochastic component is a generaliza-

tion of the ARIMA(p, d, q) models and is given by the expression

wt = ∇d∇D
s Nt

ΦP (Bs)φp(B)wt = ΘQ(Bs)θq(B)at, (4.1.1)

where ΦP (Bs) = 1− Φ1B
s − Φ2B

2s − . . .− ΦP BPs is the annual autoregressive polynomial

(AR(P )s), ΘQ(Bs) = 1 + Θ1B
s + . . . + ΘQBQs is the annual moving average polynomial

(MA(Q)s), φp = 1 − φ1B − φ2B
2 − . . . − φpB

p is the autoregressive polynomial (AR(p)),

θq = 1 + θ1B + . . . + θqB
q is the moving average polynomial (MA(q)), wt is a stationary

variable and P,D,Q, p, d, q are non-negative integers.

4.2 Modeling procedure

As stated before, the search for an ARIMA model compatible with the data, is done in

a sequential way using the Box-Jenkins methodology that can be described in three main

phases:

1. Model identification and model selection.

2. Parameters estimation.

3. Statistical diagnosis of the estimated models (formal and informal methods). If the

estimation is inadequate, we have to return to step one and attempt to build a better

model.

Following this methodology, the first step must be to determine if the time series is

stationary and, otherwise determine the transformation of the variable and the values of d, D

that make the transformed and differenced series stationary.

31



Before modeling the time series data, a power transformation may be used, such as the

Box-Cox Transformation, that is a particular way of parameterizing a power transform that

has advantageous properties. Let Yt the value of the original time series in t,

Zt = Yt(λ, α) =


(Yt+α)λ−1

λ if λ 6= 0

log Yt if λ = 0
.

Thus, first of all, we need to determine the value of the parameter λ of the Box-Cox

transformation that finally we will apply to the original series.

In our application, the choice of λ is limited to the cases λ = 0, that is, to apply the natural

logarithm or λ = 1, that is, no transformation. The tools used in this choice are, on the one

hand, the time series plot of the original and transformed series and, on the other hand, the

range-mean graph. To apply the natural logarithm is justified when the graph of the original

series shows that the local standard deviation of the data increases with increasing local

mean or when the range-mean graph shows a positive and approximately linear relationship

between local mean and local standard deviation. If the log transformation is appropriate, it

is expected that the local deviation of the transformed series is stable. To apply the logarithm

is also justified to induce linearity when the original data graph has an exponential form.

Second, we need to determine the value of d. It can be assessed from a run sequence plot.

We plot the original time series (d = 0) and observe his parameters of location. If they are not

constant or the series wanders around an average, then we apply a regular difference to the

series and we asses the plot of the differenced series (d = 1). Again we check if the location

parameters are constant in the differenced series and so on until the plot shows constant

parameters. Then we conclude that the d times differenced series is stationary. Another way

to detect non-stationarity is through the autocorrelation function. If we observe a slow decay

of the coefficients it is necessary to apply a difference to the series. The last method is the

most widely used to detect seasonal non-stationarity, so if the seasonal coefficients decrease

slowly we apply a seasonal difference. The final number of seasonal differences taken is D.

Seasonality can also be detected when the observations of the same month are systematically

above (below) the overall sample average.

Also, these graphics can help to detect abnormal incidents that can be treated with

intervention analysis, considering that can distortion specification tools. Abnormal incidents

are depicted with intervention analysis, according to Box and Tiao (1975). In this article
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two types of interventions are used: a pulse function

Pt =

 1 if t = t0

0 if t 6= t0
,

that indicates that the intervention only occurs in the single time index t0, and a step function

St =

 1 if t ≥ t0

0 if t < t0
,

that shows that the intervention continues to exist starting with the time index t0.

At the model identification stage, we need to detect seasonality, if it exists, and identify the

order of the seasonal autoregressive and seasonal moving average terms. The primary tools

for doing this are the autocorrelation function plot (ACF) and the partial autocorrelation

function plot (PACF). We determine the orders P,Q through the observed structure in the

seasonal lags of the ACF and PACF of the transformed series, which is stationary, and their

comparison with the theoretical behavior of these plots when the order is known.

Once stationarity and seasonality have been addressed, the next step is to identify the

order p, q of the autoregressive and moving average terms respectively. The identification

process is similar to the used for seasonality but in this case we observe the structure in the

early delays of the ACF y PACF.

In practice, the sample autocorrelation and partial autocorrelation functions are random

variables and will not give the same picture as the theoretical functions. This makes model

identification more difficult. In addition, many times there are more than one model that

seem to fit the series. For this reason we use the Bayesian information criterion (BIC), a

criterion for model selection among a class of parametric models with different number of

parameters, to choose between the different models for the time series.

For the parameters estimation stage, we use maximum likelihood estimation. In the

model diagnostic phase, we test whether the estimated model conforms to the specifications.

Specifically, the error term at is assumed to follow the assumptions for a stationary univariate

process. So, the residuals should be white noise (or independent when their distributions

are normal) drawings from a fixed distribution with constant mean and variance. If these

assumptions are not satisfied, we need to fit a more appropriate model. That is, go back to the

model identification step and try to develop a better model. One way to assess if the residuals
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from the model follow the assumptions is to generate statistical graphics (including a time

series and autocorrelation function plots). We can also look at the value of the Ljung-Box

statistic.

4.3 Programs used

There are many programs that allow to estimate regARIMA models (R, Gretl, SAS,

Matlab...). We tested many of them and obtained that two or more programs returning

different results, it is enough reason to make a pause and think which, if any, of the results

is the correct. After checking some programs, because it is impossible to test all of the

procedures offered, we finally decided to use Gretl (GNU Regression, Econometrics, and

Time-series Library) as main program. It is a cross-platform and open-source econometrics

package that is freely available. To take this decision we have evaluated the advantages and

disadvantages of this program over other.

As advantages we have:

• its simplicity, with an easy and intuitive interface, and accessibility,

• thanks to the availability of the source code, users are allowed to peek inside the

program in order to have insight into how it works. The possibility of peer review

also makes it possible for errors within the program to be noticed and fixed quickly,

resulting on a very high quality software,

• integrated scripting language: enter commands either via the gui or via script,

• GUI controller for fine-tuning Gnuplot graphs,

• the accuracy of the estimations is high. The program proves to be as good or even

better in terms of numerical precision compared to other.

And as disadvantages:

• the possibility to correct program errors quickly can cause the user is using an outdated

and obsolete version of the program,

• the program currently does not offer many tools of analysis as some of the widely used

alternatives. For example it does not allow to estimate factored models.
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5 Analysis of the Industrial Turnover series

In the Industrial Turnover the indices are calculated for all basic aggregates (two digits

or set of groups of three digits) and another functional aggregates like other divisions that

are not basic aggregates (two digits), sections B and C and general. We calculate also the

index for economic sectors by economic destination (durable consumer goods, non-durable

consumer goods, capital goods, intermediate goods and energy). The following tables show

the composition of the different basic and functional aggregates.

Basic aggregates

-Extraction of anthracite, coal and lignite 05

-Extraction of crude petroleum and natural gas 06

-Other mining and quarrying 08

-Food industries (except grain mill products and animal

feeds)

10.1+10.2+10.3+10.4

+10.5+10.7+10.8

-Manufacture of grain mill products, starches and starch

products, and of animal feeds

10.6+10.9

-Manufacture of beverages 11

-Manufacture of tobacco 12

-Preparation and spinning of textile fibres. Manufacture of

woven textiles. Textile finishing

13.1+13.2+13.3

-Manufacture of knitted fabrics, carpets, rope, non-woven

fabrics, textile products for technical and industrial use and

other textile products

13.9

-Manufacture of garments 14

-Leather and footwear industry 15

-Wood and cork industry; except furniture, basketmaking

and wickerwork

16

-Paper industry 17

-Graphic arts and reproduction media 18

-Manufacture of coke and refined petroleum products 19

-Manufacture of cleaning articles, perfumes and cosmetics 20.4
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Basic aggregates

-Chemical industry except cleaning articles, perfumes and

cosmetics

20.1+20.2+20.3+20.5

+20.6

-Manufacture of pharmaceutical products 21

-Manufacture of rubber and plastic products 22

-Manufacture of other non-metallic ore products 23

-Metallurgy, manufacture of iron, steel and ferro-alloy prod-

ucts

24

-Manufacture of metal elements for construction, containers

made of metal, steam generators, weapons and ammunition

25.1+25.2+25.3+ 25.4

-Forging, stamping, embossing and rolling of metals. Manu-

facture of tools, hardware goods, containers and other metal

products

25.5+25.6+25.7+25.9

-Manufacture of electronic components, assembled printed

circuits, and magnetic and optical media

26.1+26.8

-Manufacture of computers, peripherals and telecommuni-

cations equipment; appliances for measuring and naviga-

tion; radiation and electro-medical equipment

26.2+26.3+26.5+ 26.6

-Manufacture of consumer electronics, optical instruments

and photographic equipment

26.4+26.7

-Manufacture of household appliances 27.5

-Manufacture of machinery and equipment, n.e.c. 28

-Manufacture of motor vehicles, trailers and semi-trailers 29

-Naval, railway, aircraft and spacecraft construction. Com-

bat vehicles

30.1+30.2+30.3+ 30.4

-Manufacture of motorcycles, bicycles, vehicles for the dis-

abled and others n.e.c.

30.9

-Manufacture of furniture 31

-Manufacture of jewelery, costume jewelery and musical in-

struments

32.1+32.2

-Manufacture of sporting goods; games and toys. Other

manufacturing industries

32.3+32.4+32.9
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Basic aggregates

-Manufacture of medical and dental instruments and sup-

plies

32.5

-Repair and installation of machinery and equipment 33

Other divisions

-Food Industry 10

-Textile Industry 13

-Manufacture of fabricated metal products, except machin-

ery and equipment

25

-Manufacture of computer, electronic and optical products 26

-Manufacture of electrical equipment 27

-Manufacture of other transport equipment 30

-Other manufacturing 32

Sections

-Mining and quarrying 05+06+08

-Manufactured products from 10 to 33

Economic destination

-Consumer goods

-Durable consumer

goods

26C+27A+30B+31+32A

-Non-durable con-

sumer goods

10A+11+12+13B+14+15+18+20A+21+32B

-Capital goods 25A+26B+28+29+30A+32C+33

-Intermediate products 08+10B+13A+16+17+20B+22+23+24+25A+26A+27B

-Energy 05+06+19
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There are some details that need to be clarified before we continue with the analysis of the

series. One is the decision criteria to remove variables from the model. In this context, when

the coefficient of one variable has a p-value higher than 0.50, in other words, the variable is

not significative, or the sign of the coefficient is opposite to that expected, this variable is

deleted from the model. A variable is also deleted when its p-value is in the range (0.20;0.50]

and the size of the estimated coefficient differs greatly from the value usually taken.

Another aspect to consider is the frequency of re-estimating the model coefficients and

the model itself. The final decision is to re-estimate the coefficients each year, and re-identify

the model each time that we change the base year. If there are not evidence to change the

estimated parameters or the model then we hold them until the next revision.

The last question is whether direct analysis (where all time series, including the aggre-

gates, are adjusted individually) is better than indirect (where the adjusted series of the

aggregates are obtained adding the adjusted series of their components). There are favor-

able opinions in the two ways, but no empirical and neither theoretical evidence that one

approach is better than the other in all cases. However, there is agreement that when all

series have a similar seasonal component the direct adjustment is better, opposite to where

each component has a different seasonality, in which case the indirect adjustment is better.

We decide to use direct adjustment because it is more transparent.

In this sense, we have tested how the corrected series change when we use a indirect

method. The obtained results show that the indirect corrected series do not present season-

ality remains and the differences between the two types of adjustment series are insignificant.

In the analysis of the series we use a single regressor for the trading-day effect that is

result of considering the working days and holidays for all the activities as a single labor

calendar.

The possibility of considering different regressors for the trading-day effect depending

on the elementary aggregate or, in other words, weighting the holidays according to the

importance of each Autonomous Community on the total turnover of the aggregate the sector.

However, we do not obtain significant differences between the models, not even between the

estimated coefficients and variances from the adjustment with regressors for activity versus

a single regressor.

In the next subsection (5.1) we describe the different models identified for the basic
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aggregates, doing a more exhaustive analysis of the series 08 (Other mining and quarrying).

In subsections 5.2 and 5.3 we show the final models chosen for other divisions and another

functional aggregates by economic destination. Finally in subsections 5.4 and 5.5 we describe

the models determined for sections B and C and for the General Index. Monthly data for

the period 2002:01-2011:01 are used to specify and estimate the models to the Industrial

Turnover Index. However for the analysis of the New Orders Received Index we use monthly

data for the period 2002:01-2011:07. The reason for using a different sampling period in each

index derived from the different dissemination calendar.

5.1 Analysis of the Industrial Turnover Index for basic aggregates

05 - Mining of coal and lignite

To this basic aggregate the model that we obtain is the following:

Model 5.1.1

log BA05
t = .005TDt

(.003)
− .024EEt

(.043)
− .135LYt

(.072)
+Nt

∇∇12Nt = (1− .440
(.133)

)(1− .558B12

(.173)
)at

σ̂a = 12.89%

where TDt is the trading-day variable, EEt and LYt are the Easter and Leap year

variables.

In the case of Mining of coal and lignite, the coefficient of Easter is not significant (p-

value>0.50), and the leap year is significant at 5% but not at 7%, being the coefficient

negative when it would be logical to be positive. So we removed these variables from

the model.

08 - Other mining and quarrying

We will perform a complete analysis of the data series to the basic aggregate 08 (Other

mining and quarrying), from now on BA08. First we observe the time series plot of the
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original series (figure 1) and we analyze the range-mean graph (figure 2) to determine

if the local deviation of the data increase with increasing local mean.

-2

-1

 0

 1

 2

 3

 4

 2002  2003  2004  2005  2006  2007  2008  2009  2010  2011

BA
08

Figure 1: Time series plot of Other mining and quarrying
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Figure 2: Range-mean plots

Although there is not a clear relationship between the local average and local deviation

in the BA08 graphs, the slope of the average against the deviation has a p-value that
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leads us to reject the null hypothesis (H0 : slope = 0) for levels of significance above

0,10. However the p-value of H0 for the logarithm is much greater, approximately 0,5.

So we decide to apply the natural logarithm to the series.

Concerning to the stationarity of the series, the plot of the series in logs (figure 3)

clearly shows a trend and therefore lack of stationary. If we also look at the ACF of

the series, we see a high value on the delays which don’t decay exponentially. So we

need to take differences of the log series. Moreover, if we analyze the time series plot

of ∇BA08 (figure 4) we observe systematic behavior in some month that are indicative

of seasonality together with the no presence of decay in the seasonal coefficients of its

simple autocorrelation function. Therefore, we finally work with ∇∇12 log BA08.
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Figure 3: Graph of other mining and quarrying logs
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Figure 4: Graph of ∇ log BA08

Now that we have a stationary series, we pass to the model identification phase. First

we carried out a regression of the series on the calendar effect variables and observe the

residuals to appreciate more clearly the structure of the stochastic part. The result of

the regression is:

Model 5.1.2

log BA08
t = .018TDt

(.004)
− .103EEt

(.033)
− .053LYt

(.061)
+Nt

∇∇12Nt = at

σ̂a = 17.16%
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Figure 5: Graphics of the residuals of the model 5.1.2

Looking at the graphics of the regression residuals (figure 5) we see that the first

seasonal lag of the ACF and PACF have a very high value, while the remaining delays

are not significant. So, surely we have a structure of order 1. Since second seasonal

delay is not positive in the ACF, and the seasonal delays of the PACF decay quickly,

we believe that a moving average model is better than the autoregressive to model the

seasonality. Comparing the BIC for these models, we find that MA(1) model is better.
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a) Time series plot of the residuals

-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4

 0  5  10  15  20  25  30  35  40

lag

ACF of the resuduals

+- 1.96/T^0.5

-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4

 0  5  10  15  20  25  30  35  40

lag

PACF of the resuduals

+- 1.96/T^0.5

b) ACF and PACF of the residuals

Figure 6: Graphics of the residuals of the model with seasonal structure

Once decided the model for seasonality, we again regress the series introducing this

stochastic structure and observe the new residuals (figure 6) to determine the model

of the regular part. In the graphs, we can observe that only the first and seventh

coefficients of the ACF are significant. However, the higher value of the seventh delay
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is due to the distortion introduced by one pair of data, the extreme value in October

2008 with March 2009, and we evaluate its relevance later. So we have a first order

regular structure, in particular, a moving average. The complete model is

Model 5.1.3

log BA08
t = .015TDt

(.002)
− .121EEt

(.043)
+ .051LYt

(.071)
+Nt

∇∇12Nt = (1− .498
(.098)

)(1− .945B12

(.443)
)at

σ̂a = 10.57%
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a)Time series plot of the residuals
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Figure 7: Graphics of the residuals to the model 5.1.3

If we observe the time series plot of the original series, we will see a negative permanent

change in the level of the series from October 2008, in other words, a step on that date.

This effect also can be clearly observed in the graphs of the differenced series, appearing

as a pulse in 08-2010. Looking at the plot of the residuals of the last model (figure

7) we still observe an extreme value (−5.55σ) in the date of the incident which is not

picked up by the model. We need to add an intervention analysis to find out if the

existence of this outliers distorts the estimated coefficients of the model. So we do a

new regression including a step variable with t0 = 10/2008 that we call ξS10:2008 and

we compare the results with those obtained in the absence of intervention.
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Model 5.1.4

log BA08
t = .017TDt

(.002)
− .117EEt

(.035)
+ .033LYt

(.054)
− .516ξS10:2008

(.047)

+Nt

∇∇12Nt = (1− .873B
(.063)

)(1− .837B12

(.190)
)at

σ̂a = 7.50%

The coefficient of ξS10:2008 is significant and shows the effect discussed by its sign and

size. The coefficients of the calendar effects don’t change significantly, however, the

coefficient of regular and seasonal stochastic structure change notably. The coefficients

changes from Θ = .945 to Θ = 0.832 and from φ = .498 to φ = .873. So we finally

decide to include the step in the model. Instead, the leap year variable is removed

because its p-value is very high.
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Figure 8: Graphics of the residuals to the model 6.1.2

As we can see in the plots of the residuals of the model with intervention analysis (figure

8), no structure remains in the autocorrelation functions and the residuals present a

constant average and deviation. So the residuals probably follow a stationary univariate

process. But we should check this with a contrast. In particular, we analyze the Ljung-

Box statistic. The following table (Table 2) shows the values of the Q-statistic, that, as

we can observe, have a p-value high enough to no refuse the null hypothesis of White

Noise.
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Table 2: Ljung-Box statistic

LAG ACF PACF Q-stat. p-value

01 -0.0151 -0.0151 0.0225 [0.881]

02 -0.1053 -0.1055 1.1322 [0.568]

03 -0.0020 -0.0054 1.1326 [0.769]

04 -0.0557 -0.0677 1.4495 [0.836]

05 -0.0774 -0.0817 2.0696 [0.839]

06 0.1384 0.1246 4.0721 [0.667]

07 0.1587 0.1508 6.7346 [0.457]

08 -0.0680 -0.0405 7.2293 [0.512]

09 0.0148 0.0381 7.2532 [0.611]

10 -0.1175 -0.1230 8.7632 [0.555]

11 0.0182 0.0567 8.7997 [0.640]

12 -0.0375 -0.0651 8.9575 [0.707]

13 0.1015 0.0683 10.1243 [0.684]

14 0.0162 -0.0108 10.1542 [0.751]

15 -0.0979 -0.0899 11.2681 [0.733]

16 -0.0933 -0.0835 12.2909 [0.724]

17 0.0645 0.0834 12.7869 [0.750]

18 0.0695 0.0599 13.3696 [0.769]

19 -0.0021 0.0168 13.3702 [0.819]

20 0.0101 -0.0555 13.3829 [0.860]

21 -0.0318 0.0050 13.5094 [0.890]

22 -0.1957 * -0.1755 * 18.3809 [0.683]

23 0.0514 0.0912 18.7212 [0.717]

24 -0.0543 -0.1599 19.1069 [0.746]

25 0.0132 0.0228 19.1300 [0.791]

26 0.0739 0.0058 19.8636 [0.798]

27 0.0483 0.0754 20.1810 [0.823]

28 -0.2149 ** -0.1881 * 26.5725 [0.542]

29 -0.1050 -0.0408 28.1191 [0.512]

30 0.0556 -0.0322 28.5597 [0.541]
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LAG ACF PACF Q-stat. p-value

31 0.0269 0.0894 28.6643 [0.587]

32 0.0458 -0.0629 28.9729 [0.621]

33 -0.0750 -0.0506 29.8121 [0.627]

34 0.0545 0.0109 30.2625 [0.651]

35 -0.0872 0.0354 31.4341 [0.641]

36 0.0210 -0.0107 31.5032 [0.682]

37 -0.0642 -0.0877 32.1599 [0.695]

38 0.0952 0.0297 33.6288 [0.672]

39 0.0492 0.0940 34.0276 [0.696]

10A - Food industries (except grain mill products and animal feeds)

To the basic aggregate 10A the model that we obtain is the following:

Model 5.1.5

log BA10A
t = .010TDt

(.001)
− .047EEt

(.008)
+ .034LYt

(.014)
+Nt

(1 + .429B
(.104)

+ .345B2

(.096)
)∇∇12Nt = (1− 1.00B12

(.138)
)at

σ̂a = 2.10%

All coefficients are significant, so in this case none of them is removed from the equation.

10B - Manufacture of grain mill products, starches and starch products, and of

animal feeds
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Model 5.1.6

log BA10B
t = .009TDt

(.001)
− .036EEt

(.008)
+ .026LYt

(.013)
− .051ξS10:08

(.022)

+Nt

∇∇12Nt = ((1− .186B
(.097)

+ .097B2

(.095)
+ .444B3

(.112)
)(1− .589B12

(.187)
− .411B24

(.135)
)at

σ̂a = 2.41%

11 - Manufacture of beverages

Model 5.1.7

log BA11
t = .011TDt

(.001)
− .050EEt

(.015)
+ .101LYt

(.024)
+Nt

∇∇12Nt = (1− .693B
(.093)

)(1− .403B12

(.143)
)at

σ̂a = 4.30%

12 - Manufacture of tobacco products

Model 5.1.8

log BA12
t = .020TDt

(.003)
− .140EEt

(.033)
+ .027LYt

(.062)
+Nt

(1 + .256B
(.108)

− .070B2

(.107)
+ .106B3

(.106)
+ .205B4

(.104)
)∇∇12Nt = (1− .379B12

(.112)
)at

σ̂a = 12.50%

We remove the LYt coefficient from the model, because its p-value is greater than 0,50.

13A - Preparation and spinning of textile fibres. Manufacture of woven textiles.

Textile finishings
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Model 5.1.9

log BA13A
t = .013TDt

(.001)
− .111EEt

(.014)
+ .020LYt

(.021)
+Nt

(1 + .293B
(.104)

)∇∇12Nt = (1− .509B12

(.215)
− .491B24

(.151)
)at

σ̂a = 4.10%

13B - Manufacture of knitted and crocheted articles, rugs, cordage, non-woven

fabrics, textile products for technical and industrial use and other textile

products

Model 5.1.10

log BA13B
t = .012TDt

(.001)
− .103EEt

(.014)
+ .049LYt

(.024)
+Nt

∇∇12Nt = (1− .478B
(.103)

+ .203B2

(.103)
)(1− .285B12

(.112)
)at

σ̂a = 4.99%

14 - Manufacture of wearing apparel

Model 5.1.11

log BA14
t = .006TDt

(.002)
− .046EEt

(.019)
+ .053LYt

(.036)
+Nt

(1 + .615B
(.106)

+ .469B2

(.115)
+ .509B3

(.116)
+ .487B4

(.118)
+ .273B5

(.110)
)∇∇12Nt = (1− .285B12

(.111)
)at

σ̂a = 5.95%

In determining the seasonal structure we choose to work with MA(1)12 existing a model

AR(1)12 that leaves the ACF and PACF clean seasonal structure and with a similar
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BIC. This decision is based on the widespread use of polynomials of first order moving

average representation for the seasonal in time series models. The regular part could

be represented in a more parsimonious way through a factored model. This seems to

be due to the presence of four distinct annual stage in the series.

15 - Manufacture of leather and related products

Model 5.1.12

log BA15
t = .011TDt

(.001)
− .141EEt

(.018)
+ .040LYt

(.031)
+Nt

(1 + .402B
(.100)

+ .311B2

(.109)
+ .332B3

(.112)
+ .237B4

(.119)
− .027B5

(.109)
− .252B6

(.101)
)∇∇12Nt = (1− .525B12)

(.107)

at

σ̂a = 5.97%

16 - Manufacture of wood and of products of wood and cork

Model 5.1.13

log BA16
t = .013TDt

(.001)
− .112EEt

(.012)
+ .034LYt

(.020)
+Nt

(1 + .237B
(.104)

+ .083B2

(.101)
− .307B3

(.102)
)∇∇12Nt = (1− .612B12

(.236)
− .388B24

(.137)
)at

σ̂a = 3.92%

17 - Manufacture of paper and paper products

Model 5.1.14

log BA17
t = .010TDt

(.001)
− .080EEt

(.009)
+ .028LYt

(.016)
+Nt

∇∇12Nt = (1− .210B
(.089)

)(1− .758B12)
(.129)

)at

σ̂a = 2.78%
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18 - Printing and reproduction of recorded media

Model 5.1.15

log BA18
t = .007TDt

(.001)
− .081EEt

(.013)
+ .004LYt

(.021)
+Nt

∇∇12Nt = (1− .560B
(.072)

)(1− .436B12

(.116)
)at

σ̂a = 3.87%

We remove the LYt coefficient from the model because it is not significative.

19 - Manufacture of coke and refined petroleum products

Model 5.1.16

log BA19
t = .002TDt

(.001)
− .042EEt

(.023)
− .015LYt

(.041)
+Nt

∇∇12Nt = (1− 1.040B12

(.117)
+ .270B24

(.161)
)at

σ̂a = 7.40%

In this case, we no observe regular structure. To the seasonal part, a MA(1)12 model

presents a better BIC, but its ACF and PACF show higher values for some delays.

Again, the variable LYt is removed.

20A - Manufacture of cleaning articles, perfumes and cosmetics
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Model 5.1.17

log BA20A
t = .011TDt

(.001)
− .087EEt

(.015)
+ .028LYt

(.027)
+Nt

∇∇12Nt = (1− .461B
(.106)

− .205B2

(.106)
)(1− .562B12

(.107)
)at

σ̂a = 4.53%

20B - Chemical industry except cleaning articles, perfumes and cosmetics

Model 5.1.18

log BA20B
t = .008TDt

(.001)
− .090EEt

(.009)
− .005LYt

(.016)
+Nt

∇∇12Nt = (1 + .254B
(.095)

)(1− .700B12

(.110)
)at

σ̂a = 3.83%

Only the coefficient of leap year variable is not significative.

21 - Manufacture of basic pharmaceutical products and pharmaceutical prepa-

rations

Model 5.1.19

log BA21
t = .011TDt

(.001)
− .055EEt

(.019)
+ .018LYt

(.027)
+Nt

(1 + .430B12

(.116)
+ .336B24

(.118)
)∇∇12Nt = (1− .671B

(.071)
)at

σ̂a = 4.55%

Based on the series discounting the calendar effects we don’t observe the existence of a

clear seasonal structure, however, once introduced the regular structure we observed,
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first, that the coefficients of seasonal delays take more weight in the ACF and PACF

and, secondly, the introduction of a moving average structure produces considerable

reductions in the variance and focused on the residual series. So we finally decide to

include this structure to the model. Also, as in the previous model, the variable of

Leap year is removed from de model.

22 - Manufacture of rubber and plastic products

Model 5.1.20

log BA22
t = .009TDt

(.001)
− .105EEt

(.012)
+ .019LYt

(.017)
+Nt

(1 + .523B12

(.092)
+ .496B24

(.103)
)∇∇12Nt = at

σ̂a = 3.66%

23 - Manufacture of other non-metallic mineral products

Model 5.1.21

log BA23
t = .013TDt

(.001)
− .120EEt

(.009)
+ .014LYt

(.015)
+Nt

∇∇12Nt = (1− .598B12

(.325)
− .402B24

(.158)
)at

σ̂a = 3.22%

In this basic aggregate only some delays in the ACF and PACF are too high and the

remaining are not significant. The high value of these delays can be explained by a

reduced pair of values that introduce distortion. So if we remove these distortion no

regular structure is observed. Part of these distortion disappears if we introduce an

intervention analysis in the model to capture the effect of a step that we see in the

original series. However, we decide not to introduce the intervention because it does

not change any coefficient of the model.
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24 - Manufacture of basic metals

Model 5.1.22

log BA24
t = .010TDt

(.001)
− .106EEt

(.017)
− .028LYt

(.032)
+Nt

∇∇12Nt = (1− 1.000B12

(.199)
)at

σ̂a = 5.62%

The leap year variable is again not significative.

25A - Manufacture of metal products for construction, containers made of metal,

steam generators, weapons and ammunition

Model 5.1.23

log BA25A
t = .012TDt

(.002)
− .077EEt

(.017)
+ .018LYt

(.029)
+Nt

∇∇12Nt = (1− .388B
(.099)

− .127B2

(.097)
+ .374B3

(.099)
)(1− .548B12

(.111)
)at

σ̂a = 5.69%

There is an extreme value of large magnitude (about -5σ), but we do not enter a step

in model since the insert does not change significantly the estimated coefficients of the

model. As in the recent models, the variable LYt must be removed from the model.

25B - Forging, stamping, embossing and rolling of metals. Manufacture of tools,

hardware goods, containers and other metal products
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Model 5.1.24

log BA25B
t = .012TDt

(.001)
− .115EEt

(.017)
+ .035LYt

(.020)
+Nt

(1 + .526B12

(.090)
+ .547B24

(.094)
)∇∇12Nt = (1− .181B

(.101)
+ .259B2

(.097)
)at

σ̂a = 4.23%

There are extreme values that distort the ACF and PACF, so that the coefficient of

the fourth delay of the same function is increased by the effect of the pair of values

[August-2009; December-2009]. Although the model shows the existence of a possible

step, no interventions are added to the model because again the estimated coefficients

do not change significantly.

26A - Manufacture of electronic components, assembled printed circuits, and

magnetic and optical media

Model 5.1.25

log BA26A
t = − .005TDt

(.003)
− .090EEt

(.043)
+ .007LYt

(.078)
+Nt

∇∇12Nt = (1− .731B12

(.137)
)at

σ̂a = 15.67%

In this case, both the leap year and trading-day coefficients are not significative, and

must be removed.

26B - Manufacture of computers, peripherals and telecommunications equip-

ment; appliances for measuring and navigation; radiation and medical and

therapeutic equipment
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Model 5.1.26

log BA26B
t = .003TDt

(.002)
− .044EEt

(.033)
+ .008LYt

(.054)
+Nt

∇∇12Nt = (1− .635B
(.071)

)(1− .637B12

(.138)
)at

σ̂a = 8.87%

All of the calendar variables are not significative, however only the leap year variable

is removed from the model, following the guidelines previously set.

26C - Manufacture of consumer electronics, optical instruments and photo-

graphic equipment

Model 5.1.27

log BA26C
t = .009TDt

(.003)
− .074EEt

(.038)
+ .075LYt

(.070)
+ .074ξS0210

t
(.151)

+Nt

∇∇12Nt = (1− .609B12

(.099)
)at

σ̂a = 14.88%

27A - Manufacture of domestic appliances

Model 5.1.28

log BA27A
t = .012TDt

(.001)
− .162EEt

(.010)
+ .045LYt

(.019)
+Nt

∇∇12Nt = (1− .263B12

(.124)
)at

σ̂a = 4.76%

No regular and seasonal structure are present in the series of this basic aggregate. Also

all calendar variables are highly significative.
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27B - Manufacture of electrical material and equipment except household ap-

pliances

Model 5.1.29

log BA27B
t = .012TDt

(.001)
− .101EEt

(.012)
+ .034LYt

(.022)
+Nt

∇∇12Nt = (1− .785B12

(.129)
)at

σ̂a = 4.33%

28 - Manufacture of machinery and equipment n.e.c

Model 5.1.30

log BA28
t = .010TDt

(.002)
− .102EEt

(.021)
+ .062LYt

(.035)
+Nt

(∇∇12Nt = (1− .415B
(.080)

)(1− .546B12

(.106)
)at

σ̂a = 6.53%

29 - Manufacture of motor vehicles, trailers and semi-trailers

Model 5.1.31

log BA29
t = .010TDt

(.002)
− .130EEt

(.027)
+ .054LYt

(.047)
+Nt

(1 + .228B
(.099)

)∇∇12Nt = (1− 1.000B12

(.175)
)at

σ̂a = 7.45%
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There are pairs of extreme values that distort the ACF and PACF of the series. Par-

ticularly if we look at the robust autocorrelation functions we note as the coefficients

of the lags 2, 3, 4 and 6 decrease significantly. It is no necessary to include the step

that cause the extreme values because it does not produce a significative change in the

estimated coefficients. We can observe that the seasonal moving average is no invertible

with a coefficient Θ1 = −1. An explanation for this is the pile-up phenomenon due to

the lack of identifiably of Θ (Breidt et all, 2006). It follows that Θ = −1 is always a

critical point of the likelihood function.

30A - Naval, railway, aircraft and spacecraft construction. Combat vehicles

Model 5.1.32

log BA30A
t = .006TDt

(.005)
+ .009EEt

(.063)
+ .176LYt

(.105)
+Nt

(1 + .570B12

(.087)
)∇∇12Nt = (1− .767B

(.073)
)at

σ̂a = 18.92%

The Easter coefficient presents a higher p-value so we need to remove the variable from

the model.

30B - Manufacture of motorcycles, bicycles, vehicles for disabled persons and

others n.e.c.

Model 5.1.33

log BA30B
t = .015TDt

(.002)
− .084EEt

(.025)
+ .060LYt

(.046)
+Nt

∇∇12Nt = (1− 1.000B12

(.249)
)at

σ̂a = 8.10%
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31 - Manufacture of furniture

Model 5.1.34

log BA31
t = .013TDt

(.001)
− .120EEt

(.014)
+ .035LYt

(.023)
+Nt

(1− .752B
(.136)

)∇∇12Nt = (1− 1.198B
(.143)

+ .501B2

(.106)
)(1− .469B12

(.137)
)at

σ̂a = 4.62%

32A - Manufacture of jewelery, costume jewelery and musical instruments

Model 5.1.35

log BA32A
t = .009TDt

(.002)
− .101EEt

(.026)
+ .065LYt

(.042)
+Nt

(1 + .531B
(.095)

)∇∇12Nt = (1− .216B12

(.111)
)at

σ̂a = 9.18%

The ACF and PACF of the residuals of the model present higher values of some delays

that we can not pick up introducing a regular or seasonal structure, nor introducing a

step or pulse as an intervention analysis. The more parsimonious model that presents

the autocorrelation function free from significative delays is finally chosen.

32B - Manufacture of sports goods; games and toys. Other manufacturing in-

dustries
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Model 5.1.36

log BA32B
t = .018TDt

(.002)
− .102EEt

(.028)
+ .042LYt

(.049)
+Nt

∇∇12Nt = (1− .433B
(.116)

− .244B2

(.123)
)(1− .502B12

(.131)
)at

σ̂a = 8.94%

32C - Manufacture of medical and dental instruments and supplies

Model 5.1.37

log BA32C
t = .008TDt

(.001)
− .109EEt

(.020)
+ .070LYt

(.033)
+Nt

∇∇12Nt = (1− .666B
(.066)

)(1− 1.00B12

(.407)
)at

σ̂a = 4.44%

33 - Repair and installation of machinery and equipment

Model 5.1.38

log BA33
t = .006TDt

(.003)
− .032EEt

(.036)
− .004LYt

(.057)
+Nt

∇∇12Nt = (1− .719B
(.059)

)(1− .693B12

(.108)
)at

σ̂a = 8.93%

Although both Easter and leap year coefficients are not significative, only the second

is deleted from the model due to its higher p-value.
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5.2 Analysis of the Industrial Turnover Index by divisions

10 - Manufacture of food products

Model 5.2.1

log D10
t = .010TDt

(.001)
− .047EEt

(.008)
+ .031LYt

(.014)
+Nt

(1 + .357B
(.105)

+ .288B2

(.098)
)∇∇12Nt = (1− 1.00B12

(.128)
)at

σ̂a = 2.08%

13 - Manufacture of textiles

Model 5.2.2

log D13
t = .013TDt

(.001)
− .105EEt

(.011)
+ .032LYt

(.017)
+Nt

∇∇12Nt = (1− .342B
(.101)

+ .258B2

(.113)
)at

σ̂a = 4.50%

20 - Manufacture of chemicals and chemical products

Model 5.2.3

log D20
t = .009TDt

(.001)
− .090EEt

(.008)
+ .001LYt

(.016)
+Nt

∇∇12Nt = (1 + .178B
(.098)

)(1− .637B12

(.103)
)at

σ̂a = 3.68%
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In this division the coefficient of leap year variable is not significative as in the basic

aggregates that compose it.

25 - Manufacture of fabricated metal products, except machinery and equipment

Model 5.2.4

log D25
t = .012TDt

(.001)
− .107EEt

(.011)
+ .027LYt

(.017)
+Nt

∇∇12Nt = (1 + .007B
(.102)

− .003B2

(.096)
+ .282B3

(.099)
+ .348B4

(.100)
)(1− .858B12

(.177)
)at

σ̂a = 3.40%

26 - Manufacture of computer, electronic and optical products

Model 5.2.5

log D26
t = .005TDt

(.002)
− .059EEt

(.028)
+ .015LYt

(.049)
+Nt

∇∇12Nt = (1− .212B
(.098)

)(1− .733B12

(.108)
)at

σ̂a = 8.93%

In this model is necessary to remove the leap year variable due to its small significance.

27 - Manufacture of electrical equipment
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Model 5.2.6

log D27
t = .012TDt

(.001)
− .112EEt

(.011)
+ .037LYt

(.019)
+Nt

∇∇12Nt = (1− .636B12

(.105)
)at

σ̂a = 4.04%

30 - Manufacture of other transport equipment

Model 5.2.7

log D30
t = .010TDt

(.005)
− .015EEt

(.066)
+ .118LYt

(.105)
+Nt

∇∇12Nt = (1− .799B
(.062)

)(1− .741B12

(.115)
)at

σ̂a = 15.51%

The variable of Easter effect has a p-value very high and so we delete it.

32 - Other manufacturing

Model 5.2.8

log D32
t = .014TDt

(.001)
− .112EEt

(.019)
+ .043LYt

(.032)
+Nt

∇∇12Nt = (1− .388B
(.121)

)(1− .407B12

(.119)
)at

σ̂a = 6.31%

5.3 Analysis of the Industrial Turnover Index by economic destina-

tion

XC - Consumer goods
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Model 5.3.1

log XCt = .010TDt
(.001)

− .065EEt
(.008)

+ .040LYt
(.014)

+Nt

(1 + .499B
(.104)

+ .326B2

(.099)
)∇∇12Nt = (1− .582B12

(.111)
)at

σ̂a = 2.36%

XC - CD - Durable consumer goods

Model 5.3.2

log CDt = .012TDt
(.001)

− .118EEt
(.011)

+ .035LYt
(.021)

+Nt

∇∇12Nt = (1− .549B12

(.101)
)at

σ̂a = 4.56%

XC - CN - Non-durable consumer goods

Model 5.3.3

log CNt = .010TDt
(.001)

− .056EEt
(.007)

+ .034LYt
(.012)

+Nt

(1 + .513B
(.101)

+ .471B2

(.110)
+ .083B3

(.116)
+ .298B4

(.098)
)∇∇12Nt = (1− .663B12

(.115)
)at

σ̂a = 2.10%

EN - Energy
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Model 5.3.4

log ENt = .002TDt
(.001)

− .038EEt
(.022)

− .019LYt
(.039)

+Nt

∇∇12Nt = (1− 1.00B12

(.186)
)at

σ̂a = 6.95%

There is not enough evidence to consider necessary to apply ∇12. Looking at the

original series, we don’t observe a clear systematic behavior in certain months or a

high value of seasonal delays followed by a slow decrease of the same. However, due

to the increasing values of the seasonal delays in the ACF, we finally decide to apply

a seasonal difference. In addition, the main component of this aggregate also has a

seasonal and regular difference. The leap year variable is deleted from the model.

IP - Intermediate products

Model 5.3.5

log IPt = .011TDt
(.000)

− .105EEt
(.008)

+ .011LYt
(.011)

+Nt

(1− .175B
(.098)

− .265B2

(.101)
)(1 + .413B12

(.094)
+ .448B24

(.095)
)∇∇12Nt = at

σ̂a = 2.89%

CG - Capital goods

Model 5.3.6

log CGt = .010TDt
(.001)

− .097EEt
(.015)

+ .053LYt
(.026)

+Nt

(1 + .208B
(.102)

+ .247B2

(.099)
)∇∇12Nt = (1− .874B12

(.214)
)at

σ̂a = 4.52%
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In the original series we can observe a step in January 2009 and a pulse in December

2005, but we do not include these effects with an intervention analysis since no effects

in the coefficients are obtained with the inclusion.

5.4 Analysis of the Industrial Turnover Index for sections B and C

B - Section B

Model 5.4.1

log Bt = .014TDt
(.002)

− .101EEt
(.031)

+ .004LYt
(.048)

− .443ξS10:2008

(.042)

+Nt

∇∇12Nt = (1− .850B
(.072)

)(1− .850B12

(.0215)
)at

σ̂a = 6.62%

where the coefficient of the leap year variable is not significative and must be removed

from the model.

C - Section C

Model 5.4.2

log Ct = .010TDt
(.001)

− .086EEt
(.008)

+ .030LYt
(.014)

− .122ξS10:2008

(.032)

+Nt

∇∇12Nt = (1− .223B
(.117)

)(1− .698B12

(.120)
)at

σ̂a = 2.63%

5.5 Analysis of the Industrial Turnover General Index

IG - General Index for the Industrial turnover
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Model 5.5.1

log IGt = .010TDt
(.001)

− .086EEt
(.008)

+ .030LYt
(.014)

− .128ξS10:2008

(.032)

+Nt

∇∇12Nt = (1− .232B
(.116)

)(1− .707B12

(.122)
)at

σ̂a = 2.61%

6 Analysis of the Industrial New Orders Received series

As in the Industrial Turnover, the indices are calculated for all basic aggregates (two digits

or set of groups of three digits) and another functional aggregates like other divisions that

are not basic aggregates (two digits), sections B and C and general. We calculate also the

index for economic sectors by economic destination (durable consumer goods, non-durable

consumer goods, capital goods, intermediate goods and energy). In the next subsection (6.1)

we describe the different models identified for the basic aggregates. In subsections 6.2 and 6.3

we show the final models chosen for other divisions and functional aggregates by economic

destination. Finally in subsections 6.4 and 6.5 we describe the determined models for sections

B and C and for the General Index.

6.1 Analysis of the Industrial New Orders Received Index for basic

aggregates

05 - Mining of coal and lignite

To this basic aggregate the model that we obtain is the following:
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Model 6.1.1

log BA05
t = .003TDt

(.006)
− .005EEt

(.066)
− .106LYt

(.114)
+Nt

∇∇12Nt = (1− .508B
(.110)

− .180B2

(.100)
− .312B3

(.085)
)at

σ̂a = 25.68%

We need to remove the trading-day and Easter variables because their p-values are

higher than 0.5.

08 - Other mining and quarrying

Model 6.1.2

log BA08
t = .016TDt

(.003)
− .131EEt

(.047)
+ .044LYt

(.077)
+Nt

∇∇12Nt = (1− .563B
(.089)

)(1− .920B12

(.306)
)at

σ̂a = 11.45%

The variable LYT is deleted due to its p-value is greater than 0.5.

10A - Food industries (except grain mill products and animal feeds)

To the basic aggregate 10A the model that we obtain is the following:

Model 6.1.3

log BA10A
t = .010TDt

(.001)
− .038EEt

(.008)
+ .052LYt

(.015)
+Nt

(1 + .357B
(.101)

+ .379B2

(.092)
)∇∇12Nt = (1− 1.00B12

(.170)
)at

σ̂a = 2.30%
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10B - Manufacture of grain mill products, starches and starch products, and of

animal feeds

Model 6.1.4

log BA10B
t = .009TDt

(.001)
− .043EEt

(.010)
+ .012LYt

(.017)
− .067ξS10:2008

(.031)

+Nt

∇∇12Nt = ((1− .175B
(.105)

+ .053B2

(.103)
+ .228B3

(.094)
)(1− .789B12

(.165)
)at

σ̂a = 3.13%

The leap year variable presents a p-value in the range [0.2, 0.5], but the value of its

coefficient is too small, so we remove the variable from the model.

11 - Manufacture of beverages

Model 6.1.5

log BA11
t = .012TDt

(.001)
− .036EEt

(.017)
+ .077LYt

(.027)
+Nt

∇∇12Nt = (1− .675B
(.082)

)(1− .700B12

(.137)
)at

σ̂a = 4.25%

12 - Manufacture of tobacco products

Model 6.1.6

log Tat = .020TDt
(.003)

− .140EEt
(.040)

+ .089LYt
(.073)

+Nt

(1 + .404B12

(.093)
)∇∇12Nt = (1− .474B

(.107)
)at

σ̂a = 14.01%
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13A - Preparation and spinning of textile fibres. Manufacture of woven textiles.

Textile finishings

Model 6.1.7

log BA13A
t = .014TDt

(.001)
− .114EEt

(.016)
+ .044LYt

(.029)
+Nt

(1 + .362B
(.096)

+ .251B
(.096)

)∇∇12Nt = (1− 1.00B12

(.147)
)at

σ̂a = 4.37%

13B - Manufacture of knitted and crocheted articles, rugs, cordage, non-woven

fabrics, textile products for technical and industrial use and other textile

products

Model 6.1.8

log BA13B
t = .012TDt

(.001)
− .096EEt

(.016)
+ .085LYt

(.028)
+Nt

∇∇12Nt = (1− .424B
(.079)

)(1− .485B12

(.102)
)at

σ̂a = 5.30%

14 - Manufacture of wearing apparel

Model 6.1.9

log BA14
t = .009TDt

(.003)
− .073EEt

(.037)
+ .044LYt

(.056)
+Nt

∇∇12Nt = (1− .909B
(.046)

)(1− .394B12

(.102)
)at

σ̂a = 9.67%
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15 - Manufacture of leather and related products

Model 6.1.10

log BA15
t = .016TDt

(.002)
− .116EEt

(.033)
− .015LYt

(.056)
+Nt

(1 + .530B
(.096)

+ .423B2
(.088)

+ .615B3

(.086)
+ .362B4

(.103)
)∇∇12Nt = (1− .699B12)

(.121)

at

σ̂a = 9.64%

The LYt variable is not significative and its sign is opposite at normal, so we must

remove it from the model.

16 - Manufacture of wood and of products of wood and cork

Model 6.1.11

log BA16
t = .013TDt

(.001)
− .096EEt

(.017)
+ .032LYt

(.030)
+Nt

(1 + .295B
(.101)

+ .248B2

(.099)
)∇∇12Nt = (1− .699B12

(.117)
)at

σ̂a = 5.39%

17 - Manufacture of paper and paper products

Model 6.1.12

log BA17
t = .010TDt

(.001)
− .079EEt

(.009)
+ .038LYt

(.017)
+Nt

∇∇12Nt = (1− .287B
(.090)

)(1− .730B12)
(.110)

)at

σ̂a = 2.95%
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18 - Printing and reproduction of recorded media

Model 6.1.13

log BA18
t = .005TDt

(.003)
− .019EEt

(.040)
+ .013LYt

(.065)
+Nt

∇∇12Nt = (1− .852B
(.051)

)(1− .271B12

(.153)
)at

σ̂a = 11.45%

The Easter and leap year variables are not significative presenting p-values very high.

19 - Manufacture of coke and refined petroleum products

Model 6.1.14

log BA19
t = .003TDt

(.001)
− .021EEt

(.021)
− .023LYt

(.037)
− .248ξS04:2003

(.072)

+Nt

∇∇12Nt = (1− 1.00B12

(.140)
)at

σ̂a = 6.63%

Again we remove the Easter and leap year variables. For the LYt variable the reason

is the same that in the previous division, but Easter coefficient is deleted because its

value is small compared with the normal value and its p-value is greater than 0.2.

20A - Manufacture of cleaning articles, perfumes and cosmetics
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Model 6.1.15

log BA20A
t = .008TDt

(.001)
− .072EEt

(.019)
+ .019LYt

(.031)
+Nt

∇∇12Nt = (1− .711B
(.082)

)(1− .569B12

(.113)
)at

σ̂a = 5.16%

Again we need to delete the LYt variable.

20B - Chemical industry except cleaning articles, perfumes and cosmetics

Model 6.1.16

log BA20B
t = .007TDt

(.001)
− .095EEt

(.015)
+ .022LYt

(.026)
− .296ξS11:2008

(.043)

+Nt

∇∇12Nt = (1− .484B
(.099)

)(1− .701B12

(.104)
)at

σ̂a = 4.27%

21 - Manufacture of basic pharmaceutical products and pharmaceutical prepa-

rations

Model 6.1.17

log BA21
t = .012TDt

(.001)
− .065EEt

(.017)
+ .015LYt

(.027)
+Nt

∇∇12Nt = (1− .678B
(.063)

)(1− .947B12

(.504)
)at

σ̂a = 3.84%

We need to remove the LYt variable because its p-value is greater than 0.5.
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22 - Manufacture of rubber and plastic products

Model 6.1.18

log BA22
t = .008TDt

(.001)
− .099EEt

(.014)
+ .004LYt

(.018)
+Nt

(1 + .503B12

(.093
+ .464B24

(.097)
)∇∇12Nt = (1− .209B

(.101
+ .298B2

(.091)
)at

σ̂a = 3.97%

The leap year variable is removed because it is not significative at 50%.

23 - Manufacture of other non-metallic mineral products

Model 6.1.19

log BA23
t = .012TDt

(.001)
− .110EEt

(.009)
+ .003LYt

(.017)
+Nt

∇∇12Nt = (1− .551B12

(.126)
)at

σ̂a = 3.75%

As in the previous model, the leap year variable is removed.

24 - Manufacture of basic metals

Model 6.1.20

log BA24
t = .008TDt

(.001)
− .089EEt

(.016)
+ .010LYt

(.030)
− .141ξI07:2004

(.042)

− .212ξI10:2008

(.057)

− .161ξS11:2008

(.058)

+Nt

∇∇12Nt = (1− .840B12

(.184)
)at

σ̂a = 5.75%
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Again we must remove the LYt variable.

25A - Manufacture of metal products for construction, containers made of metal,

steam generators, weapons and ammunition

Model 6.1.21

log BA25A
t = .009TDt

(.002)
− .058EEt

(.035)
+ .005LYt

(.058)
+ .460ξI12:2006

(.082)

+Nt

∇∇12Nt = (1− .483B
(.074)

)(1− .868B12

(.171)
)at

σ̂a = 9.07%

The p-value of the leap year variable is close to 0.90, so we remove this variable.

25B - Forging, stamping, embossing and rolling of metals. Manufacture of tools,

hardware goods, containers and other metal products

Model 6.1.22

log BA25B
t = .011TDt

(.001)
− .114EEt

(.013)
+ .030LYt

(.023)
− .185ξS12:2008

(.047)

+Nt

∇∇12Nt = (1− .210B
(.109)

)(1− .679B12

(.104)
)at

σ̂a = 4.39%

26A - Manufacture of electronic components, assembled printed circuits, and

magnetic and optical media
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Model 6.1.23

log BA26A
t = − .003TDt

(.007)
+ .061EEt

(.107)
+ .367LYt

(.165)
+1.33ξI04:2008

(.247)

+Nt

∇∇12Nt = (1− .448B
(.085)

)(1− 1.00B12

(.357)
)at

σ̂a = 23.90%

In this basic aggregate both trading-day and Easter effect are not significative.

26B - Manufacture of computers, peripherals and telecommunications equip-

ment; appliances for measuring and navigation; radiation and medical and

therapeutic equipment

Model 6.1.24

log BA26B
t = .015TDt

(.005)
+ .126EEt

(.068)
− .004LYt

(.109)
+Nt

∇∇12Nt = (1− .674B
(.076)

)(1− .831B12

(.162)
)at

σ̂a = 16.32%

We need to remove the leap year variable given its high p-value and the Easter variable

due to its positive sign.

26C - Manufacture of consumer electronics, optical instruments and photo-

graphic equipment

Model 6.1.25

log BA26C
t = .008TDt

(.006)
− .086EEt

(.090)
− .008LYt

(.138)
+ .672ξS02:2010

t
(.207)

− 1.26ξI11:2007
t

(.188)

+Nt

(1 + .553B
(.087)

)∇∇12Nt = (1− .764B12

(.123)
)at

σ̂a = 23.81%
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According to the guidelines mentioned before, the LY − t variable is removed from the

model although there are more variables with p-values greater than 0.2.

27A - Manufacture of domestic appliances

Model 6.1.26

log BA27A
t = .008TDt

(.001)
− .094EEt

(.016)
+ .017LYt

(.027)
+Nt

∇∇12Nt = (1− .364B
(.091)

)(1− .624B12

(.126)
)at

σ̂a = 5.02%

Again we remove the LYt variable.

27B - Manufacture of electrical material and equipment except household ap-

pliances

Model 6.1.27

log BA27B
t = .008TDt

(.002)
− .046EEt

(.030)
+ .083LYt

(.051)
+Nt

∇∇12Nt = (1− .423B
(.089)

)(1− .712B12

(.099)
)at

σ̂a = 8.68%

28 - Manufacture of machinery and equipment n.e.c
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Model 6.1.28

log BA28
t = .007TDt

(.003)
− .115EEt

(.038)
− .057LYt

(.066)
+Nt

∇∇12Nt = (1− .375B
(.105)

)(1− 1.00B12

(.309)
)at

σ̂a = 10.03%

Due to the opposite sign of the leap year coefficient, we need to remove this variable

from the model.

29 - Manufacture of motor vehicles, trailers and semi-trailers

Model 6.1.29

log BA29
t = .009TDt

(.002)
− .058EEt

(.025)
+ .042LYt

(.042)
+Nt

(1 + .325B
(.096)

)∇∇12Nt = (1− 1.00B12

(.127)
)at

σ̂a = 6.62%

30A - Naval, railway, aircraft and spacecraft construction. Combat vehicles

Model 6.1.30

log BA30A
t = .023TDt

(.020)
+ .494EEt

(.284)
+ .119LYt

(.431)
+Nt

∇∇12Nt = (1− .908B
(.038)

)(1− .839B12

(.144)
)at

σ̂a = 60.39%

The Easter and leap year variables are removed from the model, but their causes are

differents. The EEt variable is removed because it present a opposite sign that is

normal, while the leap year variable is removed because its p-value is close to 0.80.
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30B - Manufacture of motorcycles, bicycles, vehicles for disabled persons and

others n.e.c.

Model 6.1.31

log BA30B
t = .002TDt

(.005)
− .102EEt

(.056)
+ .178LYt

(.088)
+Nt

(1 + .776B
(.085)

+ .509B2

(.088)
)∇∇12Nt = (1− .728B12

(.125)
)at

σ̂a = 14.28%

The trading-day variable is removed from the model because its p-value is greater than

0.5.

31 - Manufacture of furniture

Model 6.1.32

log BA31
t = .013TDt

(.001)
− .112EEt

(.013)
+ .010LYt

(.023)
+Nt

∇∇12Nt = (1− .230B
(.086)

)(1− .653B12

(.099)
)at

σ̂a = 4.37%

Again the LYt variable is not significative.

32A - Manufacture of jewelery, costume jewelery and musical instruments
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Model 6.1.33

log BA32A
t = .009TDt

(.003)
− .136EEt

(.036)
+ .031LYt

(.059)
+Nt

∇∇12Nt = (1− .631B
(.071)

)(1− .500B12

(.097)
)at

σ̂a = 10.26%

As in the previous aggregate the leap year variable is removed.

32B - Manufacture of sports goods; games and toys. Other manufacturing in-

dustries

Model 6.1.34

log BA32B
t = .012TDt

(.003)
− .121EEt

(.038)
− .058LYt

(.067)
+Nt

∇∇12Nt = (1− .580B
(.103)

− .340B2

(.105)
)(1− .687B12

(.102)
)at

σ̂a = 10.59%

The leap year coefficient is negative when it is usually positive, so we need to remove

it from the model.

32C - Manufacture of medical and dental instruments and supplies

Model 6.1.35

log BA32C
t = .007TDt

(.002)
− .108EEt

(.025)
+ .085LYt

(.040)
+Nt

∇∇12Nt = (1− .717B
(.063)

)(1− 1.00B12

(.366)
)at

σ̂a = 5.40%
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33 - Repair and installation of machinery and equipment

Model 6.1.36

log BA33
t = .018TDt

(.009)
+ .036EEt

(.135)
− .036LYt

(.205)
+Nt

∇∇12Nt = (1− .903B
(.048)

)(1− .844B12

(.189)
)at

σ̂a = 28.66%

Easter and leap year variables are deleted from the model because they are not signi-

ficative.

6.2 Analysis of the Industrial New Orders Received Index by divi-

sions

10 - Manufacture of food products

Model 6.2.1

log D10
t = .009TDt

(.001)
− .040EEt

(.008)
+ .046LYt

(.014)
+Nt

(1 + .325B
(.102)

+ .331B2

(.094)
)∇∇12Nt = (1− 1.00B12

(.155)
)at

σ̂a = 2.19%

13 - Manufacture of textiles
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Model 6.2.2

log D13
t = .011TDt

(.001)
− .107EEt

(.006)
+ .037LYt

(.011)
+ .187ξI08:2006

(.011)

+Nt

∇∇12Nt = (1− .236B
(.084)

+ .204B2

(.089)
− .239B3

(.087)
− .267B

(.078)
+ .629B5

(.080)
)(1− .430B12

(.101)
)at

σ̂a = 3.96%

20 - Manufacture of chemicals and chemical products

Model 6.2.3

log D20
t = .007TDt

(.001)
− .090EEt

(.013)
+ .021LYt

(.023)
− .266ξS11:2008

(.037)

+Nt

∇∇12Nt = (1− .523B
(.096)

)(1− .682B12

(.105)
)at

σ̂a = 3.77%

25 - Manufacture of fabricated metal products, except machinery and equipment

Model 6.2.4

log D25
t = .010TDt

(.001)
− .088EEt

(.017)
+ .017LYt

(.029)
+ .287ξI12:2006

(.041)

+ .098ξI08:2004

(.040)

+Nt

(1 + .229B
(.099)

)∇∇12Nt = (1− .883B12

(.208)
)at

σ̂a = 4.96%

Following the instructions discused above, the LYt variable is removed since its p-value

is greater than 0.5.

26 - Manufacture of computer, electronic and optical products
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Model 6.2.5

log D26
t = .012TDt

(.004)
− .082EEt

(.061)
+ .033LYt

(.103)
+Nt

∇∇12Nt = (1− .467B
(.083)

)(1− 1.00B12

(.223)
)at

σ̂a = 15.05%

As in the previous aggregate the leap year variable is not significative.

27 - Manufacture of electrical equipment

Model 6.2.6

log D27
t = .007TDt

(.002)
− .054EEt

(.025)
+ .069LYt

(.042)
+Nt

∇∇12Nt = (1− .397B
(.088)

)(1− .755B12

(.110)
)at

σ̂a = 7.07%

30 - Manufacture of other transport equipment

Model 6.2.7

log D30
t = .020TDt

(.015)
+ .386EEt

(.221)
+ .143LYt

(.337)
+Nt

∇∇12Nt = (1− .883B
(.040)

)(1− .834B12

(.141)
)at

σ̂a = 47.65%

We need to remove the leap year variable due to its high p-value and the Easter variable

because its sign is positive.
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32 - Other manufacturing

Model 6.2.8

log D32
t = .010TDt

(.002)
− .120EEt

(.028)
− .008LYt

(.046)
+Nt

∇∇12Nt = (1− .610B
(.101)

)(1− .734B12

(.110)
)at

σ̂a = 7.39%

Again the leap year variable is removed due its high p-value.

6.3 Analysis of the Industrial New Orders Received Index by eco-

nomic destination

XC - Consumer goods

Model 6.3.1

log XCt = .010TDt
(.001)

− .055EEt
(.009)

+ .045LYt
(.014)

+Nt

∇∇12Nt = (1− .520B
(.080)

)(1− .476B12

(.184)
− .361B24

(.159)
)at

σ̂a = 2.45%

XC - CD - Durable consumer goods
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Model 6.3.2

log CDt = .010TDt
(.001)

− .104EEt
(.021)

+ .007LYt
(.034)

+Nt

(1 + .500B
(.087)

)∇∇12Nt = (1− .913B12

(.291)
)at

σ̂a = 5.46%

We need to remove the leap year variable because its p-value is very high.

XC - CN - Non-durable consumer goods

Model 6.3.3

log CNt = .010TDt
(.001)

− .049EEt
(.010)

+ .045LYt
(.016)

+Nt

∇∇12Nt = (1− .628B
(.071)

)(1− .724B12

(.128)
)at

σ̂a = 2.55%

EN - Energy

Model 6.3.4

log ENt = .003TDt
(.001)

− .020EEt
(.021)

− .023LYt
(.038)

− .249ξS04:2003

(.076)

+Nt

∇∇12Nt = (1− .798B12

(.120)
)at

σ̂a = 7.46%

Both Easter and leap year variables are removed from the model.

IP - Intermediate products
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Model 6.3.5

log IPt = .010TDt
(.001)

− .097EEt
(.009)

+ .025LYt
(.015)

− .152ξS10:2008

(.026)

− .091ξS11:2008

(.027)

− .104ξS12:2008

(.026)

+Nt

∇∇12Nt = (1− .328B
(.100)

)(1− .779B12

(.141)
)at

σ̂a = 2.58%

CG - Capital goods

Model 6.3.6

log CGt = .011TDt
(.002)

− .062EEt
(.029)

+ .034LYt
(.045)

+ .287ξI03:2008

(.068)

+Nt

∇∇12Nt = (1− .441B
(.080)

)(1− 1.00B12

(.161)
)at

σ̂a = 6.58%

6.4 Analysis of the Industrial New Orders Received Index for sec-

tion B and C

B - Section B

Model 6.4.1

log Bt = .014TDt
(.003)

− .107EEt
(.042)

+ .064LYt
(.069)

+Nt

∇∇12Nt = (1− .560B
(.095)

)(1− .466B12

(.089)
)at

σ̂a = 12.57%

C - Section C
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Model 6.4.2

log Ct = .009TDt
(.001)

− .057EEt
(.011)

+ .017LYt
(.018)

− .197ξS11:2008

(.035)

+Nt

∇∇12Nt = (1− .458B
(.096)

)(1− .800B12

(.136)
)at

σ̂a = 2.92%

The LYt variable presents a high p-value and the value of its coefficients is too small,

so we remove it from the model.

6.5 Analysis of the Industrial New Orders Received General Index

IG - General Index for the Industrial turnover

Model 6.5.1

log IGt = .009TDt
(.001)

− .058EEt
(.011)

+ .017LYt
(.018)

− .199ξS11:2008

(.035)

+Nt

∇∇12Nt = (1− .460B
(.098)

)(1− .815B12

(.145)
)at

σ̂a = 2.91%

As in the seccion C, the leap year variable need to be removed.
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