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Abstract

Official statistics agencies produce disaggregated data according to dif-

ferent classifications (of economic activities, products, occupations, . . . ).

When these classifications become obsolete, their replacement in the sta-

tistical production is a difficult task from many points of view. One of

the difficult issues is the necessity to provide retrospective data according

to the new classification, for otherwise the users would not have compa-

rable data nor long time series. The calculation of these retrospective

data (backcasting) is performed most often either by a micro approach,

that is, by reclassifying the micro-data of previous periods according to

the new classification or by the Conversion Matrices Method (CMM), that

consists of using data classified according to both classifications (since usu-

ally there is an overlapping period) to calculate the coefficients of some

conversion matrices that are used to estimate the unknown aggregates of

the past as linear combinations of the known ones. This method lacks not

only theoretical support but also diagnostic tools to assess the quality of

the estimates. In this paper, we propose a method to estimate the error of

the CMM and present the results of a practical application of the method

to the change from revision 1.1 to revision 2 of the Statistical Classification

of Economic Activities in the European Community (NACE).

∗Corresponding author. Email: iarbues@ine.es; Instituto Nacional de Estad́ıstica, Castel-

lana 183, 28071, Madrid, Spain
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1 Introduction

Together with the main aggregates that describe the whole economy of the ge-

ographical area of interest, statistical agencies usually produce more detailed

data. These data are obtained as a breakdown of the large aggregates according

to different classifications. For instance, we can obtain the production activity

of industrial branches using the National Classification of Economic Activities

CNAE-09, that is, the Spanish version of NACE Rev. 2 –Statistical classifica-

tion of economic activities in the European Community–, employment by oc-

cupation according to CNO (National occupation classification), the household

expenditures by expenditure group COICOP/HBS (Classification Of Individ-

ual Consumption by Purpose, used in the Household Budget Surveys). Since

the economy is always changing, after some time, these classifications become

obsolete and are no longer considered as useful tools to provide an accurate

description of the subject under study. Then, a new classification is designed

–increasingly often by a supra-national institution– and statistical agencies are

requested to adapt their statistics to it.

The adaptation of the statistical production to a new classification is largely

an organizational issue, not so much a methodological one. However, the users

often need to compare the disseminated data with data from the past. If the data

of different periods are in different classifications it is not possible, for example,

to apply econometric methods or, at best, it becomes extremely difficult. Thus

arises a requirement to the producer of statistics to provide at least an estimation

of aggregates according to the new classification corresponding to time periods

prior to the change of classification. This is what is known among the official

statisticians as ’backcasting’.

NACE is the statistical classification of economic activities in the European

Community and is part of an integrated system of classifications developed

under the vigilance of United Nations Statistical Division. It has a hierarchical

structure that codes the universe of economic activities. This structure is as

follows:

• Sections: Alphabetical code.

• Divisions: two-digit numerical code.

• Groups: three-digit numerical code.
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• Classes: four- digit numerical code.

The first version of NACE appeared in 1970, but it did not allowed com-

parison with other international classifications and that was the reason why in

1990 NACE rev. 1 was produced, with ISIC rev. 3 as a starting point. In 2002

was established NACE rev. 1.1, that introduced some updates and in that year

started the procedure of full revision the NACE. The new version, NACE rev.

2, is applied since January 1st, 2009. The changes of NACE have as a conse-

quence a break of continuity of time series data. That is why it is necessary to

’backcast’.

Roughly, it can be said that there are two different approaches to perform

the task. One of them is generally known as micro-approach and it is essentially

a repetition of the calculations that were originally performed when the data

according to the old classification were produced, but now with the micro-data

classified according to the new classification. Besides sampling problems (when

the classification is used for stratification) discussed for example in [1], what is

produced with this method can be considered not as an estimate, but an exact

recalculation. Unfortunately, to recode the micro-data is usually very costly

and in many cases not feasible.

The most popular alternative approach is known as Conversion Matrices

Method (CMM) and consists of estimating the aggregates according to the new

classification as a linear combination of the aggregates according to the old one.

The aggregates can be arranged in a vector and thus, the new vector can be

obtained as the product of a matrix of coefficients times the old vector. This

method is discussed, for example in [2], [3] and [4].

There are some decisions to take when producing backcast data, but most

of them belong to the next two kinds:

• Choice of the method to use for the estimation.

• Trade-offs between quality and amount of information provided. For ex-

ample, how far in the past or what level of detail can be achieved without

seriously compromising the quality.

The main problem here is that it is very difficult to take such decisions

without a measure of the quality of the estimates and that is precisely what

the CMM lacks. Consequently, in the past, the estimates have been analyzed

only in empirical and informal ways, such as visual inspection of the time series
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mainly focused on their stability. The fact that a time series is stable in time

does not guarantee at all that it is an accurate estimate of the theoretical one

(that is, the one that would had been calculated if the new classification were

been used at the time).

In fact, there is a third approach, in which no use of the micro-data is made

at all, using instead econometric models. This happens to be the most developed

approach in the literature (see [5] or [6] ), but it is mostly of interest for analysts

outside the statistical institutions, that do not have access to the micro-data.

In this paper, we tackle the problem of estimating the error of the estimates

produced by the CMM, thus providing a tool to take the above-mentioned de-

cisions with greater awareness of the consequences on quality. In section 2, we

describe the CMM as is usually applied, in section 3, we present our estimates

of the error, in section 4 the results of an application to real data are discussed.

2 Calculation of conversion matrices

Let us introduce some notation. We will denote by Pt the population of period

t, with t = 1, . . . , T , and then, we identify with an index i ranging from 1 to N

the units in P = ∪T
t=1Pt. The value of the variable of interest measured at time

t and unit i is denoted by xi,t.

Every unit i belongs to a class1 according to the old classification, which we

denote by α(i) and according to the new one, β(i). Let us assume that when

the old classification was being used, the objects of interest were the population

totals

X`
t (α) :=

∑

α(i)=`

xi,t (1)

and after the change of classification the new objects of interest are

Xj
t (β) :=

∑

β(i)=j

xi,t. (2)

We denote by S`
t the subsample of class ` at time t. In order to avoid

inessential complications, we assume that the sample is obtained by simple ran-

dom sampling and the totals according to the old classification were estimated
1We use now the word ’class’ in a generic sense, not specifically the four-digit activities of

NACE.
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by the Horvitz-Thompson estimator

X̂`
t (α) :=

M `

m`

∑

i∈S`
t

xi,t, (3)

where M ` is the size of the strata (class) ` and m` is the size of the subsample.

We may also consider

X`,j
t (α, β) =

∑

α(i)=`,β(i)=j

xi,t, (4)

that is, the total obtained using the units that belong to class ` according to

the old classification and to j according to the new one.

Let us now consider the following expression

π
j/`
t =

Xj,`
t (α, β)
X`

t (α)
. (5)

Depending on the nature of the variable xi,t, π
j/`
t can be interpreted as

a conditional probability. In the example of section 4, xi,t is the turnover of

industrial enterprises. Then, we may regard π
j/`
t as the conditional probability

of a currency unit to be spent to purchase a product of class j according to β,

given that it is spent to purchase a product of class ` of α.

The numerator in (5) cannot be calculated if we do not know the classifica-

tion of the units in both α and β. We will assume that this is known for a time

D (double classification period). In fact, rather than π
j/`
D , we will have,

π̂
j/`
D =

X̂j,`
D (α, β)
X̂`

D(α)
, (6)

where

X̂j,`
D (α, β) =

M `

m`

∑

i∈S`
D,β(i)=j

xi,D, (7)

and consequently,

π̂
j/`
D =

∑
i∈S`

D,β(i)=j xi,D∑
i∈S`

D
xi,D

. (8)

That means that the ’conditional probability’ is estimated in the sample S`
D.

Using π̂
j/`
D , the estimate of the totals Xj

t (β) by the conversion matrix method

would be,
ˆ̂
Xj

t (β|α) =
∑

`

π̂
j/`
D X̂`

t (α). (9)
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We can decompose the error of these estimates as

Xj
t (β)− X̂j

t (β|α) + X̂j
t (β|α)− ˆ̂

Xj
t (β|α), (10)

where

X̂j
t (β|α) =

∑

`

π
j/`
D X̂`

t (α). (11)

In this paper, we will focus on the first difference in (10), assuming that the

estimates of π
j/`
D are good enough.

We can write (11) in matrix form as

X̂t(β|α) = ΠDX̂`
t (α),

where the vector X̂t(β|α) and X̂t(α) contain the estimates corresponding to all

activities, and ΠD is the conversion matrix with as many rows as classes is β

and as many columns as classes in α.

2.1 Seasonal variant

When the variable under study has seasonal behaviour, (11) may provide a

poor estimate. In order to see this, let us consider that the method is applied

to monthly data from y complete years, and D is December of year y. If for

certain j and `, the intersection of classes α` and βj contains units with a

seasonal pattern different from the remainder of α`, then π
j/`
D will not represent

a good estimate in the ’conditional probability’ sense.

As an example, consider ` = 15 and j = 11, where α is NACE rev. 1.1

and β is NACE rev. 2. Class α` comprises both food and beverages and βj

includes only beverages. The production of beverages shows a markedly different

seasonal pattern from food. Consequently, the sales of beverages, X`,j
t (α, β)

varies strongly among the months of the year as a share of the total X`
t (α).

In particular, the π̂
11/15
D computed with December of year y will be too small

to estimate X11
t (β) in the summer months, when the sales of beverages are

greatest.

On the other hand, for short-term indicators (i.e., with more than one data

per year), the units are classified according to α and β for at least a whole year.

Let us assume for simplicity that the double classification period ranges from

t = T − s+1 to T , where s = 12 for monthly data and s = 4 for quarterly data.
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Then, we will use the estimate

X̂j
t (β|α) =

∑

`

π
j/`
D(t)X̂

`
t (α), (12)

where D(t) is T − s + rem(t, s) and rem(t, s) is the remainder of the integer

division of t by s. In order to avoid cumbersome notation, we will make the

dependency of D on t implicit, thus writing D when no ambiguity arises.

3 Estimation of the error

In this section, we will estimate the error of the conversion matrix estimate

(CME) of Xt(β). We can write the error of βj as

Ej
t = Xj

t (β)− X̂j
t (β|α). (13)

The estimator for the total of α` can be also written as

X̂`
t =

M `

m`

N∑

α(i)=`

xitIi,

where Ii is a sample membership indicator that equals one if the unit i is in the

sample and zero otherwise.

Taking into account that X̂j
t (β|α) = ΠT X̂`

t (α), we obtain

Ej
t =

∑

β(i)=j

xit −
∑

`

π
j/`
D

M `

m`

∑

α(i)=l

xitIi =
N∑

i=1

bj
ixi −

N∑

i=1

∑

`

π
j/`
D

M `

m`
a`

ixiIi,

where bj
i and a`

i are indicator variables such that bj
i = 1 and a`

i = 1 if and only

if i belongs to α` and βj . Let us introduce the following notation,

ej
i = bj

i −
∑

`

π
j/`
D

M `

m`
a`

iIi.

Then the error can be expressed more succinctly as

Ej
t =

N∑

i=1

xi,te
j
i . (14)

Our aim is to estimate the mean squared error, that is, E[(Ej
t )2].

Now, we propose a model for the relationship between the values of the

variable under study at the double classification period D and their values at t.
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In particular, we express xi,t as the product of the value at time D, xi,D times

the sum of one plus a random term ζi,t, that is,

xi,t = xi,D(1 + ζi,t) or xi,t = xi,D + ηi,t, (15)

where ηi,t = xi,Dζi,t.

Let us denote by ηα,`
t =

∑
α(i)=` ηi,t, ηβ,j

t =
∑

β(i)=j ηi,t, where i runs along

the population. By ζ, we mean the matrix {ζi,t}i,t. We will make the following

assumptions on their moments.

Assumption 1. The moments of ζi,t depend only on the class of i according

to α, that is, we can write

E[ζi,t] = µ
α(i)
t (16)

Var[ζi,t] = σ
2.α(i)
t . (17)

This assumption is necessary to prevent the results to depend on unknown

moments that we would not be able to estimate without having the units clas-

sified according to β.

Assumption 2. If i 6= i′, then ζi,t and ζi′,t are independent.

This assumption is restrictive, but we consider that it is an acceptable sim-

plification for a first approach. It remains for future work to allow for a certain

degree of dependence across i.

Assumption 3. The selection of the sample is independent from ζ.

We will first decompose the error in two terms.

Proposition 1. If assumptions 1, 2 and 3 hold, then the expected squared error

can be decomposed as

E
[(

Ej
t

)2
]

= E[E[Ej
t |ζ]2] + E[V[Ej

t |ζ]], (18)

where

E[Ej
t |ζ] = ηβ,j

t −
∑

`

π
j/`
D ηα,`

t (19)

V[Ej
t |ζ] =

∑

`

(πj/`
D )2V ` (20)

and V ` is the variance in the sampling distribution of the estimator X̂`
t (α).
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Proof. We can see that (18) holds as follows.

E
[(

Ej
t

)2
]

= E
[
E[

(
Ej

t

)2|ζ]
]

=

= E
[
E[

(
Ej

t

)2|ζ]
]
−E

[
E[

(
Ej

t

)|ζ]2
]

+ E
[
E[

(
Ej

t

)|ζ]2
]

=

= E

[
E[

(
Ej

t

)2|ζ]−E[
(
Ej

t

)|ζ]2
]

+ E
[
E[

(
Ej

t

)|ζ]2
]

=

= E

[
V[Ej

t |ζ]

]
+ E

[
E[

(
Ej

t

)|ζ]2
]

where the first identity holds by the law of total expectation and the last one

by the definition of Var[·|ζ].

Let us now analyze E[Ej
t |ζ]. From (12), (13) and the unbiasedness of X̂`

t (α)

we have

E[Ej
t |ζ] = Xj

t (β)−
∑

`

π
j/`
D X`

t (α). (21)

On the other hand,

X`
t (α) = X`

D(α) + η`
α,t Xj

t (β) = Xj
D(β) + ηj

β,t.

Thus, we can replace Xj
t (β) and X`

t (α) in (13) and we get

E[Ej
t |ζ] =

{
Xj

D(β)−
∑

`

π
j/`
D X`

D(α)
}

+
{

ηβ,j
t −

∑

`

π
j/`
D ηα,`

t

}
.

We can see that the first term is equal to zero,

Xj
D(β)−

∑

`

π
j/`
D X`

D(α) = Xj
D(β)−

∑

`

Xj,`
D (α, β)
X`

D(α)
X`

D(α) =

= Xj
D(β)−

∑

`

Xj,`
D (α, β) = 0,

so we arrive to (19). It only remains to check (20), but this amounts to realize

that conditional to ζ, Ej
t is a linear combination of the errors of the estimators

X̂`
t (α).

For the practical application of proposition 1, of the two terms of the de-

composition (18), the second can be replaced by its sample counterpart, but in

order to obtain the first one, we will have to do some further work, which is

summarized in the following proposition.
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Proposition 2. In the assumptions of proposition 1,

E[E[Ej
t |ζ]2] =

∑

`

σ2,`
t

{
(1− 2π

j/`
D )Q`,j

D + (πj/`
D )2Q`

D

}
(22)

where

Q`,j
D =

∑

α(i)=`,β(i)=j

x2
i,D,

Q`
D =

∑

α(i)=`

x2
i,D.

Proof. We have to calculate the expectation of the squared conditional expec-

tation in (19).

E[(ηβ,j
t −

∑

`

π
j/`
D ηα,`

t )2] =

= E
[( N∑

i=1

bj
iηi,t −

N∑

i=1

∑

`

π
j/`
D a`

iηi,t

)2
]

=

= E

([ N∑

i=1

ηi,t(b
j
i −

∑

`

π
j/`
D a`

i)
]2

)
=

= E


∑

i,i′
ηi,tηi′,t(b

j
i −

∑

`

π
j/`
D a`

i)(b
j
i′ −

∑

`

π
j/`
D a`

i′)


 =

=
∑

i,i′
(bj

i −
∑

`

π
j/`
D a`

i)(b
j
i′ −

∑

`

π
j/`
D a`

i′)µ
α(i)
t xi,Dµ

α(i)
t xi′,,D

︸ ︷︷ ︸
(A)

+

+
∑

i

(bj
i −

∑

`

π
j/`
D a`

i)
2σ

2,α(i)
t x2

i,D

︸ ︷︷ ︸
(B)

We calculate the two terms separately.
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(A)

∑

i,i′
(bj

i −
∑

`

π
j/`
D a`

i)(b
j
i′ −

∑

`

π
j/`
D a`

i′)µ
α(i)
t xi,T µ

α(i)
t xi′,T

=
[∑

i

(bj
i −

∑

`

π
j/`
D a`

i)µ
α(i)
t xi,D

]2

=
[∑

`

∑

α(i)=`

(
bj
i − π

j/`
D

)
µ

α(i)
t xi,D

]2

=

[ ∑

`

µ`
t

{ ∑

α(i)=`

bj
ixi,D − π

j/`
D

∑

α(i)=`

xi,D

}]2

=

[ ∑

`

µ`
t

{
X`,j

D (α, β)− π
j/`
D X`

D(α)
}]2

= 0

(B)

∑

i

(bj
i −

∑

`

π
j/`
D a`

i)
2σ

2,α(i)
t x2

i,D

=
∑

`

∑

α(i)=`

(
bj
i − π

j/`
D

)2
x2

i,Dσ2,`
t

=
∑

`

σ2,`
t

∑

α(i)=`

(
bj
i − 2bj

iπ
j/`
D + (πj/`

D )2
)
x2

i,D

=
∑

`

σ2,`
t

∑

α(i)=`

(
bj
ixi,D − π

j/`
D xi,D

)2

=
∑

`

σ2,`
t

{
(1− 2π

j/`
D )Q`,j

D + (πj/`
D )2Q`

D

}
,

so we conclude.

Among the quantities involved in (22), π
j/`
D , Q`,j

D and Q`
D can be estimated

with the micro-data of the double-coding periods. The variances σ2,`
t pose more

difficulties, since they require at least a subsample of units common to both

periods t and D. In section 4, we show that this sample does not need to be

very large.

If we had the full sample at both t and D, we might estimates µ`
t and σ2,`

t
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as follows,

µ̂`
t =

1
m`

∑

i∈S`

ζi,t (23)

σ̂2,`
t =

1
m`

∑

i∈S`

(ζi,t − µ̂`
t)

2. (24)

If we only have a subsample S`
1 of m`

1 units common to t and D, we would

replace m` and S` by m`
1 and S`

1, in (23)–(24).

4 Application

In this section, we will show the results of an application of the previous analysis

to real data. Now, the old and new classifications will be NACE rev. 1.1 and

NACE rev. 2, both of them at the division (two digit) level.

The part of (19) due to the sampling errors of X̂`
t (α) can be easily calculated

and it is not the main concern for us. Hence, we will assume that our sample is

the whole population, so the sampling errors are null and we focus on the first

term in (19).

On the other hand, if we intend to assess the validity of the estimates of

proposition 2, we need to compare the estimates to the true errors, that is,

we need the actual values of Xj
t (β) for some t outside the double classification

period. We can do this because we have available data classified according to

both classifications for several years.

In 4.1, we describe the survey to which we apply the previous results and

the process of reclassification of the individual units, in 4.2, we analyze the

estimation of the variances σ2,` and in 4.3 we discuss the results.

4.1 The data

We have used for our study the data from the Industrial Turnover and New

Orders survey. Let us describe the main features of the survey.

• The data are requested in a monthly basis and the series start in January

2002.

• The sample contains around 13.500 units (the statistical unit is the estab-

lishment). It is not a probabilistic sample, but a cutoff one. The criterion
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for a unit to be included is the number of employees. Consequently, the

sample is quite stable along the time.

In order to reclassify the units, we have used the following sources,

• One - to - one relationships between NACE rev. 1.1 and NACE rev. 2.

• PRODCOM data that provided value of production for all products of

each establishment.

• Structural Statistics that provided double-classification at the enterprise

level (only 2005).

• Manual work

The sample of the Turnover/New Orders survey is not a probabilistic one. In-

stead, all units with the variable ’number of employees’ over a certain threshold

are included. Consequently, but for the small number of unclassified units, the

recalculated totals are the same as those we would have produced during the

lifetime of the survey if we had used the NACE rev. 2. For a few divisions, the

number of units was too low to obtain reliable results and therefore they have

been excluded of the study.

4.2 Estimation of the variances

The estimation of the variances σ2,`
t posed some difficulties. The distributions

of the ζi
t have long tails on the right side (skewness often above ten and reaching

in some cases 15) and the naive estimator proposed in (23)–(24) is not robust

enough. On the other hand, the logarithm-transformed distributions look more

familiar, as we can see in figure 1. Thus, we assume a log-normal model. In

order to make the estimates even more robust, we use the 0.01-trimmed mean,

that is, we exclude the 1% extreme values on the right and the left tails. Thus,

ξi,t = log ζi,t (25)

µ̂`
ξ,t =

1
m`

∑

i∈S`,∗

ξi,t (26)

σ̂2,`
ξ,t =

1
m`

∑

i∈S`,∗

(ξi,t − µ̂`
ξ,t)

2 (27)

µ̂`
t = exp

(
µ̂`

ξ,t +
1
2
σ̂2,`

ξ,t

)
(28)

σ̂2,`
t =

{
exp

(
σ̂2,`

ξ,t

)− 1
}

exp
(
2µ̂`

ξ,t + σ̂2,`
ξ,t

)
, (29)

13



where by S`,∗ we mean the sample excluding the extreme values.
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Figure 1: Histogram of log ζ for t = 1 and ` = 5. The 1% extreme values on

both sides are removed.

The assumption that we have at our disposal the micro-data to estimate µ`
t

and σ2,`
t according to the method we have described is in contradiction with an

underlying assumption that makes necessary the CMM, namely, that we do not

know how to relate the units in t and D (since if we were able to, then most of

the unit reclassification work would be done, besides the problem of units that

change their activity along time). Consequently, we have made an estimation

under the more restrictive assumption of equal moments for all activities. In

other words, we estimate common µt and σt for all `. This allows for a more

realistic application of the method, since we can draw a subsample and estimate

σt with it.

4.3 Results

We have obtained the real and estimate error for the divisions, using different

σ̂2, `t estimates for each division (table 1). In tables 2, 3 and 4, we present

the results when a common σ̂2
t is estimated for all `, using the whole sample, a

subsample of about 5% and one of about 1%, respectively.

Even in the worst case (table 4), the estimates provide a reasonable guide

about the level of magnitude of the error. If we regress the 28 real errors on

their estimates, we find that the estimates explain most of the variation of the

error (R2 = 0.82), but the trend is 0.34, so we are overestimating the error by a

factor of around three. This means that at this point, the estimates are useful

14



to: (a) know the level of magnitude of the errors and (b) detect the classes

where the greatest quality problems are. The analysis of the sources of the

detected overestimation of the error remains for future research, together with

the generalization to estimators other than the Horvitz-Thompson.
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div. real estimate div. real estimate

5 0.0222 0.0549 21 0.0898 0.1416

6 0.4223 3.5794 22 0.0166 0.0166

8 0.1159 0.1695 23 0.0101 0.0250

10 0.0352 0.0251 24 0.0028 0.0093

11 0.1528 0.1071 25 0.0270 0.0276

12 0.0000 0.0000 26 0.0211 0.1051

13 0.1172 0.0595 27 0.1567 0.1300

14 0.1045 0.0420 28 0.1332 0.1368

15 0.0278 0.0409 29 0.0143 0.0207

16 0.0039 0.0115 30 0.0783 0.3252

17 0.0109 0.0068 31 0.0813 0.0791

18 0.0967 0.1159 32 0.0698 0.1449

19 0.0065 0.0083 33 0.1437 0.4889

20 0.0414 0.0611 35 0.0819 0.0112

Table 1: Relative error estimated and real (moments depending on `).
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div. real estimate div. real estimate

5 0.02223 0.04334 21 0.08979 0.17317

6 0.42233 1.05881 22 0.01658 0.02009

8 0.11588 0.15840 23 0.01007 0.01965

10 0.03519 0.02851 24 0.00285 0.00954

11 0.15281 0.12107 25 0.02698 0.02651

12 0.00000 0.00000 26 0.02108 0.06543

13 0.11717 0.05375 27 0.15671 0.12403

14 0.10445 0.03690 28 0.13318 0.12386

15 0.02779 0.02650 29 0.01426 0.01942

16 0.00386 0.01082 30 0.07833 0.17680

17 0.01088 0.00754 31 0.08131 0.07141

18 0.09674 0.12690 32 0.06984 0.12924

19 0.00652 0.01671 33 0.14367 0.27365

20 0.04138 0.07629 35 0.08187 0.00900

Table 2: Relative error estimated and real (same moment estimates for every

`).
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div. real estimate div. real estimate

5 0.02223 0.04419 21 0.08979 0.17635

6 0.42233 1.08211 22 0.01658 0.02044

8 0.11588 0.16108 23 0.01007 0.02000

10 0.03519 0.02899 24 0.00285 0.00969

11 0.15281 0.12315 25 0.02698 0.02695

12 0.00000 0.00000 26 0.02108 0.06666

13 0.11717 0.05466 27 0.15671 0.12609

14 0.10445 0.03753 28 0.13318 0.12593

15 0.02779 0.02703 29 0.01426 0.01976

16 0.00386 0.01100 30 0.07833 0.18005

17 0.01088 0.00767 31 0.08131 0.07268

18 0.09674 0.12924 32 0.06984 0.13151

19 0.00652 0.01694 33 0.14367 0.27834

20 0.04138 0.07763 35 0.08187 0.00918

Table 3: Relative error estimated and real (same moment estimates for every `)

in a subsample of 5% of the whole sample.
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div. real estimate div. real estimate

5 0.02223 0.04997 21 0.08979 0.19948

6 0.42233 1.20207 22 0.01658 0.02295

8 0.11588 0.18255 23 0.01007 0.02252

10 0.03519 0.03289 24 0.00285 0.01106

11 0.15281 0.13883 25 0.02698 0.03041

12 0.00000 0.00000 26 0.02108 0.07526

13 0.11717 0.06198 27 0.15671 0.14275

14 0.10445 0.04268 28 0.13318 0.14273

15 0.02779 0.03001 29 0.01426 0.02227

16 0.00386 0.01240 30 0.07833 0.20300

17 0.01088 0.00862 31 0.08131 0.08182

18 0.09674 0.14550 32 0.06984 0.14815

19 0.00652 0.01946 33 0.14367 0.31525

20 0.04138 0.08778 35 0.08187 0.01020

Table 4: Relative error estimated and real (same moment estimates for every `)

in a subsample of 1% of the whole sample.
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