
 

Working Papers 

02/2012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The views expressed in this working paper are those of the authors and do not 
necessarily reflect the views of the Instituto Nacional de Estadística of Spain 

 

First draft: April 2012 

This draft: April 2012 

 

Testing the predictive ability of two classes of 

models 

Ignacio Arbués, Cristina Casaseca, Ramiro Ledo and 
Silvia Rama 



Testing the predictive ability of two classes of models  

 

Abstract 

We propose tests for the null that the best model of a class produces as good forecasts as 
the best model of another one. Forecasts are evaluated using a loss function. Thus, 
causality can be tested if only the models in one class use a certain input. This is applied 
to the unemployment/inflation and industrial orders/production relationships. We find 
causality for the USA, but neither for France nor Spain. 

 

Keywords  

Evaluating forecasts, Loss function, Model selection, Causality, Bootstrap, Monte Carlo. 

 

Authors and Affiliations 

Ignacio Arbués, Cristina Casaseca, Ramiro Ledo and Silvia Rama 

D. G. of Methodology, Quality and Information and Communications Technology 

National Statistics Institute 

 

INE.WP: 02/2012 Testing the predictive ability of two classes of models 



Testing the predictive ability of two classes of

models

Ignacio Arbués1,∗, Cristina Casaseca2, Ramiro Ledo3 and Silvia Rama4

1,2,3,4D. G. de Metodoloǵıa, Calidad y
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Abstract

We propose several tests to compare two classes of forecasting mod-

els. The null hypothesis is that the best model of class A produces at

least as good forecasts as the best one of class B. The quality of the

forecasts is measured by the mean of a certain loss function. This gen-

eralizes the Reality Check and Superior Predictive Ability tests that

deal with the case of one class of models compared to a unique bench-

mark model.
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In particular, these tests can be used to causality. We consider the

class A of the models that do not use X to predict Y and B the class

that do use it. Then, rejecting the null indicates causality. We apply

this to the relationships between unemployment and inflation and be-

tween industrial orders and production. We see that the generalized

SPA indicates causality in both cases for the data from the USA, but

neither for French nor Spanish data.

Keywords: Evaluating forecasts, Loss function, Model selection, Causal-

ity, Bootstrap, Monte Carlo.

1 Introduction

The aim of this paper is to provide a multi-model test to compare the pre-

dictive ability of two families of forecasting models. For this, we build on

the Reality Check (White 2000) and the modifications performed by Hansen

in his Superior Predictive Ability test (Hansen 2005). In the framework of

these tests, a family of forecasting models are compared to a benchmark,

where the predictive abilities are measured by the expected loss. We gen-

eralize these tests to the case of comparing the predictive ability of two

families of forecast models. In our generalized framework we test the null

hypothesis that the best model of the first class is as good as the best of the

second one.

One useful application of this multi-model superior predictive ability test

arises in the context of testing causality. Consider a class I of models that

do not use a certain input X to forecast the variable of interest Y . Then,

we can test the null that in the class J of the models that do include X as

input, there is no model that performs better that the best of I.
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Let us now review some of the literature. First of all, when we want to

compare models from different classes, there is the possibility of picking one

model from each class and then make a one-on-one comparison. For this

comparisons, there are many tests available. Among the best-known ones it

is the test of equal predictive ability (EPA) of Diebold and Mariano (1995),

that has been generalized in Giacomini and White (2006) by considering

conditional expectations of forecasts to the information set at a given point

in time. The null in all these tests is that the expected loss function of the

forecasts obtained with two models are equal. In the same framework, West

(1996) develops an asymptotic procedure for EPA but taking into account

the effects of uncertainty associated with estimated model parameters.

When the competing models are nested, one can use the encompassing

tests by Clark and McCracken (2001) and Clark and West (2007). Here

the null is that the forecasts of the less parsimonious model do not contain

relevant information further than that is included in the most parsimonious

one.

The Granger-Causality tests are similar to the encompassing tests, but

they do not use the forecasts. Instead, the parameters of the bivariate (or, in

general multivariate) model, are tested for a certain null hypothesis, which

implies that there is a nested univariate model that would encompass the

larger one. Nevertheless, this relationship between causality and encom-

passing test implies no similarity whatsoever in the results, since Granger-

Causality tests reject the null more often.

All the tests considered above assume that there are two pre-determined

models. Consequently they depend on the method used to select them. This

selection can be made by standard identification methods, for instance, by

using information criteria. Under this procedure, the results would only be
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valid if the identification of the models is very reliable. This has prompted

us to try a completely different approach, in which identification is not

required, but just the specification of the two classes of models.

We have drawn from the idea of the Reality Check (White 2000; hereafter

referred as White). This test is proposed for the usual scenario in which a

large family of models are compared against a benchmark. In a forecasting

exercise, it is likely that even if no model beats the benchmark in population

terms, for a finite sample, some of them do. Consequently, his goal is to avoid

the danger of data snooping (to mistake apparently good results generated

by luck for true good results) by measuring the significance of the difference

in performance between the best alternative model and the benchmark. In

his paper he provides a method to test the null that the best model in a

specification search has no predictive superiority over a given benchmark.

The alternative is that at least the best model is superior to the benchmark.

Thus, whereas the above-mentioned tests of EPA consider the null as a

simple hypothesis, the Reality Check formulates it as a composite one. This

can be tackled controlling the significance level of each individual test using

Bonferroni inequality, but this approach is not practically useful when the

number of unilateral hypothesis, i.e., the number of models to compare with

the benchmark, is large.

This leads White to devise a joint test naturally based on the minimum

of the differences between the expected loss functions of the benchmark and

the models to compare. Given that the null is a collection of composite

hypothesis, it is necessary to decide what particular null is to be used for

drawing the critical values. White chooses the Least Favorable Configuration

(LFC), that is, the simple null that makes more probable to reject. If we

ensure that the size of the test is correct for the LFC then, a fortiori, it is so
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for any other null. The asymptotic p-value is then approximated by either

Monte Carlo or Bootstrap methods.

Hansen (2005), hereafter referred as Hansen, points out that the RC is

too conservative because the distribution under the null is obtained assuming

the LFC. Thus, when we include poor models to compare, the test may suffer

from a far from negligible lose of power due to the unreal increase of the

empirical p-value. The purpose of the superior predictive ability (SPA) test

proposed by Hansen is improving the power of RC test by re-centering the

null distribution around a sample-dependent mean and so avoiding the use

of the LFC.

Recently, Clark and McCracken (2011) have generalized Hansen’s test

to the case when the benchmark model is nested in all the alternatives. We

also intend to generalize the RC and SPA tests, but in a different direction.

Our goal is a generalization to the case in which we want to compare two

classes of forecasting models with more than one model. The structure of

the article is as follows. In section 2 we describe the RC and SPA tests

and introduce their generalizations, GRC and GSPA to the framework of

two families of forecasting models. The simulation results for these tests are

reported in section 3. Section 4 presents some examples of application of the

tests to analyze causality relationships. We conclude with some remarks.

2 Theory

In this section we will briefly describe the RC (White) and SPA (Hansen)

tests together with their generalization to the case of two classes of models.
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2.1 The framework in RC and SPA tests

The problem considered by White and Hansen is, given a family of m fore-

casting models, say indexed by j = 1, . . . ,m, whether there is one of them

whose forecasts beat a benchmark model. The accuracy of the forecasts

will be measured by a certain loss function L(·, ·), so if xt is the value of

the variable of interest at time t and {x̂jt}j are its forecasts according to

the different models, then the preference criteria of a model j over j′ is

given by the relationship EL(xt, x̂jt) ≤ EL(xt, x̂j′t). We will abbreviate

the notation by setting Ljt = L(xt, x̂jt). If λj is the expectation of the

loss function Ljt of model j (assuming stationarity), the null of the test

is H0 : λ0 ≤ minj=1,...,m λj, where λ0 is the expected loss function of the

benchmark model. The alternative is that for at least one j, λ0 > λj.

In terms of the performance relative to the benchmark we can formulate

the null as H0 : maxj=1,...,m µj ≤ 0, where djt = L0t −Ljt and µj = E[djt] =

λ0 − λj.

Let us assume that we have a sample {Ljt}t=1,...,T . Then, we can es-

timate λj with L̄j = T−1
∑T

t=1 Ljt. Alternatively, we can work with the

differences and get d̄j = T−1
∑T

t=1 djt. Let us also introduce the notation

dt = (d1t, . . . , dmt)
′, µ = E[dt] and d̄ = (d̄1, . . . , d̄m)′. Under certain as-

sumptions (originally, from West, 1996), it can be proved that T 1/2(d̄ − µ)

converges in distribution to a multivariate normal. Thus, we write T 1/2(d̄−
µ)

d−→ N(0,Ω), where Ω = limT→∞ var(T 1/2(d̄− µ)).

2.2 White’s Reality Check

White’s RC test is based on the statistic TRC = T 1/2 maxj=1,...,m d̄j . Since

the null is a composite hypothesis, a choice must be done about which of
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the different simple nulls is used to obtain the critical values. White uses

the LFC to obtain the critical region of the RC test. That is, λ0 = λj , i.e.,

µ = 0.

Under the LFC, T 1/2d̄
d−→ N(0,Ω). Therefore, the distribution that

we have to use to obtain critical values is the distribution of the maximum

of a vector of zero-mean correlated normals, for which there is no known

closed form. White proposes to approximate it by two ways: the first is

Monte Carlo simulation, but the computational complexity of this method

increases with m2, so White suggests a bootstrap procedure applicable to

dependent processes, more precisely, the stationary bootstrap of Politis and

Romano (1994), hereafter referred as PR, whose complexity is instead linear

in m. Then, the null is rejected when the statistic is above the approximate

critical values obtained either with the Monte Carlo or with the Bootstrap

procedures.

2.3 Generalized Reality Check

We want now to translate the RC ideas to the framework of the comparison

of two classes of models. Let us assume them indexed by i ∈ I = {1, . . . , n}
and j ∈ J = {n + 1, . . . , n +m} respectively. Our goal is to test if the best

model of the first family is as good as the best of the second one. Now the

null is H0 : mini∈I λi ≤ minj∈J λj.

NOTE: hereafter, when we write mini and minj , we mean mini∈I and

minj∈J unless explicitly indicated otherwise.

The statistic of the RC test can be generalized to this case as

TGRC = T 1/2
(

min
i
L̄i − min

j
L̄j

)

. (1)

Now, we stack {λi}i∈I and {λj}j∈J into a vector λ and we build its
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sample counterpart L̄. Under the assumptions of the previous section, as in

the RC, it holds that T 1/2(L̄−λ) converges in distribution to a multivariate

normal N(0,Ξ).

The adaptation of the RC to the new framework has been straightforward

up to this point, but now arises the question what is the LFC for this test?

The answer is that there is not in fact a LFC in the null, but we can approach

asymptotically to the supremum of the rejection probability in H0.

Proposition 1. Let Θ0 = {θ ∈ R
n+m
+ : mini θi ≤ minj θj} and for any

θ ∈ Θ0, zθ := mini(θi + ηi) − minj(θj + ηj), where η is a vector of random

variables. On the other hand, for any i ∈ I, xi := ηi − minj ηj . Then for

any a ∈ R,

sup
θ∈Θ0

P [zθ ≥ a] = max
i
P [xi ≥ a]. (2)

This proposition means that we can obtain the critical values of the

GRC test at significance level α by following these two steps: (i) for each

i ∈ I, compute the critical value ζα,i as in White’s Reality Check when the

benchmark is the ith model; (ii) obtain the critical value of the causality

test as ζα = maxi∈I{ζα,i}.
We have thus reduced the computation of the critical values of the GRC

to computing the critical values of n RC tests. Note, however, that this is

not equivalent to perform n RC tests and reject when any of them rejects,

because what we compare to the ith critical value ζα,i is not the statistic of

the ith RC test, but the statistic of the GRC, TGRC.

Then, we can obtain the distribution under the null by Monte Carlo

using the following proposition.

Proposition 2. Under assumptions A and B in White,
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(i) If mini λi > minj λj , then TGRC p→ +∞.

(ii) T 1/2(L̄i − minj L̄j)
d→ Zi − minj Zj, where (Zi, Zn+1, . . . , Zn+m)′ ∼

N(0,Ξi) and Ξi = (Ξα,β)α,β=i,n+1,...,n+m.

The proof is a straightforward consequence of the asymptotic normality

and the continuous mapping theorem. See, for example, (Billingsley 1968).

It is also possible to use the PR stationary bootstrap. The validity of

the bootstrap estimates is guaranteed by theorem 2.3 and corollary 2.4 in

White, which, for the sake of brevity, we do not reproduce here.

2.4 Hansen’s Superior Predictive Ability test

The null in Hansen’s SPA test is the same as in White, but now, the test

is constructed in a different way, by employing a studentized test statistic

and invoking a sample dependent distribution under the null. The main

advantage achieved with these modifications is to reduce the sensitivity to

the inclusion of poor forecasting models and so improving the power property

of the test.

The statistic of the test is

T SPA = max
{

max
j=1,...,m

T 1/2 L̄0 − L̄j

ω̂j
, 0

}

(3)

where ω̂2
j is a consistent estimator of the variance of T 1/2(L̄0 − L̄j). Thus,

when the benchmark has the best sample performance (L̄0 − L̄j ≤ 0) the

test statistic is normalized to be zero and there is no evidence to reject the

null.

The idea of this test is to avoid the LFC approach to the null distribution

by recentering it around a data dependent choice for µ rather than µ =

0 as in LFC. In Hansen’s Theorem 1 and Corollary 2 he shows that the
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asymptotic distribution of the statistic depends only on the models with

µj = 0 but not on the models with a positive mean. It could seem natural

to exclude directly the models with d̄j < 0, but this does not lead to valid

inference results. This is related with the inconsistency of the bootstrap for

constrained estimators when the parameter is in the boundary of the feasible

region (Andrews 2000; Hansen 2003). That is why several threshold rates to

separate the good and poor alternatives are proposed. Accordingly, Hansen

defines µ̂c as the vector with the jth element µ̂c
j = d̄j1{T 1/2d̄j/ω̂j≥

√
2 log log T},

where 1{·} denotes the indicator function. It can be seen that µ̂c
i converges

in probability to µj. Recentering the bootstraped distribution around µ̂c

yields a better approximation of the asymptotic distribution of the statistic

under the null: T SPA d−→ max{N(0,Ω0)}, where Ω0 is a matrix obtained

from Ω with the jth row and column annihilated when µj < 0.

An important condition that has to be met when models are estimated

recursively is that the benchmark cannot be nested in all the alternatives,

because in that case, the asymptotic normality of the averaged differences

is compromised.

2.5 Generalized Superior Predictive Ability test

In this section, we generalize the method of Hansen to our framework. One

could, in principle, think of two ways to generalize the T SPA to our case.

Either

TGSPA = max
{

max
j

min
i
T 1/2 L̄i − L̄j

ω̂ij
, 0

}

(4)

or

TGSPA = max
{

min
i

max
j
T 1/2 L̄i − L̄j

ω̂ij
, 0

}

, (5)

10



where ω̂2
ij is a consistent estimator (for simplicity, we assume almost sure

consistency) of the variance of T 1/2(L̄i − L̄j). In both cases, it is clear

that TGSPA = T SPA when n = 1. However, the form of (5) equals the

minimum of the statistics of the n SPA tests where each of the n models

in the first class are taken in turn as benchmarks. Since this makes easier

the interpretation of the GSPA test, will deal hereafter only with the second

version. Experimentation with (4) remains for future work.

Let us denote by dijt = Lit − Ljt the relative loss functions. We stack

them in a vector as dt = vec(Dt) with Dt = {dijt}n,m
i=1,j=1. Their means are

accordingly stacked in a vector µ = vec(M), where M = {µij}n,m
i=1,j=1 and

µij = E(Li − Lj). Their sample means are in d̄ = T−1
∑

t dt.

In order to ensure the existence of µij and justify the use of bootstrap

techniques and the consistency of the covariance matrix estimator, we need

to suppose the stationarity of dt and a mixing condition. The following

assumption is a straightforward generalization of assumption 1 in Hansen.

Assumption 1. dt is strictly stationary and satisfies an α−mixing condi-

tion of size −(2 + δ)(r + δ)/(r − 2), with r > 2 and δ > 0. Besides this,

E‖dijt‖r+δ < +∞ and V[dijt] > 0 for all i = 1, . . . , n, j = n+ 1, . . . , n+m.

If Ξ is the (n+m)×(n+m) asymptotic covariance matrix of T 1/2(L̄−λ),

then we denote by Ξ0 the matrix such that Ξ0
ij = Ξij1{λi=λj=λ∗}, where

λ∗ = min{λℓ : ℓ = 1, . . . , n + m}. We can write the statistic of the test

as TGSPA = ϕ(T 1/2L̄, ω̂), where ϕ : (u,w) ∈ R
n+m × R

nm 7→ ϕ(u,w) =

max{mini maxj(ui − uj)/wij , 0}. The asymptotic distribution of TGSPA is

given in the following proposition.

Proposition 3. Suppose assumption 1 holds and let F0 be the cumulative

distribution function of ϕ(Z,w0), where Z ∼ Nn+m(0,Ξ0). Then, under the
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null hypothesis,

(i) If mini λi = minj λj , then ϕ(T 1/2L̄, ω̂)
d→ F0, if ω̂

p→ w0.

(ii) If mini λi < minj λj , then ϕ(T 1/2L̄, ω̂) = 0 almost surely for large T .

Under the alternative mini λi > minj λj , ϕ(T 1/2L̄, ω̂)
a.s.→ ∞.

As in the SPA, we will obtain the critical values (or p-values) by the

Bootstrap, recentering the averages of the loss functions so that they satisfy

a sample-dependent null. This null is required to preserve the asymptotic

validity of the test and reduce the influence of the poor alternatives. Let us

define first ∆ij = T 1/2(L̄i − L̄j)/ω̂ij . Then, the sample-dependent null will

be

λ̂c
i =







L̄i − L̄î∗ if ∆i,̂i∗ ≥ g(T )

0 if ∆i,̂i∗ < g(T )
, (6)

where î∗ = arg mini L̄i and g(T ) is a function such that lim supT g(T )T−1/2 =

0 and lim infT g(T )/
√

2 log log T > 1. For j > n, λ̂c
j is defined accordingly.

Then, the bootstrap is used to obtain the critical values as as follows.

We take the sample of differences {dt}t, where 1 ≤ t ≤ T . By an adequate

resampling (for example, the PR stationary bootstrap) we obtain the boot-

strapped difference averages d̄∗,k, with k = 1, . . . ,M . Then, we re-center the

values around µ̂c = vec(M̂ c), where the matrix M̂ c contains the elements

µ̂c
ij = λ̂c

i − λ̂c
j.

The re-centered values are d̄∗,c,k = d̄∗,k − d̄+ µ̂c. With them, we obtain

M bootstrapped values of TGSPA,∗,k = ψ(T 1/2d̄∗,c,k, ω̂∗,k).

In order to establish the validity of the boostrapped critical values we

need to prove that TGSPA,∗,k converges in distribution to F0. In other words,

we see that using µ̂c, we have a theoretical null distribution that converges to
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the true one, when the latter satisfies the null. This is proved in proposition

4, but before, we have to define the statistic of the test in terms of the

differences instead of the loss functions as TGSPA = ψ(T 1/2d̄, ω̂), where

ψ : (v,w) ∈ R
nm × R

nm 7→ ψ(v,w) = max{mini maxj vij/wij , 0}. Then, the

asymptotic distribution F0 is given by ψ(V,w0), where V ∼ Nnm(0,Ω0) and

Ω0
i+mj,i′+mj′ = Ξ0

ii′ + Ξ0
jj′ − Ξ0

ji′ − Ξ0
ij′ .

Proposition 4. Let F0 be as in proposition 3 and let F c
T be the cumulative

distribution function of ψ(T 1/2d̄∗,c,k, ω̂∗,k). If ρ(T 1/2(d̄∗,k−d̄), T 1/2(d̄−µ)) →
0, where ρ is some metric metrizing the convergence in distribution, then

F c
T −→ F0 as T −→ ∞, for all continuity points of F0.

The condition ρ(T 1/2(d̄∗,k − d̄), T 1/2(d̄ − µ)) → 0 can be checked, for

example, by applying theorem 2.3 in White or lemma 1 in Hansen.

3 Simulations

In this section we want to check by Monte Carlo simulations that the em-

pirical size of the tests is correct and to compare the power under some

alternatives. For this purpose we simulate values of the vector of loss func-

tions Lt ∼ N(λ,Ξ), where t = 1, . . . , T .

We will use the same covariance matrix in all cases. We wanted to mimic

to some extent the behavior of real data, as observed in the examples of next

section, in which the covariance matrix has only one large eigenvalue and

the n + m − 1 remaining ones are much smaller. We get this by setting

Ξ = αIn+m + β1n+m1′
n+m, where 1n+m is a (n + m) × 1 vector of ones

(α = 1, β = 2). We fix the level of significance in α = 0.10 (the results for

α = 0.05 seemed to be similar).
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We have obtained results for the GSPA with two choices of the func-

tion g(T ), namely g2(T ) =
√

2 log log T (the used by Hansen) and g3(T ) =
√

3 log log T . With g2 it is not almost sure that the good models are cap-

tured, because lim supT xT = 1 does not preclude that there are infinite xT

such that xT > 1. We distinguish the two variants of GSPA with a subscript.

The different scenarios are defined thus by the value of the vector of

means λ. We consider five different cases to show the size and power prop-

erties of our tests. In all the cases we set the number of simulation replica-

tionsM = 1, 000 and a set of sample sizes given by T = 50, 100, 200, 400, 800,

5, 000, 20, 000. In the stationary bootstrap we set S = 1, 000 the number of

resamplings.

Case 1 : as our GRC and GSPA test have been conceived as a gener-

alization of RC and SPA tests, the first result presented in table 1 is the

restriction of the formers to the univariate case, in order to check that the

rejection probabilities under the null are close to the nominal levels in both

tests. So we consider n = 1 and m = 30 models to compare, with means

λ1 = 0 and λj = 0 for j = n + 1, . . . , n + m. In this scenario, where we

are comparing a family of models to a benchmark model and all of them

have the same mean, the GRC test, based in the LFC approach, seems to

perform reasonably well for all the sample sizes. The rejection frequency of

GSPA2 remains somewhat high even with very long samples (with lengths

in the order of 105, this effect disappears).

Case 2 : in table 2 we present the rejection frequencies for the GRC and

GSPA tests when comparing two families of n = m = 30 models with all

means set to 0. While in this situation, the GRC does not work well (it

never rejects the null), the GSPA seems to reach rejection frequencies closer

to the nominal level.
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Table 1: Rejection Frequencies for case 1.

T 50 100 200 400 800 5,000 20,000

GRC 0.104 0.082 0.086 0.088 0.080 0.108 0.092

GSPA2 0.180 0.140 0.142 0.124 0.152 0.140 0.134

GSPA3 0.126 0.118 0.132 0.120 0.138 0.104 0.096

Note: rejection frequencies for n = 1, m = 30, λ1 = 0;

and λj = 0 for j = n + 1, . . . , n + m.

Table 2: Rejection Frequencies for case 2.

T 50 100 200 400 800 5,000 20,000

GRC 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GSPA2 0.150 0.136 0.152 0.084 0.164 0.106 0.158

GSPA3 0.114 0.128 0.120 0.116 0.118 0.128 0.118

Note: rejection frequencies for n = 30, m = 30 and λi = 0 for

i = 1, . . . , n, λj = 0 for j = n + 1, . . . , n + m.

Case 3 : now we try to simulate a situation as similar as the LFC as

possible, by increasing the means of the n− 1 last models of the first class.

In this case, the GRC performs better than the GSPA since its asymptotic

distribution under the null is based in the LFC approach. These results are

contained in table 3.

Case 4 : table 4 contains the rejection frequencies under the alternative

when the poor models in both families have means equal to zero. It shows

that the GSPA presents important power improvements over the GRC. We

can observe this extreme situation clearly when T = 400 where the GRC test

almost never rejects the null (6.4%) while the GSPA test has a power over

86%. These results, together with results of Table 5, show how the advan-
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Table 3: Rejection Frequencies for case 3.

T 50 100 200 400 800 5,000 20,000

GRC 0.064 0.076 0.068 0.090 0.102 0.100 0.078

GSPA2 0.164 0.186 0.122 0.146 0.156 0.140 0.122

GSPA3 0.152 0.124 0.106 0.100 0.144 0.122 0.120

Note: rejection frequencies for m = 30, n = 30 and λ1 = 0

λi = 2 for i = 2, . . . n; λj = 0 for j = n + 1, . . . , n + m.

tages of the SPA test proposed by Hansen over the RC test when irrelevant

alternatives are included among the models to compare, are conserved in

our generalized tests.

Table 4: Rejection Frequencies for case 4.

T 50 100 200 400 800 5,000 20,000

GRC 0.000 0.000 0.008 0.064 0.470 1.000 1.000

GSPA2 0.256 0.290 0.550 0.862 0.996 1.000 1.000

GSPA3 0.194 0.290 0.534 0.828 0.993 1.000 1.000

Note: rejection frequencies under the alternative for n = 30, m = 30

and λi = 0 for i = 1, . . . , n and λn+1 = −0.1, λj = 0 for

j = n + 2, . . . , n + m.

Case 5 : in table 5 we have raised the means of the poor models of

the first family to reproduce a situation more favorable to the GRC test.

Although the power properties of the GRC improve over case 4, the GSPA

has still a better performance, especially obvious with small sample sizes.
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Table 5: Rejection Frequencies for case 5.

T 50 100 200 400 800 5,000 20,000

GRC 0.110 0.166 0.292 0.582 0.918 1.000 1.000

GSPA2 0.246 0.290 0.444 0.774 0.984 1.000 1.000

GSPA3 0.200 0.238 0.436 0.746 0.990 1.000 1.000

Note: rejection frequencies under the alternative for n = 30, m = 30

and λ1 = 0, λi = 2 for i = 2, . . . , n and λn+1 = −0.1, λj = 0 for

j = n + 2, . . . , n + m.

4 Real data results

In this section, we apply the generalized RC and SPA tests to several dif-

ferent forecasting experiments. The aim of these experiments is to assess

whether some bivariate models outperform the univariate ones to forecast

certain time series at one step distance. In addition, in one case, we employ

also a model with a third series to check the possible improvement in the

predictive power over the two-series models. This is related to the idea of

Granger causality (Granger 1969)

We analyze for three countries (Spain, France and the USA), two sets of

variables: (a) the first set comprises the Industrial Production Index (IPI)

as variable of interest and the Industrial New Orders (NO) as an input to

forecast the first one; (b) in the second one, we forecast the Consumer Price

Index (CPI) (in the case of USA, the CPI without food and energy) using

the Unemployment Rate (UNEM) as input. For USA, we also use as input

the CPI of Energy (CPIE). The details of the data are in table 6.

Thus, we have six combination plus the additional trivariate model for

the USA, that is, seven forecasting exercises. The details of the time series
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Table 6: Origin of the data.

Serie National survey Dates Freq. Scope Source

NO

Spain:IEP 2002:1-2011:6 M B,C (CNAE09) INE

France:NOI 2000:1-2011:6 M B-E (NACE) Eurostat

USA:M3 1992:10-2010:10 M 31-33 (NAICS) Census Bureau

IPI

Spain:IPI 2002:1-2011:1 M B,C,D (CNAE09) INE

France:IPI 2000:1-2011:6 M B,C,D (NACE) Eurostat

USA:IPI 1992:10-2010:10 M 31-33,212 (NAICS) Federal Reserve

UNEM

Spain:EPA 1977:Q1-2010:Q4 Q ILO recommendations INE

(16 to over years)

France:LFS 1990:Q1-2011:Q1 Q ILO recommendations Eurostat

(15 to 74 years)

USA:CPS 1957:1-2010:12 M LFS definition BLS

(16 to over years)

CPI

Spain:IPC 1977:Q1-2010:Q4 Q Households, all items INE

France:CPI 1990:Q1-2011:Q1 Q Households, all items INSEE

USA:CPI 1957:1-2010:12 M Urban. All items, BLS

Less food and energy

CPIE

USA:CPI 1957:1-2010:12 M Energy items BLS

Note: in the fourth column, M=monthly, Q=quarterly;The NO of USA are given in U.S. $,

the remaining NO, IPI and CPI series are indexes and the UNEM series are rates.

can be found in table1. No series has been seasonally adjusted because

this would render the experiment unrealistic. Instead, seasonality has been

taken into account in the forecasting models. From the total length of the

series, we have used the last third for out-of-sample forecasting. The model
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parameters are estimated using a rolling window of constant length.

The series are submitted to some transformations before fitting the mod-

els: (a) x0t = ∇∇12 log IPI, x1t = ∇∇12 log NO; (b) x0t = ∇∇ log CPIC,

x1t = ∇UNEM, where ∇ and ∇12 are the regular difference and (monthly)

seasonal difference operators. We considered that the seasonality of the

CPIC was not so significant as in the case of the industrial production.

The univariate forecasts for x0t will be obtained by autoregressive models

seasonal or nonseasonal and with or without intercept. Thus, for monthly

series, x̂0t =
∑

k β0,kx0,t−k or x̂0t =
∑

k β0,kx0,t−k + γ, where the lags in-

cluded are either {k = r + 12s : r ≤ p, s ≤ q}, with p = 0, . . . , 6, q = 0, 1 or

just {k = 0, . . . , 6} depending on whether the model is seasonal or not.

The bivariate forecasts are x̂0t =
∑

k β0,kx0,t−k +
∑

ℓ β1,ℓx1,t−ℓ or x̂0t =
∑

k β0,kx0,t−k +
∑

ℓ β1,ℓx1,t−ℓ + γ. The lags of x0t and x1t are chosen inde-

pendently among the same set that the univariate models.

Finally we will define the class of three-variable models,

x̂0t =
∑

k

β0,kx0,t−k +
∑

ℓ

β1,ℓx1,t−ℓ +
∑

m

β2,mx2,t−m

x̂0t =
∑

k

β0,kx0,t−k +
∑

ℓ

β1,ℓx1,t−ℓ +
∑

m

β2,mx2,t−m + γ.

Depending on the different frequencies of the series and the presence of

seasonality (or the lack thereof), we obtain different sets of models for each

experiment. Seasonal models are used for IPI/NO but not for CPI/UNEM.

We summarize this in table 7.

Once we have obtained the forecasts, we calculate the forecasting errors

ε̂t = x0t− x̂0t and apply two loss functions: absolute Lt = |ε̂t| and quadratic

Lt = ε̂2t .

We obtain different forecasting errors for each of the models considered.
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Table 7: Length of series and number of models.

Univariate Multivariate

Series Nationality Length Models Models

IPI/NO

Spain 109 28 392

France 138 28 392

USA 224 28 392

CPI/UNEM

Spain 136 14 98

France 85 14 98

USA 648 14 98

CPI/UNEM/CPIE

USA 648 98 686

Following the notation of previous sections, we can index them as ε̂it with

i ∈ I and ε̂jt with j ∈ I and accordingly for the loss functions and their

means. Then we will test the null hypothesis H0 : mini λi ≤ minj λj .

In the six two-series forecasting exercises, I includes the indexes of the

univariate models and J the bivariate ones. In the one three-series exercise,

I includes the indexes of the bivariate models and J the trivariate ones.

Since we consider two loss functions and seven forecasting exercises, we

have fourteen different nulls.

We will try four different tests: (i) GRC with p-values obtained with

Monte Carlo; (ii) GRC with p-values obtained with Bootstrap; (iii) GSPA2

and (iv) GSPA3. For the GSPA, we perform the bootstrap on the ∆ij instead

of the differences d̄ij to reproduce better the asymptotic distribution.

We have used 1,000 simulations in the Monte Carlo and 1,000 resam-

plings in the Bootstrap. We present the p-values in tables 8,9,10 and 11.

The results confirm the fact that the GSPA test, by getting the p-values
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with the sample-dependent null is more powerful than the GRC. On the

other hand, even the GSPA does not find evidence of better performance of

the multivariate models in the cases of France and Spain, but only in the

case of USA. Also, no gain is found in using the Energy CPI against the

bivariate models that use the core CPI and Unemployment.

Table 8: P-values of GRC with Monte Carlo.

Series Nationality Absolute Loss Quadratic Loss

p-value p-value

IPI/NO

Spain 0.986 1.00

France 0.943 0.979

USA 0.585 0.498

CPI/UNEM

Spain 1.000 1.000

France 0.968 0.974

USA 0.555 0.591

CPI/UNEM/CPIE

USA 1.000 0.998

We will show the multivariate models for the cases when GSPA test

finds evidence of better performance than the univariate ones. For the case

of the USA UNEM and CPI series, we get the model x0t = −0.510x0,t−1 −
0.549x0,t−2−0.562x0,t−3−0.494x0,t−4−0.236x0,t−5−0.122x0,t−6+0.016x1,t−1+

0.011x1,t−2−0.218x1,t−3−0.014x1,t−4−0.276x1,t−5−0.469x1,t−6, that is the

best no matter which loss function is chosen. The coefficients of the lags

of UNEM are negative or very small, confirming the findings of previous

research (Stock and Watson 1999) and (Clark and McCracken 2001).

For IPI and NO from USA, we get the model x0t = −0.514x0,t−12 +

0.059x1,t−1+0.070x1,t−2+0.046x1,t−3+0.026x1,t−4+0.039x0,t−5+0.050x0,t−6.
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In this case, all the coefficients of the lags of NO are positive, which is

coherent with the meaning of the variables. An increase in the new orders,

produces an increase in production. Since different branches of activity have

Table 9: P-values of GRC with Bootstrap.

Series Nationality Absolute Loss Quadratic Loss

p-value p-value

IPI/NO

Spain 1.000 1.000

France 0.998 1.000

USA 0.574 0.486

CPI/UNEM

Spain 0.998 1.000

France 0.974 0.966

USA 0.543 0.604

CPI/UNEM/CPIE

USA 1.000 0.999

Table 10: P-values of GSPA2 (with Bootstrap).

Series Nationality Absolute Loss Quadratic Loss

p-value p-value

IPI/NO

Spain 0.568 0.600

France 0.284 0.272

USA 0.046 0.007

CPI/UNEM

Spain 0.666 0.582

France 0.617 0.712

USA 0.021 0.009

CPI/UNEM/CPIE

USA 0.888 0.824
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different manufacturing times, the effect is spread along the different lags.

5 Conclusions

We have generalized the Reality Check and the Superior Predictive Ability

tests to the case when two classes of models of arbitrary size are to be

compared. Simulation suggests that the loss of power due to the Least

Favorable Configuration makes the GRC test less useful than the GSPA.

These tests can be applied to test for causality without identifying a

specific model. We test the null that no model using a certain input beats

the best model among the class that do not use that input. With this

approach, we see that the industrial new orders and the unemployment

rate have predictive power for the industrial production and the inflation

respectively, using data from the USA. On the other hand, we fail to detect

predictive power for the series of France and Spain.

Table 11: P-values of GSPA3 (with Bootstrap).

Series Nationality Absolute Loss Quadratic Loss

p-value p-value

IPI/NO

Spain 0.554 0.654

France 0.392 0.236

USA 0.050 0.006

CPI/UNEM

Spain 0.728 0.670

France 0.668 0.702

USA 0.014 0.012

CPI/UNEM/CPIE

USA 0.861 0.862
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A Appendix: proofs

Proof of proposition 1. We will write, for ease of notation, the power func-

tion as π(θ) = P [zθ ≥ a]. Let us see three preliminary results. First, if the

inequalities vi ≥ ui and vj ≤ uj hold for all i ∈ I and j ∈ J , then

π(v) ≥ π(u). (A.1)

On the other hand, for any constant c ∈ R, we get

π(u1 + c, . . . , un+m + c) = π(u1, . . . , un+m). (A.2)
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The third preliminary result is the following. Let ξℓ = θℓ + ηℓ. For any

k ∈ I, since mini ξi − minj ξj ≤ ξk − minj ξj ,

π(u) ≤ P
[

ξk − min
j
ξj ≥ a

]

. (A.3)

Now from (A.1) and (A.2), we obtain, π(u) = π(u1 − u(1), . . . , un+m −
u(1)) ≤ π(u1 − u(1), . . . , un − u(1), 0, . . . , 0), where u(1) = mini∈I ui. Now, if

this minimum is attained at k, then using (A.3) we get π(u1 −u(1), . . . , un −
u(1), 0, . . . , 0) ≤ P [xk ≥ a] ≤ maxi=1,...,n P [xi ≥ a]. Thus, we have proved

that the right hand side of (2) is an upper bound to {P [zθ ≥ a]}θ∈Θ0
.

On the other hand, if we define for any u ∈ R, θu = (u1, . . . , un, 0, . . . , 0),

where uk = 0 and ∀i 6= k, ui = u then θu ∈ Θ0 and π(θu) = P [min{ηk} ∩
{ηi +u : i 6= k}−minj ηj ≥ a], where Eηℓ = 0. If χu is the indicator function

of min{ηk} ∩ {ηi + u : i 6= k} −minj ηj ≥ a, we can prove that χu converges

pointwise to the indicator function of ηk −minj ηj ≥ a when u→ ∞. Then,

by the Dominated Convergence Theorem,

lim
u→∞

π(θu) = lim
u→∞

∫

χudP = P [xk ≥ a]. (A.4)

Consequently, maxi P [xi ≤ a] is in fact a supremum.

Proof of proposition 3. Let us prove (i). We will see that almost surely, for

large T ,

TGSPA = max
{

min
i∈I∗

max
j∈J∗

∆ij , 0
}

(A.5)

where I∗ = {i : 1 ≤ i ≤ n, λi = λ0}, J∗ = {j : n+ 1 ≤ j ≤ n+m,λj = λ0}
and λ0 = min{λℓ : ℓ = 1, . . . , n+m}.

For this, we will prove that the minimax cannot be attained at any pair

(i, j) /∈ I∗ × J∗. Let us assume first that i /∈ I∗. Then, for any j,

∆ij = T 1/2λi − λj

ωij
+O(

√

2 log log T ) (A.6)
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consequently, maxj ∆ij ≥ T 1/2δ + O(
√

2 log log T ), with δ > 0, whereas for

i0 ∈ I∗, maxj ∆i0j = O(
√

2 log log T ). Thus, almost surely for large T , the

minimum is never attained at i.

Now, let j /∈ J∗. From (A.6), we get ∆ij0 − ∆ij = T 1/2(λj − λj0) +

O(
√

2 log log T )
a.s→ +∞, so for large T , the maximum cannot be attained at

j. Hence we get (i), since (A.5) implies TGSPA = ϕ(T 1/2L̄0, ω̂), with L̄0
ℓ = L̄ℓ

for ℓ ∈ I∗ ∩ J∗ and L̄0
ℓ = 0 for ℓ /∈ I∗ ∩ J∗.

Now, if mini λi < minj λj, then mini maxj ∆ij ≤ maxj ∆i0j , with i0 ∈ I∗,

but ∆i0j
a.s→ −∞, so for large T , mini maxj ∆ij < 0 and then TGSPA = 0, so

(ii) is also proved.

The case of the alternative hypothesis can be proved easily by the same

arguments as (ii).

Proof of proposition 4. First of all, we will prove that with probability one,

for large T , the function g(T ) in (6) serves to distinguish the models in I∗

–the good ones– from the others.

Let us assume that i /∈ I∗. By the Law of the Iterated logarithm, we

have that for any ǫ > 0, there is some T0 such that w.p.1, if T ≥ T0, then

L̄i ≥ λi −
√

2 log log T
T (1 + ǫ). On the other hand, for any i∗ ∈ I∗, there

is Ti∗ such that w.p.1, if T ≥ Ti∗ , L̄i∗ ≤ λi∗ +
√

2 log log T
T (1 + ǫ). Then,

if T1 = max{T0,maxi∗∈I∗ Ti∗}, for T ≥ T1, L̄i > L̄i∗ for any i∗ ∈ I∗.

Consequently, w.p.1, for large T , î∗ ∈ I∗.

Now, if i /∈ I∗, then w.p.1, for large T , ∆i,i∗ ≥ T 1/2(λi−λi∗)−O(
√

2 log log T )

for all i∗ ∈ I∗ and then, ∆i,̂i∗ ≥ g(T ). On the other hand, for i, i∗ ∈ I∗,

w.p.1, for large T , ∆i,̂i∗ < g(T ). Consequently, w.p.1, for large T , for i ∈ I∗,

the bootstrapped loss functions are re-centered around 0 whereas for i /∈ I∗

are re-centered around the distance from the best model to the ith one.
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As a consequence of above, we get that the boostrapped differences sat-

isfy

T 1/2d̄∗,c,kij =































T 1/2(L̄∗,k
i − L̄∗,k

j ) + T 1/2(L̄ĵ∗ − L̄î∗) i /∈ I∗, j /∈ J∗

T 1/2(L̄∗,k
i − L̄∗,k

j ) + T 1/2(L̄ĵ∗ − L̄i) i ∈ I∗, j /∈ J∗

T 1/2(L̄∗,k
i − L̄∗,k

j ) + T 1/2(L̄j − L̄î∗) i /∈ I∗, j ∈ J∗

T 1/2(L̄∗,k
i − L̄∗,k

j ) + T 1/2(L̄j − L̄i) i ∈ I∗, j ∈ J∗.

(A.7)

We can see that the second case diverges to −∞ and the third to +∞.

This implies that asymptotically, the minimax is attained, as in proposition

3, at points in I∗ × J∗, but then, T 1/2(L̄∗,k
i − L̄∗,k

j ) + T 1/2(L̄j − L̄i) =

T 1/2(d̄∗,kij −d̄ij) and we know that with probability one, this converges jointly

in distribution to the asymptotic distribution of T 1/2d̄.
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