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Application of the optimization approach to

selective editing in the Spanish Industrial

Turnover Index and Industrial New Orders

Received Index survey

R. López-Ureña, M. Mancebo, S. Rama, and D. Salgado

Abstract

We describe in detail the redesign process of the editing and imputa-
tion strategy of the Spanish Industrial Turnover Index and Industrial New
Orders Received Index survey. This process incorporates the optimization
approach to selective editing in its combinatorial version, which we show
to contain the score function approach for output editing as a particular
case. We also include considerations about editing during data collection
and a standardized expression for edits in short-term business statistics.
The process embraces from the design of the new edits to their implemen-
tation in production. As a global result, the rate of selected units for interac-
tive editing (the most resource-consuming directly impinging on both cost-
efectiveness and response burden) has been reduced 20 percentage points
on average without diminishing data quality.

1 Introduction

The editing phase of the statistical production process has been well docu-
mented as one of the more resource-consuming, time and money included
(FCSM, 1990; Granquist, 1997). More recently, this fact can be thought of as
part of the ineludible need of streamlining and optimising the whole produc-
tion process at Statistical Offices (EFTA/Eurostat/UNECE, 2007; MSIS, 2012,
2013).

In this realm, several efforts to improve the editing phase at Statistics Spain
have been undertaken in last years. These efforts have entailed some theo-
retical proposals (Arbués et al., 2012; Salgado et al., 2012), which have recently
crystalised in an optimization approach to selective editing (Arbués et al., 2012;
Arbués et al., 2013). The ultimate objective in this approach is to optimise the
selection of influential units, both at the input and output editing phases.

1



During the years 2011 and 2012 a thorough study was conducted using
both (nearly) raw and edited data from the Spanish Industrial Turnover Index
(ITI) and Industrial New Orders Received Index (INORI) survey (INE, 2011).
A redesign of its editing strategy was proposed and tested in a simulation ex-
ercise using these sets of data. The results were encouraging, since a reduc-
tion of recontact and follow-up rates were obtained whereas no reduction of
data quality was detected. In October, 2012 the decision of implementing the
new strategy was taken and in February, 2013 the first collection of data using
this approach was put into practice. Since then, actual (not simulated) recon-
tact and follow-up rates in production with tantamount data quality have been
confirming the improvement in this production phase.

This paper depicts this study and its implementation. In section 2, we
briefly review the principles of the optimization approach to selective editing
for its later adaptation to the editing strategy of the ITI and INORI survey. We
show in subsection 3.1 how the strategy was redesigned taking into account
the characteristics of the survey, in subsection 3.2 how specific edits for the
input editing phase were constructed, in subsection 3.3 how the optimization
approach was adapted to this survey, in subsection 3.4 how the simulations
were performed and in subsection 3.5 how the new strategy was implemented
in production. In section 4 we collect the main conclusions of this pilot ex-
perience, which has become the basis at Statistics Spain for a more ambitious
programme of redesign of editing strategies of short-term business statistics.
As we point out later on, this experience suggests that there still exists ample
room for further theoretical work.

2 The optimization approach, briefly revisited

The optimization approach to selective editing begins by explicitly setting out
two generic principles for the data editing production phase (Arbués et al.,
2013) already present in the literature since some time ago (Latouche and Berth-
elot, 1992):

i) editing must minimize the amount of resources deployed to recontacts,
follow-ups and interactive tasks, in general;

ii) data quality must be ensured.

These principles will be the basis for the formulation of a generic optimiza-
tion problem whose solution will be the optimal selection of units to be edited
interactively.

By and large, we need two ingredients to pose the problem in full detail. On
the one hand, we need an important element throughout all the statistical pro-
duction process: the available information to carry out a task. In particular, we
distinguish three dimensions in this concept of available information, namely,
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longitudinal, cross-sectional and multivariate. By longitudinal we mean the
value of variables for each unit in previous time periods. By cross-sectional
we refer to the information stemming from the sample at the current period.
Finally, by multivariate we signify the information arising from the multidi-
mensional character of the survey. We introduce the concept of available in-
formation into the problem by using random variables Z upon which we will
condition the different variables, i.e. we will use conditional expectations on Z

(see Arbués et al. (2013) for details).

On the other hand, we need to specify the classical elements of an optimiza-
tion problem (see e.g. Nemhauser and Wolsey (1999)), namely, the variables,
the objective function and the restrictions.

The variables will constitute the so-called selection strategy vectorR ∈ {0, 1}×n,
where Rk = 0 stands for unit k being selected for interactive editing and
Rk = 1, otherwise (see Arbués et al. (2013) for details about this counterin-
tuitive assignment). Occassionally, a subset of the indices 1 ≤ k ≤ n will be
fixed, which we shall denote compactly by R ∈ Ω ⊂ {0, 1}×n. The selection
strategy vector is random, that is, its probability distribution will be the object
of the optimization problem. From a more general standpoint the variables can
be thought of as the conditioned random variables Rk

∣∣Z, k ∈ s.

The objective function is esentially the number of units to edit interactively,
so as a first indication we consider

∑
k∈s Rk (note that this amounts to the

number of units not to be edited interactively). But, since the selection strategy
vector is a random variable, this objective function must be elaborated a bit
further. The optimal expected number of units not to be selected will be given
by Em

[∑
k∈s Rk

∣∣Z
]
, where m stands for any statistical model not embracing

the sampling design. This is the function to maximize.

The restrictions will impose an upper bound on the increment of the mean
squared error due to the possible presence of measurement errors in the esti-
mators. Results by Arbués et al. (2013) show that we can keep the total mean

squared error of an arbitrary linear estimator Ŷ (q) under a chosen bound ηq ≥ 0
if we impose

Em

[
∑

k∈s

∑

l∈s

RkRl∆
(q)
kl

∣∣Z
]
≤ ηq,

where q ∈ {1, . . . , Q}. The loss matrices ∆(q) = [∆
(q)
kl ]1≤k,l≤n are conditional

moments of the measurement errors ǫ
(q)
k = y

(q,obs)
k − y

(q,0)
k given by1 ∆

(q)
kl =

Em

[∣∣∣ǫ(q)k

∣∣∣
∣∣Zk

]
if k = l and ∆

(q)
kl = 0 if k 6= l. These moments are computed us-

ing a so-called observation-prediction model (Arbués et al., 2013) for the observed

1We focus on the absolute value loss function. For the squared loss choice see Arbués et al.
(2013).
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(measured) variables y(q,obs) and true variables y(q,0), succinctly denoted by the
subscript m.

The generic optimization problem then reads

[P0] max Em

[
1TR|Z

]
(1)

s.t. Em

[
RT∆(q)R|Z

]
≤ ηq, q = 1, 2, ..., Q,

R ∈ Ω.

Now depending on the available information Z used we arrive at differ-
ent realizations of problem P0. In Arbués et al. (2013) we contemplated two
extreme cases: either Z reduces to the longitudinal and multivariate dimen-
sions of the available information or it also includes its whole cross-sectional
dimension. Notice that this is equivalent to consider input editing or output
editing, respectively. In the first case, the problem P0 drives us to a stochas-
tic optimization problem, whereas in the second case, it yields a combinatorial
optimization problem.

The stochastic version requires to solve an intermediate optimization prob-
lem (Arbués et al., 2012) and a standard Matlab optimization routine was used
when developing these ideas (Arbués and Revilla, 2014; Arbués et al., 2011).
Currently, a specific algorithm for this problem is under development so that
it can be more easily inserted in the production chain. Results will be reported
elsewhere (Salvador and Salgado, 2014). In the subsequent, no further use of
the stochastic version is made.

The combinatorial version reads

[Pco(η,Ω)] max 1T r (2)

s.t. rTM(q)r ≤ ηq, q = 1, 2, ..., Q,

r ∈ Ω,

where M(q) = Em

[
∆(q)

∣∣Zcross
]

and the original random selection strategy vec-
tor R reduces to the deterministic vector r. As before, rk = 0 entails that unit
k is selected for interactive editing and rk = 1, otherwise. Now the selection is
obtained with probability 1.

The solution to problem Pco gives the optimal selection of units to be edited
interactively. We have proposed a greedy search algorithm (Salgado et al.,
2012) whose main characteristics can be read in the appendix A. It is important
to keep in mind that this sort of algorithms is heuristic, yielding in this case
a suboptimal solution. This suboptimality is equivalent in practice to a little
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amount of overediting.

From the field work standpoint, it is more adequate to have a prioritization
of units instead of a selection (see Arbués et al. (2013) for a discussion). To
achieve this we have proposed a prioritization algorithm based on the decre-
mental construction of a sequence of upper bounds η(i) so that in each iteration
i a new unit is selected for interactive editing, the previously selected ones be-
ing fixed.

These two ingredients, the greedy search algorithm and the prioritization
algorithm, allow us to prove that we can recover the traditional approach based
on score functions (see de Waal et al. (2011) and multiple references therein).

The diagonal moments M
(q)
kk play the role of the local score functions whereas

the infeasibility function h used to perform the local search plays a role analo-
gous to that of the global score function. The proof is included in the appendix
B. Thus, the combinatorial proposal offers a more solid basis to the traditional
heuristic approach, justifying the choice of a global score function as a method
of performing the suboptimal selection dealing with the estimators at stake
(one per restriction) in different ways. Furthermore, since the optimization ap-
proach contains the construction of statistical models (observation-prediction
models) in a natural way, a priori it extends the traditional approach by allow-
ing us to consider qualitative variables. This line of work is in progress with
the use of logistic regression models in the Spanish National Health Survey
and related results will be also reported elsewhere.

Nonetheless, for the ITI and INORI survey we will concentrate upon quan-
titative variables. For the output editing phase we will use the combinatorial
approach. Thus we will construct the diagonal loss matrices M(q) and choose
a particular infeasibility function h to prioritize the units. This procedure will
be applied to each (quasi) minimal publication cell. Taking into account field
work constraints, we will assign a maximal number of units to be edited for
the whole sample. The number of selected units in each cell will be allocated
through an algorithm specifically designed for this purpose.

3 The design of the new strategy

3.1 The Spanish ITI and INORI survey

The current Spanish ITI and INORI (INE, 2011) are computed under a joint
survey whose aim is to offer an anticipated measurement of the evolution of
the industrial production in the country. It complies with different European
regulations (EC Council Reg, 1998, 2005). Although the INORI has been re-
cently suppressed from these regulations, Statistics Spain currently continues
conducting both surveys.

5



The ITI has the objective of measuring the evolution of the demand aimed
at the industrial branches. The INORI, in turn, has the objective of measuring
the evolution of the future demand aimed at these industrial branches. Both
the ITI and the INORI are value indicators, in other words, they measure the
joint evolution of quantity, quality and price.

From a methodological standpoint, the main pertinent characteristics of the
survey are as follows:

(a) It is a fixed panel of aprox. 11000 industrial establishments selected by
cut-off (originally coincident with the Spanish Industrial Production In-
dex sample).

(b) There are several data collection modes: CAWI, mail, email, fax and tele-
phone. CAWI-mode received questionnaires are collected with a global
parameterized IT tool called IRIA (Bercebal and Maldonado, 2014). This
tool has been designed at Statistics Spain to collect data for all surveys,
either business or household surveys. It stands up as the first major step
towards the streamlining and standardization of the production process
at Statistics Spain. The rest of questionnaires are collected, recorded and
coded at several provincial delegations.

(c) Estimates correspond to Laspeyres indices disseminated for 37 publica-
tion cells identified as certain divisions and subdivisions2 of the NACE3

Rev. 2, without geographical breakdown for the total turnover and total
new orders received. This dissemination plan has been recently broken
down into geographical regions4. This change was not present during
the redesign process and it will not be taken into account.

The general approach to design the new E&I strategy is that depicted in
the EDIMBUS manual (EDIMBUS, 2007) (see also de Waal et al. (2011) for a
wider overview), which offers clear guidelines aiming to a harmonization of
this phase of the statistical production process within the European Statistical
System. This general approach, which embraces post-capture data editing, is
complemented with an extra initial stage to edit questionnaires during collec-
tion when possible (mainly with computer-assisted collection modes).

The new strategy aims at selecting units for interactive editing more effi-
ciently. It preserves much of its past structure comprising the following stages:

1. Editing during collection. This stage was already present. However, now
completely new edits are proposed for the CA modes to flag suspicious

2A functional domain-specific splitting of NACE divisions into smaller units, but larger than
groups.

3Actually of the CNAE2009, the Spanish almost equivalent classification.
4The Spanish CCAA, which are equivalent to NUTS2 geographical regions in the European

Statistical System.
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questionnaires during the CAWI, thus prompting the respondent for a
first revision.

2. Longitudinal phase. This stage was also present in the old strategy and
conducted at the provincial delegations. Now, a similar set of edits is
posed both for CAWI collected units whose data are already in the system
and for data collected with different modes to select those questionnaires
entering into interactive editing, which is still conducted at the provincial
delegations.

3. Cross-sectional phase. This stage is completely new. All questionnaires
already subjected to the preceding phases are sent to the central office
where a final selection of units is performed for a further revision at the
provincial delegations.

4. Macro editing and validation phase. This stage comprises the final macro
editing and validation works carried out by the subject matter experts of
the unit responsible for the survey. Almost nothing new is added in this
stage.

The core of the new strategy lies on the design of the new edits used to flag
units for interactive editing. Clearly the objective is to gain efficiency in the
editing phase by minimizing the interactive editing work but maintaining the
same data quality. This course of action also prevents us from a complete re-
design of the strategy which may impinge on more intricate aspects such as a
reassignment of positions or tasks within the organization, training personnel
on new processes, etc. The goal is to edit interactively more efficiently to opti-
mize resources while keeping the same organizational structure.

In this sense, more efficient and less edits have been proposed and tested.
First we present the edits for the first and second stages. Then we show differ-
ent adaptations of the combinatorial optimization approach for the third stage.
All these stages are used together in the simulation exercise, from which de-
cisions are taken for the implementation of the strategy in production. In our
view, all these elements can hold interest in their own for the editing strategy
redesign or fine-tuning considerations of other surveys.

3.2 The interval-distance edits

The sets of edits both for the first and second stages are indeed similar, except
for their parametrization. Thus we will treat them as a unique set.

It comprises two kind of edits. First, we have the traditional format, range
and balance edits, all of them hard edits arising from the nature and relation
itself of the variables. Only those strictly necessary are posed for having logical
coherence in the values. Second, statistical “correction” is pursued. To this end,
let us focus on a variable y of interest for their later dissemination. The idea
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is to critically construct a validation interval Ik and to determine a threshold
value tk for each unit k ∈ s in the sample. Then if the distance dk = d(yk, Ik) be-
tween the value yk in the questionnaire and the interval Ik measured through
the distance function d is greater than the threshold value dk > tk, the ques-
tionnaire is flagged. We call it an interval-distance edit.

There is not much new so forth, thus some comments are in due order. Ad-
mittedly this is indeed a local score function (see Latouche and Berthelot (1992)
and multiple references in de Waal et al. (2011)), but as we have been progress-
ing in the implementation of this idea we have observed its convenience both
from theoretical and practical standpoints. Firstly, we bring it closer to the
well-known if-then form of edits by de Waal (2005); de Waal et al. (2011). An
edit e will be specified by (i) a condition C(y,x) for the objective y and possibly
auxiliary x variables, (ii) a function f(y,x), (iii) an interval Ik = [lk, uk], (iv) a
threshold tk, and (v) a distance function d. If the unit k satisfies the condition
C(yk,xk), the edit is applied so that if d (f(yk,xk), Ik) > tk, the unit is flagged.

We have observed several advantages of this form of the interval-distance
edit. As we will show below, this form gives room for time series modelling
techniques in a straightforward way. The use of these techniques is very ap-
propriate to build edits as efficient as possible. Next, we can give a further
simplified expression by synthesizing the condition d (f(yk,xk), Ik) > tk into
a larger interval I ′k so that the new condition reads f(yk,xk) /∈ I ′k. Therefore,
each unit k is assigned an interval I ′k and the system only has to check (i) if
the condition C(yk,xk) is satisfied and (ii) in the positive case, if the value
f(yk,xk) lies inside the interval I ′k or not. Finally, the versatility of the if-then
form allows us to express other edits. For example, consider a balance edit
y1 + y2 = T to be fulfilled by all units. Then the condition C(y,x) is identically
true by construction, the function f(y,x) is f(y,x) = y1 + y2, and the interval
I ′ is degenerate I ′k = [T, T ]. The strategy is thus expressed as a set of standard-
ized interval-distance edits.

To build the edits, we have exploited the fact that this survey is a fixed
panel, so that each respondent has a multivariate time series since the very time
period it entered into the panel. We have focused on turnover and new orders
received, whose indices are disseminated monthly5. Then we automatically
adjust an ARIMA model for each unit k and each variable. This is performed
using the program TRAMO-SEATS (Caporello and Maravall, 2004). For the
next coming month we predict under these models the corresponding values
ŷk for each unit. The actual working conditions force us to predict two months
ahead in time, since preceding month values are not completely edited before
starting the data collection process for the following month. These values will
be the centre ck = ŷk of each interval Ik = [ck−rk, ck+rk] for the total turnover
and total new orders received.

5However see section 4.
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The radius rk is computed striving for efficiency. We have chosen rk =
η × σ̂k, where η is a parameter related to the efficiency of the intervals (see im-
mediately below) and σ̂k is the estimated standard deviation under the same
ARIMA model. To give concrete values to η we have proceeded as follows.

We have defined the indicator H̃R as the ratio between the number of units
which are correctly flagged regarding this variable (the value was changed)
and the total number of flagged units. Notice that it is an approximation to
the hit rate (EDIMBUS, 2007) (hence the notation). This pseudo-HR is com-
puted using the last completely edited month whose both raw and edited val-
ues are available, in our case, t − 2. In practice this is performed using the set
of (nearly) raw values collected and stored by IRIA and the set of completely
edited values finally validated for t − 2. For this double data set, ŷ and σ̂ are
computed disregarding the completely edited version of period t− 2. Then for
different values of η we shall have different lengths of the intervals and thus

different values of H̃Rt−2. That is, we can write H̃Rt−2 = H̃Rt−2(η). Let us

denote η∗t = argmax
η
H̃Rt−2(η), where the maximum is computed numerically

for different values of η ∈ [0, 5]. Let ηt denote the value η for the radius of the
intervals at time period t. We have set ηt = (1−λ)·ηt−2+λ·η∗t , where λ ∈ [0, 1].
Notice that under this choice the radii become shorter if the pseudo-hit rate de-
creases and vice versa, i.e. they are adjusted according to the efficiency of these
edits.

For those units whose time series do not allow TRAMO-SEATS to adjust
an ARIMA model automatically (for being too short or holding too many 0’s
or missing values, . . . ), we have proceeded as follows. We compute the ra-

tios r
(t)
k =

y
(t)
k

yk(t−2) for the last available time period t. In our case, if the

reference time period is t, then we compute r
(t−2)
k . Then we calculate the

quantiles qli = ql

({
r
(t−2)
k

}
k∈si

)
and qui = qu

({
r
(t−2)
k

}
k∈si

)
of degrees

pl < pu ∈ [0, 1] over the cells si. The interval for time period t is set as

Ik =
[
y
(t−2)
k × qli, y

(t−2)
k × qui

]
if k ∈ si. The degrees pl and pu are chosen

so as to obtain ample intervals (e.g. pl ≈ 0.05 and pu ≈ 0.95). In practice, in-
deed we have conservatively set as final validation intervals IARIMA

k

⋂
IRATIO
k .

These intervals so computed together with the degenerate distance func-
tion d1(y, I) = 0 if y ∈ I and ∞ if y /∈ I , are used as interval-distance edits in
the CAWI mode. Notice that it is unnecessary to determine the thresholds with
this distance function.

However we must compute the thresholds for the longitudinal stage, where
we have chosen the function6

6For completeness, d2 stands for the usual geometrical distance.
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d3(y, I) =





y−u
u−l

if y ≥ u,
l−y
u−l

if y ≤ l,

0 otherwise,

.

The function d3 takes implicitly into account the historical variability of the
values in the time series. To this end, first we partition the sample into domains
s =

⋃
i∈I si. Then for the last available time period, in our case t− 2, we com-

pute the distance d3 between the values y
(ed,t−2)
k and their corresponding in-

tervals I
(t−2)
k : d

(t−2)
3k = d3(y

(ed,t−2)
k , I

(t−2)
k ). We have set tk = q

({
d
(t−2)
3k

}
k∈si

)

for all k ∈ si, where q denotes the quantile of a chosen order p ∈ [0, 1]. The use
of quantiles allows us to have a more direct control on the interval-distance
edits and thus on the potential proportion of units to be flagged. The domains
must be chosen small enough to have thresholds as individuated as possible
but large enough as to make the quantile computation sensible. In our case, no
deeper analysis has been carried out in this regard and NACE (sub)divisions
have been chosen as domains, that is, the minimal dissemination cells.

For the ITI and INORI survey, the interval computation is undertaken for
each unit, each month, each variable (turnover and new orders received) and
maximizing the parameter η within each NACE division. The threshold deter-
mination is carried out monthly with p = 0.95 and for each NACE (sub)division.
The intervals together with distance function d1 are used as interval-distance
edits for all units collected through CAWI. These are the interval-distance edits
in the editing during collection stage. For the longitudinal stage, the same in-
tervals with distance function d3 and thresholds tk conform the corresponding
interval-distance edits. A unit is flagged if any of the edits is activated. This
tight choice is made in the hope of having built notably efficient edits.

Finally, for the first and second stages of the strategy these interval-distance
edits have been complemented with an elementary control for very specific in-

liers: those values with y
(obs,t)
k = y

(obs,t−a)
k , a = 1, 12, will be flagged. Addi-

tionally, those respondents whose values have changed between the raw and
edited versions in all the last three time periods are also selected for interactive
editing.

3.3 The cross-sectional selection

The cross-sectional phase comprises the selection of units after the completion
of the first two stages, i.e. of the editing during collection and longitudinal
phases. This new phase incorporates the innovative proposal of the combina-
torial optimization approach to selective editing. Since the very beginning of
the work reported herein this analysis has been incorporating advances pro-
posed in the optimization approach. These advances have been added in dif-
ferent moments of the analysis and there is still more to come with the current
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investigation of a specific optimization algorithm for the stochastic optimiza-
tion approach. Here we include those main findings finally taking part in the
implementation in production.

In the first proposal containing the stochastic version (Arbués et al., 2012), a

quadratic loss function was used driving us to nondiagonal loss matrices ∆(q).
In the combinatorial version, as a first option this loss function was also con-
sidered, but it entailed some algorithmic complexities regarding the resolution
of the optimization problem. We changed to the absolute-value loss function,

which produces diagonal loss matrices ∆(q), thus simplifying and speeding up
the resolution of the problem.

This choice of loss function also allowed us to find an analytical expression
for the diagonal entries of the loss matrices. Beforehand, we need assumptions
for the underlying so-called observation-prediction model (see Arbués et al.
(2013) for details). This is a statistical model m for both the observed (reported)
and true values of each variable. Since we are dealing with continuous values
(turnover and new orders received), we make use of the continuous variable

model proposed by Arbués et al. (2013) by which y
(q,obs)
k = y

(q,0)
k + ǫ

(q,obs)
k and

y
(q,0)
k = ŷ

(q)
k +ǫ

(q,pred)
k , for q = 1, 2, where ǫ(q,·) stands for observation or predic-

tion errors and ŷ
(q)
k denotes prediction values under an auxiliary independent

model m∗. This is completed with the specifications about the errors ǫ
(q,obs)
k

and ǫ
(q,pred)
k :

1. ǫ
(q,obs)
k = δ

(q,obs)
k e

(q)
k .

2. e
(q)
k ≃ Be(p

(q)
k ), where p

(q)
k ∈ (0, 1).

3. (ǫ
(q,pred)
k , δ

(q,obs)
k ) ≃ N

(
0,

(
ν
(q)2
k 0

0 σ
(q)2
k

))
.

4. ǫpredk , δ
(q,obs)
k and e

(q)
k are jointly independent of Zcross

k .

5. e
(q)
k is independent of ǫ

(q,pred)
k and δ

(q,obs)
k .

These are equivalent to stating that unit k has a probability 1−p
(q)
k of report-

ing a value without measurement error (y
(q,obs)
k = y

(q,0)
k ) and, when reporting

an erroneous value, the measurement error distributes as a normal random
variable with zero mean and variance σ

(q)2
k . On the other hand, the prediction

error distributes as a normal random variable with zero mean and variance
ν
(q)2
k . Both errors distribute jointly as a bivariate normal random variable with

(assumed) null correlation. Reporting an erroneous value is independent of
both types of errors.
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These assumptions allow us to express the diagonal entries of the loss ma-
trices as

∆
(q)
kk =

√
2

π
·ωk·ν

(q)2
k ·1F1


−1

2
;
1

2
;−

1

2

(
y
(q,obs)
k − ŷ

(q)
k

ν
(q)
k

)2

·ζ(q)k

(
y
(q,obs)
k − ŷ

(q)
k

ν
(q)
k

)
,

(3)

where ζ
(q)
k (x) = 1

1+
1−p

(q)
k

p
(q)
k

(

ν
(q)2
k

ν
(q)2
k

+σ
(q)2
k

)

−1/2

exp

(

− 1
2

σ
(q)2
k

σ
(q)2
k

+ν
(q)2
k

·x2

) . Notice that us-

ing the asymptotic properties of the confluent hypergeometric function 1F1

(Abramowitz and Stegun, 1972), when

∣∣∣∣
y
(q,obs)
k −y

(q,pred)
k

ν
(q)
k

∣∣∣∣ ≫ 1, we have ∆
(q)
kk ≈

ωk

∣∣∣y(q,obs)k − ŷ
(q)
k

∣∣∣. Thus, under very precise predictions, we recover the usual

recipe (de Waal et al., 2011) for the local score functions as a limit case. In other
words, the usual recipe is valid when the anticipated value is a very good pre-
diction of the true value.

The parameters p
(q)
k , σ

(q)2
k , ν

(q)2
k are estimated with maximum-likelihood es-

timators over the double sets of raw and edited values using some simplifying

assumptions (Arbués et al., 2013). These estimated values are denoted by p̂
(q)
k ,

σ̂
(q)2
k , ν̂

(q)2
k , respectively.

The auxiliary model m∗ used to compute the predicted values is the best
time series model ξ∗ among {ξ1, ξ2, ξ3}where (s stands for the seasonal period,
s = 12 in our monthly series):

ξ1 : (1−B)yt = at,

ξ2 : (1−Bs)yt = at,

ξ3 : (1 −Bs)(1 −B)yt = at.

The best model ξ∗ is selected as that minimizing the mean squared error of
the white noise component at under each model ξj . Given the actual working
conditions, the dissemination calendar only allows us to predict two time pe-

riods ahead at best. These predicted values are equally denoted by ŷ
(q)
k .

The moments are thus given by ∆
(q)
kk = ∆

(q)
kk

(
y
(q,obs)
k , ŷ

(q)
k ; p̂

(q)
k , σ̂

(q)2
k , ν̂

(q)2
k

)
.

Once the loss matrices are computed, we must prioritize the units within
each cell (NACE (sub)division). As explained in section 2, to choose a partic-
ular prioritization algorithm we must choose an infactibility function h (see ap-

pendix B). Equivalently we can choose a global score function Sk = S
(
∆

(1)
kk ,∆

(2)
kk

)
.

Apart from the traditional Minkowskian functions S = S(α) (Hedlin, 2008),
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which we have tested for α = 1 and α =∞, we have also tested

S̃
(α)
k =

(
S(α) ◦

(
F ∗

diag(∆(1)), F
∗
diag(∆(2))

))(
∆

(1)
kk ,∆

(2)
kk

)
,

where F ∗z stands for the empirical distribution function of the set of values z.
This choice has resulted to be more efficient in selecting influential units (see
below).

Finally, the chosen number ncross of units to be selected in the cross-sectional
stage must be allocated among the different cells. We have applied a simple al-
gorithm in steps. Let ni denote the number of units to be allocated in cell i:

1. Set n
(0)
i = ni0 be the initial allocation chosen for some subject matter

questions, where nim ≤ ni0 ≤ niM , nim and niM being lower and upper
bounds (respectively) for the allocation of cell i.

2. Set n
(1)
i = min

(
niM , ⌊Λi ·

(
ncross −

∑
i n

(0)
i

)
⌋
)

, where Λi =
∑

f λfEif is

a proportionality constant embracing f = 1, . . . , F synthetic error mea-
sures and/or relevance factors Eif ≥ 0 for cell i with reliability weights
λf ≥ 0. Both the error measures and the reliability weights are normal-

ized, i.e.
∑F

f=1 λf = 1 and
∑

i Eif = 1, for all f .

The quantities Eif for each cell are chosen to be:

(a) The maximum moment of the measurement errors of both variables
ITI and INORI in each cell i.

(b) The weight of each cell i in the national index.

(c) The fraction of questionnaires in each cell iwith reported total turnover
equal to 0.

(d) The proportion of questionnaires in cell i having reported a null
value for the total turnover in the preceding month but whose fi-
nal value was imputed to a non-null value.

The values of the reliability weights λf were chosen empirically using
the three first months of the series as a training set. We have set λ =
(0.80, 0.02, 0.09, 0.09).

3. If ncross−
∑

i

(
n
(0)
i + n

(1)
i

)
> 0, then allocate one unit in turn in descend-

ing order of the values Λi provided the allocation does not exceed the
corresponding maximum value niM until no unit is left. This produces

the allocation vector with components n
(2)
i .

The final allocation is then ni = n
(0)
i + n

(1)
i + n

(2)
i . In each cell i the first

ni units according to the prioritization obtained before are to be edited inter-
actively. The number of units ncross is chosen according to the results of the
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simulation and to the timing imposed by the dissemination calendar (see be-
low).

3.4 Simulations

Simulations are to be understood in a somewhat different way to the usual
sense. Data are not simulated at all by a random generation of their values
according to a prescribed probability distribution. We have used both the raw
and edited versions of the ITI and INORI microdata corresponding to 13 con-
secutive months (from December, 2010 to December, 2011). Instead we simu-
late the implementation of the strategy by applying the E&I strategy to the raw
data thus producing a selection of units to edit interactively, whose values are
then substituted by their corresponding edited version. As any other simula-
tion exercise, assumptions must be made which we comment in detail.

The simulation tries to emulate the actual production conditions, so that
the editing of every month is not undertaken until the editing of the preceding
month is finished. Edited microdata are accessed by the unit responsible for
the survey at two moments t1 and t2. At t1 only around 60% of the sample
has been collected, which then undertakes the last macro editing phase in the
old strategy. The rest is finally collected at t2 so that the corresponding macro
editing is undertaken and the final validation of the whole sample is carried
out.

Firstly we make use for the simulation study only of CAWI-mode collected
data, which represents approximately 70% of the sample. Moreover, during
the time periods used in the simulation IRIA was not operative and the former
data collection system only incorporated soft edits with very loose constraints.
This entails that so collected data were indeed nearly completely raw data.

We reproduce the above proposed E&I strategy by firstly imposing the edits
of the first stage (editing during collection) to the raw data. Then the respon-
dent behaviour during the CAWI is simulated. We make our first assumption:
the selected respondents will react positively with probability 1/2 thus chang-
ing their original values for their edited counterpart in their whole question-
naire. It is admittedly a simplifying assumption and we will make a critical
comment in section 4 judging by the results. The probability value 1/2 was
chosen as a maximum ignorance compromise, since the data collection system
did not provide us with data to produce an estimate. This simulated stage is
carried out in two steps: first for those questionnaires accessed at t1 and then
for those accessed at t2.

We have a new data set composed of both raw and edited values. We apply
the longitudinal phase edits to this data set, producing a new selection of units
to edit interactively. This task must be carried out by data editing personnel

14



in the provincial delegations. We simulate this just by substituting the values
in the data set for their corresponding edited version in the selected question-
naires. Note that this hypothesis is rather realistic since the difference between
raw and edited values comes up indeed as a result of this same task in real
production conditions. Again this stage is simulated in two steps: for ques-
tionnaires accessed both at t1 and t2.

Now we have a new data set with a higher degree of editing. We apply
the cross-sectional phase thus producing a new selection of units. Again the
edited values are substituted in the selected units. Notice that already edited
questionnaires may be selected, thus producing no change in their values. The
editing task would amount to confirming the values in those flagged question-
naires. Two cross-sectional selections are carried out: first among the subsam-
ple accessed at t1 and later on at t2 among the whole sample.

We have another data set, which will be the final data set. The macro edit-
ing and validation phase is reduced in the simulation to confirm the present
values. Since this avoided phase comprises a non-negligible amount of subject
matter judging, this decision makes it possible to carry out the monthly simu-
lations automatically.

With these final data sets we compute the ITI and INORI for each publica-
tion cell. In particular, we focus on the minimal cells. Thus we have the set

of indices ITIseli and INORIseli for the i = 1, . . . , I NACE (sub)divisions. We
also compute their corresponding counterparts ITIedi and INORIedi using the
original edited version of the data sets. We examine the absolute relative dif-

ference ∆ITI
i =

∣∣∣ ITIseli −ITIedi
ITIedi

∣∣∣ and ∆INORI
i =

∣∣∣ INORIseli −INORIedi
INORIedi

∣∣∣ for each cell i. As

an illustrative example in figure 1 we show the progressive difference reduc-
tion of the national INORI (vertical axes) of each NACE division (horizontal
axes) for n1 = 0, 50, 100, 150, 200 (from top to bottom) units selected in the
cross-sectional selected at t1 and for n2 = 100, 150, 200 (from left to right) units
selected at t2.

Besides, for each pair n1, n2 we have also computed the yearly rates for both

the ITI and the INORI together with their absolute error ITI∆̄
t
i = ITIR

t,sel
i −

ITIR
t,ed
i and INORI∆̄

t
i = INORIR

t,sel
i − INORIR

t,ed
i , where the yearly rates Rt

i are

defined as ITIR
t,·
i = ITIt,·i − ITIt−12,·

i and INORIR
t,·
i = INORIt,·i − INORIt−12,·

i .
As another illustrative example in figure 2 we include these quantities for
n1 = n2 = 100 on May, 2011.

These are the figures of merit used by the subject matter experts responsi-
ble for the survey to assess the performance of the new strategy in comparison
with the old one. This choice is motivated by the fact that both the indices and
their yearly rates are the figures published in the dissemination plan.
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Figure 1: Absolute relative error of the INORI on May, 2011.

Finally the number of selected units both in the longitudinal and cross-
sectional phases are computed for each month t. These are the questionnaires
to edit interactively, thus incurring in resource consumption for the Institute. It
is computed as a fraction of the sample size and compared to the same quantity
under the old strategy. See figure 3.

Based on these figures and the time restrictions given by the dissemination
calendar on the editing field tasks, the decision was taken to select n1 = 100
and n2 = 100 in the cross-sectional phase. In section 4 we include more detailed
conclusions about the results of the simulations.

3.5 Implementation in production

The implementation in production is a critical step, since the simplifying as-
sumptions present in the simulation are not strictly valid any more and actual
production conditions enter into play. Currently Statistics Spain is undertak-
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Figure 2: Yearly rates and their absolute error for n1 = n2 = 100 on May, 2011.

ing a transition from a stovepipe model to an industrialized production process
(Bercebal and Maldonado, 2014). As of the date of the decision of implemen-
tation of this new strategy, the editing phase of this survey was still conducted
under that traditional stovepipe model. Thus, the implementation was under-
gone in these conditions.

The new control edits were implemented in IRIA for the CAWI collection
mode and in the provincial delegations for the longitudinal phase. The pa-
rameters for these edits were chosen according to the following idea. First
we impose somewhat severe soft edits during the CAWI flagging around 40%
of these questionnaires. This severity was substantiated in the choice of the
distance function d1 (see subsection 3.2). The soft character entails that an
appropriate confirmation message will appear on screen for those suspicious
data. Thus, the response burden rests on the usability of the self-administered
electronic questionnaire, which becomes an important aspect not only in data
collection but also in data editing (Nichols et al., 2005). In this sense we take
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Figure 3: Sampling fraction of selected units under both the old and the new
strategies.

advantage of the versatility of the data collection tool IRIA at Statistics Spain.
Once data are in the system, the edits in the longitudinal phase are applied
with looser parameters, so that typically only highly suspicious questionnaires
will be flagged. In this case, the distance function d3 is used.
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Note that a decision must be taken for those questionnaires not received
through the CAWI mode since they will not be subjected to the previous double
data checking. Furthermore, the simulation exercise can only partially assist in
this decision. The distance function d1 has been chosen, so that foreseeably
some overediting is expected.

A further complication arose since the dissemination plan changed during
the implementation work and a breakdown of both the turnover and new or-
ders received was to be published. This breakdown entails that the number
of variables to be under control increases from 2 (total turnover and total new
orders received) to 10 (the same total variables and their breakdown into 4 mar-
kets: national, euro zone, non-euro zone, rest of the world).

Priority was given to the implementation in production over a new simula-
tion study. Thus the following two simple edits were included in the strategy.
Let yt

k = (yt1k, y
t
2k, y

t
3k, y

t
4k) denote the breakdown of variable y = ITI, INORI in

the four markets for unit k at time period t. Denote the (squared cosine of the)

angle between a and b by α (a,b) = (a·b)2

‖a‖2‖b‖2 . We define the first edit for the

turnover breakdown as: unit k will be flagged if αt
k = α

(
ITItk, ITIt−2

k

)
< tk,

where tk is a threshold value (see below). The second edit is defined as: unit k
will be flagged if ᾱt

k = α
(
ITItk, INORItk

)
< t̄k, where t̄k is a different threshold

(see below). Notice that the first edit controls the coherence between the cur-
rent breakdown of the turnover and that of the preceding available time period.
In turn, the second edit controls the coherence between the breakdown of the
new orders received in relation to that of the turnover for the same time period.

The thresholds are set computing the quantities α and ᾱ for the last avail-
able period and calculating their quantile over the publication cells i so that
tk = qi

(
{αt−2

k }k∈si
)

and t̄k = qi
(
{ᾱt−2

k }k∈si
)
.

The angle function α has been also included in the macro editing phase to
detect erroneous exchange of variables in the components of y. Occasionally
some respondents mistake the component y3 for the component y4 (also y2 for
y3). If we focus on the subvector y34 = (y3, y4), then for those vectors with one
of the components equal to 0 the following edit detect this wrong exchange:
flag unit k if α(yt

34,k,y
t−2
34,k) = 0. This is applied to both sets of variables.

The strategy was finally implemented and entered into production on Jan-
uary, 2013 (month of reference). In figure 4 we represent the actual results
regarding the fraction of selected questionnaires for interactive editing. Data
quality was not diminished. These results triggered the generalization of this
proposal to other short-term business statistics. This generalization takes into
account the conclusions compiled in the next section.
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Figure 4: Fraction of selected units in production. Year 2013.

4 Conclusions

The study depicted in the preceding sections has triggered the redesign of the
E&I strategy of most of the short-term business statistics at Statistics Spain after
extracting some suggestions about what to do and not to do in this production
phase. We include here the most important.

As a first conclusion we underline the remarkable importance of having a
common business architecture for this production phase among the different
surveys in which the new strategy will be used. In particular, the new E&I
strategies must be given a generic form compatible with the top-down view
of the statistical production process provided by standards like the GSBPM
(UNECE, 2013a) and the GSIM (UNECE, 2013b). In our opinion, the concepts
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of statistical production function and standard production step (Renssen and
Camstra, 2011) go indeed beyond this top-down standards and stand as very
adequate tools in this respect since they introduce the reusability of resources
in a very natural way. In the programme of redesign of this production phase
at Statistics Spain all the preceding ideas are being reformulated in terms of
production functions and activities.

In our opinion, only after the generic E&I strategy has been defined in terms
of reusable production functions, we should substantiate these functions with
the different mathematical proposals. In particular, notice that the observation-
prediction model m and the auxiliary prediction model m∗ are indeed very
simple (hence also robust for their exploitation in production), thus leaving
room for more sophisticated proposals. For example, instead of the three time
series models ξ1, ξ2 and ξ3 we can use ARIMA models or even multivariate
time series models to compute the values ŷk and ν̂k. All these possible choices
are indeed different exchangeable statistical functions for the same tasks.

The new strategy incorporates the editing during collection phase since its
very design, thus underlining the integration of statistical functions in the pro-
duction process already pinpointed by Pierzchala (1990). This stresses the im-
portance in data editing itself of aspects as the usability of self-administered
electronic questionnaires, originally thought of as part only of the data collec-
tion phase.

In this same line of integrating production functions, in our view the interval-
distance form of edits show several advantages. Given its versatility to express
different kinds of edits in this form (see section 3.2), the entire strategy can be
expressed as a set of interval-distance edits. This eases both the computer im-
plementation of the strategy and its dissemination in a very transparent way.
However, this form of expression of edits is currently used for short-term busi-
ness statistics, which comprise short questionnaires with just a few continuous
variables. More complex questionnaires such as those of structural business
statistics embracing also semicontinuous and/or discrete variables are still to
be tested under this proposal.

From a statistical methodology perspective, we have proved that the tradi-
tional approach based on score functions for output editing is embraced by the
combinatorial optimization approach. In particular, the local score function for
a variable y(q) naturally arising from the latter is given by

s
(q)
k = M

(q)
kk (yobsk , ŷk; p̂k, ν̂

2
k , σ̂

2
k),

where the different quantities ·̂ are estimated by usual methods using statistical
models. The different local scores are put together in the global score function,
which for the output editing we choose to be

Sk = S(α)
(
F ∗
s(1)

(s
(1)
k ), . . . , F ∗

s(Q)(s
(Q)
k )

)
.
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The efficiency of this choice can be seen in figure 1. Firstly, notice that when
more units are cross-sectionally selected at time t1 (top to bottom: 0, 50, 100,
150, 200) more somewhat influential units are detected. The detection of influ-
ential units also takes place when cross-sectionally selecting units at t2 (left to
right: 100, 150, 200). Indeed, the latter is more efficient than the former, thus
indicating the power of using cross-sectional information: the more you use
the more efficient you are. This strongly suggests that this cross-sectional di-
mension should be exploited in the application of edits upon each unit as soon
as possible. This means that this information should be incorporated into the
limits and threshold of the interval-distance edits in real-time. This points at
deriving an intermediate optimization problem from the generic problem (1) so
that the available information Z comprises the already collected values. This
remains to be done.

Both the simulation and its later implementation rest on assumptions that
must be critically assessed. Firstly the different interval-distance edits partially
incorporate both the longitudinal and cross-sectional dimensions. To this end,
there exist different ways of partitioning the sample to compute the involved
quantiles. We have directly chosen the dissemination cells, not testing other
alternatives. Some of these cells have a critical size for the quantile computa-
tion and further testing could bring some improvement. Secondly, to assign

the radius to each interval we have chosen the pseudo-hit rate H̃R. Other al-
ternatives can also be considered. No further research has been conducted in
this line. Conversely, the response simulation during the CAWI is admittedly
too simplistic, thus driving us to too optimistic results (see figure 4), and more
elaborate choices are currently under use in other surveys. Finally, the quanti-
ties Eif are admitted too ad hoc for this survey and its generalization to other
surveys seems difficult to us. We are currently working on more standardized
choices which do not depend so much on the particular survey.

This question of choice of the quantities Eij is deeply connected to the al-
location algorithm of the ncross units for the cross-sectional phase. Notice that
the need for such an algorithm arises from the multidomain character of the
dissemination plan: which cell is given greater priority? In this sense, the al-
gorithm is noticeably heuristic and a more rigourous treatment in terms of an
optimization problem would be desirable.

According to EDIMBUS (2007) the entire preceding process lacks a final
stage: the monitoring and fine-tuning of the strategy using performance indi-
cators. This would allow us to assess the performance of each edit. However,
the generalization to other surveys has been prioritized over the monitoring.
Thus, it also remains to be done.

From the final output perspective, given the importance of short-term busi-
ness statistics to measure the day-to-day economic situation and possible changes
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in its evolution, we see judging by figure 2 that the proposed E&I strategy
yields indeed measurements of change rates in the indices with no noticeable
error. Thus it does not impinge negatively on the survey quality.

Finally, the figure 4 shows a notable descending in the number of units to
edit interactively, thus a gain in efficiency. The predicted rate has not been
reached, indicating the need for the preceding revision of some simulation as-
sumptions, in particular the response simulation during the CAWI. Also the fi-
nal two multivariate edits to control the breakdown into markets need further
research. The implementation in production has been again prioritized over
further research. The current surveys under implementation will incorporate
all future novelties.

A The greedy search algorithm to solve the combi-

natorial problem

The greedy search algorithm to solve the combinatorial problem Pco is based
on a very simple idea. Let I0 = {1, . . . , n} denote the index set of compo-
nents of the selection strategy vector R. We begin by considering the vector
r(0) = (1, . . . , 1)t and choose a component i∗ ∈ I0 whose value is to be trans-
formed into 0: ri∗ = 1 → ri∗ = 0. If the new vector r(1) so obtained satisfies
every restriction, this is the (sub)optimal solution; otherwise fix ri∗ = 0, set
I1 = I0 −{i

∗} and choose another component i∗ in I1 whose value is to be also
transformed into 0. Proceed iteratively until the vector r(l) so obtained satisfies
every restriction.

To choose the component i∗l in each iteration l Salgado et al. (2012) pro-

posed to use an infeasibility function h(r) =
∑Q

q=1

(
rTM(q)r− ηq

)+
so that

i∗l+1 = argmin
k∈Il

h(r(l+1)). The sooner every restriction is satisfied, the closer
the suboptimal solution will be to the exact optimal solution. Indeed, they will
occassionally coincide. Notice that we can write

h(rl+1) =

Q∑

q=1

(
rTl M

(q)rl −M
(q)
i∗
l+1

i∗
l+1
− ηq

)+

,

so that the choice of the i∗ is indeed a choice of seeking the simultaneous ful-

fillment of every restriction by finding the joint maximal values M
(q)
i∗i∗ for all q.

In this proposal this is undertaken by minimizing the infeasibility function h.
But this can be slightly generalized.

If we focus on the selection of the component i∗ instead of the infeasibility

function, we can choose i∗l+1 = argmax
k∈Il

S
(
M

(1)
kk , . . . ,M

(Q)
kk

)
. For example,

we can choose i∗l+1 = argmax
k∈Il

max1≤q≤Q M
(q)
kk or i∗l+1 = argmax

k∈Il

∑Q

q=1 M
(q)
kk .
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We can think of each choice of S as the minimum of a certain infeasibility func-

tion h. In the next appendix we will show that the diagonal entries M
(q)
kk play

the role of local score functions, while the function S is equivalent to a global
score function.

B The prioritization algorithm and the equivalence

with the score function approach

Firstly, we discuss the prioritization algorithm. Then we will use it together
with the results of the preceding appendix to establish the equivalence with
the traditional score function approach.

The main idea behind the prioritization of units using the combinatorial
optimization Pco is the construction of an adequate sequence of upper bounds

η. We start by setting η
(0)
q =

∑
k∈s M

(q)
kk and Ω(0) = {1, . . . , n}. Then we

solve problem Pco(η
(0),Ω(0)), whose solution is r(0) = (1, . . . , 1)T . No unit

is selected, as expected. Then we reduce the upper bounds to η(1) and set
Ω(1) = Ω(0) so that the solution r(1) to the new problem Pco(η

(1),Ω(1)) is rk = 1
for all k, except for one rk∗ = 0. Unit k∗ has been selected. Again we reduce the
upper bounds to η(2) and set Ω(2) = Ω(1)

∣∣
rk∗=0

, i.e. the set of possible solutions

r ∈ Ω1 with rk∗ = 0. This procedure is repeated n times. The prioritization is
given by the sequence of indices {k∗l }l=1,...,n which in each iteration indicates
the new unit selected.

Now, conjugating both this algorithm with an appropriate sequence of bounds
{η(l)}l=1,...,n and the choice of the infeasibility function h we can recover the

traditional score function approach to selective editing. If η
(l+1)
q =

∑
k∈Il

M
(q)
kk −

maxk∈Il S
(
M

(1)
kk , . . . ,M

(Q)
kk

)
and the infeasibility function is chosen so as to

have i∗l+1 = argmax
k∈Il

S
(
M

(1)
kk , . . . ,M

(Q)
kk

)
in each iteration of the greedy al-

gorithm, then the prioritization of units is given by the descending order of the

values of S
(
M

(1)
kk , . . . ,M

(Q)
kk

)
.

To prove it, note that in iteration l + 1 of the prioritization algorithm the
restrictions of the problem read

rTl+1M
(q)rl+1 − η(l+1)

q ≤ 0 q = 1, . . . , Q. (4)

Now to solve the problem in this iteration we substitute η
(l+1)
q =

∑
k∈Il

M
(q)
kk −

maxk∈Il S
(
M

(1)
kk , . . . ,M

(Q)
kk

)
into equation (4) to arrive at

rTl+1M
(q)rl+1 − rTl M

(q)rl +max
k∈Il

S
(
M

(1)
kk , . . . ,M

(Q)
kk

)
≤ 0, q = 1, . . . , Q. (5)
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Now the suboptimal solution rl+1 found with the recipe

i∗l+1 = argmax
k∈Il

S
(
M

(1)
kk , . . . ,M

(Q)
kk

)

in the greedy algorithm is precisely rl with ri∗
l+1

= 0, since equation (5) reduces

to M
(q)
i∗i∗ ≥ maxk∈I1 S

(
M

(1)
kk , . . . ,M

(Q)
kk

)
for all q. Thus i∗ = i∗l+1 makes rl to

satisfy every restriction.

Finally the ordering given by i∗l+1 = argmax
i∈Il

S
(
M

(1)
kk , . . . ,M

(Q)
kk

)
, Il+1 =

Il − {i
∗
l+1} is exactly the decreasing order of the values S

(
M

(1)
kk , . . . ,M

(Q)
kk

)
. If

we think of M
(q)
kk as local score functions and of S as a global score function,

we are reproducing the traditional approach.
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