
 

Working Papers 

05/2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The views expressed in this working paper are those of the authors and do not 
necessarily reflect the views of the Instituto Nacional de Estadística of Spain 

 

First draft: July 2011 

This draft: July 2011 

 

Multivariate Wiener-Kolmogorov Filtering by 

Polynomial Methods 

Félix Aparicio-Pérez 



Multivariate Wiener-Kolmogorov Filtering by Polynomial Methods 

 

 

Abstract 

The exact computation of a general multivariate Wiener-Kolmogorov filter is usually done 
in state-space form. This paper develops a new method to solve the problem within the 
polynomial framework. To do so, several matrix polynomial techniques are used. To 
obtain the initial values, some new techniques are also developed. Finally, some 
extensions and applications are outlined. 

 

Keywords  

Wiener-Kolgomorov filter, polynomial matrices 

 

Authors and Affiliations 

Félix Aparicio-Pérez 

Dirección General de Metodología, Calidad y Tecnologías de la Información y las 
Comunicaciones, INE 

  

 

 

INE.WP: 05/2011 Multivariate Wiener-Kolmogorov Filtering by Polynomial Methods 



Multivariate Wiener-Kolmogorov Filtering by Polynomial Methods

Félix Aparicio-Pérez, Instituto Nacional de Estad́ıstica, Madrid, Spain. 1

Abstract The exact computation of a general multivariate Wiener-Kolmogorov filter is usually
done in state-space form. This paper develops a new method to solve the problem within the
polynomial framework. To do so, several matrix polynomial techniques have to be used, like the
transformation of a right matrix fraction into a left one or the spectral factorization of a moving
average. To obtain the initial values, some new techniques are developed, these include an extended
innovations algorithm or a new kind of matrix geometric series. Finally, some extensions and
applications are outlined.

Keywords: Wiener-Kolmogorov filter, polynomial matrices.

MSC2010 subject classification: 37M10

Contents

1 Introduction 2

2 Filter Equations 3

3 An extended innovations algorithm 8

4 Computation of the initial values 11
4.1 Using the extended innovations algorithm . . . . . . . . . . . . . . . . . . . 12
4.2 A left-right matrix geometric series . . . . . . . . . . . . . . . . . . . . . . . 13

5 Running the filters 15
5.1 Simultaneous implementation: a linear system of equations . . . . . . . . . . 15
5.2 Cascaded implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Parallel implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Forecasting, fixed point and fixed lag smoothing 17

7 The ARIMA case 17

8 Numerical computations 18

9 Applications in official statistics 19

10 Conclusions 20

1e-mail: fapape@ine.es

1



1 Introduction

Wiener-Kolmogorov filtering dates back from the independent works of Wiener and Kol-
mogorov in the first half of the twentieth century, see Wiener(1949) and Kolmogorov (1941).
The difficulties that were found to apply the exact filter to a finite sample, or even the semi-
infinite filter to multivariate problems, the non-recursive nature of the filter and the fact
that some problems need a model with time-varying coefficients motivated a growing use of
the Kalman filter (Kalman, (1960)) and smoother instead of the Wiener-Kolmogorov filter.
This situation is still present in our days, and it is not satisfactory, since the Kalman filter
has also some drawbacks. For example, when working with a high dimensional polynomial
model, there is no numerically stable way to express it in state space form: the methods
that are used to transform a polynomial model into state space form work well for small
dimensions, but break down when the dimension of the state is high (see, e.g., Kenney and
Laub (1988)). Another problem, specific to signal extraction in time series analysis, is the
fact that the Kalman filter fails to provide intuition about the filter to the researcher. In
fact, most researchers prefer polynomial filtering formulae, since they are considered to be
more revealing.

The main development in this paper is an implementation in the general multivariate case
of the Wiener-Kolmogorov filter using polynomial techniques, but it also contains some more
contributions, like an extension of the innovations algorithm to estimate random variables
whose cross-correlations with a time series are known or a new method to compute the initial
values of a filter. In Aparicio-Perez (2010) a brief explanation of the method was given, but
the details were only available in unpublished manuscripts.

All the techniques proposed in the paper can be implemented in a numerically efficient
and reliable way, so resulting in a serious competitor of state-space techniques. Finally, some
extensions and applications in the field of official statistics are outlined.

The paper makes an extensive use of some matrix polynomial techniques, like the trans-
formation of a right matrix fraction description into a left one or the computation of the
inverse of a polynomial matrix. A detailed treatment of matrix polynomial techniques can
be found, for example, in Kailath, T. (1980), Chen (1984) and chapters 7 and 14 in Lancaster
and Tismenetsky (1985). Some specific polynomial techniques that are used in this paper
are new and cannot be found in these references, but they can be found in Aparicio-Perez
(2011); these include the computation of the model that follows a filtered VARMA process
or the time reversion of a VARMA process.

In this paper s stands for time t reversed. For example, if we have a sample of size T of
a process yt for time points t ∈ {1, · · · , T}, that we will call y1:T , for each t we could define
s = T + 1− t. The time reversed process is represented by y̆s and a circular accent˘will be
also used with the elements of its VARMA model, The notation Ẑt1/t2 is used to denote the
conditional expectation of the Zt process at time point t1 based on the information available
up to time point t2 or, equivalently, the projection of Zt1 on the Hilbert space spanned by
the observed process up to time point t2. Sometimes the abbreviation Ẑt is used, its meaning

2



is Ẑt/t−1 if t ≤ T and Ẑt/T if t > T . Given a polynomial matrix P (z), we sometimes consider
it as the sum P (z) = P0 + zP1 + z2P2 + · · · + zgPg, where the Pi are scalar matrices and
g , ∂(P (z)) is the degree of the polynomial matrix. Finally, F stands for the lead or forward
shift operator and B stands for the lag or backward shift operator, that is Fyt , yt+1 and
Byt , yt−1.

2 Filter Equations

Assume that two multivariate processes, st and yt, of dimensions s and r respectively, follow
jointly a regular, gaussian, stationary, invertible and left coprime VARMA model a(B)xt =
b(B)εt, with covariance matrix Σε = cov(εt), where x′t = (s′t, y

′
t)
′. We consider this model

partitioned as in(
a11(B) a12(B)
a21(B) a22(B)

)(
st
yt

)
=

(
b11(B) b12(B)
b21(B) b22(B)

)(
ε1t
ε2t

)
(1)

We will also assume that y1:T , a finite sample of length T of yt is available, but that no
observations from st are available. The main focus of this paper is on non-causal filtering,
that is, on the computation of ŝt/T , E[st/y1:T ]. This is also called a fixed interval smoothing
problem, and it can be solved exactly by the Kalman filter and smoother. Causal filtering,
on the other hand, is used to compute ŝt/t−h for some h ≥ 0.

In Burman (1980), a method for the exact computation of the non-causal univariate
Wiener-Kolmogorov filter based on a finite sample is explained. Some particular cases of the
causal multivariate Wiener-Kolmogorv filter, like the signal plus noise problem or the decon-
volution problem, have been addressed in the literature before using polynomial methods,
see e.g. Ahlén and Sternad (1991).

We will develop a new polynomial method that realizes the general multivariate causal
and non-causal Wiener-Kolmogorov filters.

Define the marginal model of yt as the VARMA model that follows the filtered process
yt = (0r×s, Ir)xt, where 0r×s is the r×s zero matrix and Ir is the identity matrix of dimension
r. Let this marginal model be

Φ(B)yt = Θ(B)ut, (2)

where ut is a white noise process with cov(ut) = Σu. The computation of the marginal model
of yt is a particular case of the computation of the model that follows a filtered process and
can be done as explained in Aparicio-Perez (2011).

In the polynomial setting, we first transform the model (1) into another one that has
a diagonal AR part. This can be accomplished by pre-multiplying (1) by Adj(a(B)), the
adjoint of the polynomial matrix a(B). The result is

det(a(B))In

(
st
yt

)
=

(
d11(B) d12(B)
d21(B) d22(B)

)(
ε̂1t
ε̂2t

)
(3)

3



where n , r + s, d(z) , Adj(a(z))b(z)L′, L is the Cholesky factor of Σε, that is, an upper
triangular matrix such that L′L = Σε and ε̂t = (L−1)′εt is a standardized white noise process.

Using the Wiener-Kolmogorov formula that assumes that we have a doubly infinite real-
ization of yt, (e.g. Caines(1988), p. 139), we can express the estimator of st in the form

ŝt = Gsy(B,F )G−1
y (B,F )yt, (4)

where Gsy and Gy are the covariance generating functions of st with yt and of yt respectively,
obtained from (3). Some key points follow:

(i) The pre-multiplication by Adj(A(B)) does not change the covariance generating func-
tion of the xt process.

(ii) Because of the properties of the conditional expectations (or, equivalently, of Hilbert
space projections), if we put the finite sample estimates ŷt instead of yt in (4), we get
the finite sample estimates of st, that we will also call ŝt. The meaning of ŷt is yt itself
for t ∈ {1, · · · , T} and the optimal finite sample forecasts or backcasts for t > T or
t ≤ 0 respectively. Later we will explain how to obtain these quantities, but it should
be emphasized that we only need a small number of forecasts and backcasts.

(iii) Since we have a diagonal AR part in (3), the AR terms in (4) cancel out, obtaining a
filter that is simple enough to be computed in practice.

The joint and cross-covariance generating functions of st and yt are, respectively

G(z) =(det(a(z))−1d(z)d′(z−1)(det(a(z−1))−1 and

Gsy(z) =(det(a(z))−1[d11(z), d12(z)]

[
d′21(z−1)
d′22(z−1)

]
(det(a(z−1))−1,

and the marginal generating function of yt is

Gy(z) =(det(a(z))−1[d21(z), d22(z)]

[
d′21(z−1)
d′22(z−1)

]
(det(a(z−1))−1

=(det(a(z))−1Ω(z)Ω′(z−1)(det(a(z−1))−1,

that is, we have made a (left) spectral factorization of the central factors in Gy(z).
Therefore, the optimal filter is

ŝt = [d11(B), d12(B)]

[
d′21(F )
d′22(F )

]
Ω′−1(F )Ω−1(B)ŷt, (5)

and we can compute the exact finite Wiener Kolmogorov filter running three cascaded filters,
these are f̂1t = Ω−1(B)ŷt, with time running forwards, f̂2t = Ω̃′−1(F )ẽ0(F )f̂1t, with time
running backwards, where e′0(z) , [d21(z), d22(z)] and e0(z−1)Ω′−1(z−1) = Ω̃′−1(z−1)ẽ0(z−1)

4



(we transform a right matrix fraction into a left coprime matrix fraction), and finally ŝt =
[d11(B), d12(B)]f̂2t with time running forwards.

The problem of finding the initial values for these or other filters is solved in section 4,
but now we will make some additional matrix polynomial computations that will allow us
to reduce the three filters to two new filters, one running backwards in time and the other
one running forwards in time.

We can write Gy(z) = (det(a(z))−1Ω0(z−1)Ω′0(z)(det(a(z−1))−1, that is, we apply right,
instead of left spectral factorization. With this change, the filter can be expressed as

ŝt = [d11(B), d12(B)]

[
d′21(F )
d′22(F )

]
Ω′−1

0 (B)Ω−1
0 (F )ŷt. These are in fact four cascaded filters, so

apparently the filter is more complicated than before, but defining d0(z) , [d11(z), d12(z)],
and transforming right matrix fraction descriptions into left ones (or v.v.) we have

ŝt = d0(B)e0(F )Ω′−1
0 (B)Ω−1

0 (F )ŷt

= d0(B)Ω′−1
1 (B)e1(F )Ω−1

0 (F )Bh1 ŷt (6)

= Ω′−1
2 (B)d1(B)e1(F )Ω−1

0 (F )Bh1 ŷt (7)

= Ω′−1
2 (B)d1(B)Ω−1

3 (F )e2(F )Bh1 ŷt (8)

= Ω′−1
2 (B)Ω−1

4 (F )d2(B)e2(F )Bh2 ŷt (9)

= Ω′−1
2 (B)d3(B)Ω−1

5 (F )e2(F )Bh3 ŷt. (10)

= Ω′−1
2 (B)d4(B)Ω−1

5 (F )e3(F )ŷt. (11)

The notation that we have used increases the subscript of a polynomial matrix whenever
it is involved into a transformation of a right matrix fraction into a left coprime matrix
fraction (or a left one into a right coprime one). It is to be noted that we have made these
transformations not only when both matrices, denominator and numerator, are written in
the same operator (F or B), but also when they are written in different operators. This can
be done taking into account that F = B−1, the details are in Aparicio-Perez (2011), the
only difference with the case in which both operators are equal is that now a positive or
negative integer power of B can result, and that is the reason for the Bhj terms that appear
in (6)-(11). Finally, in (11), if h3 > 0, d4(B) = d3(B)Bh3 and e3(F ) = e2(F ), while if h3 < 0,
e3(F ) = e2(F )F−h3 and d4(B) = d3(B). Something similar can be done with Bh2 in (9).

We will use formulae (9) and (11) in section 5, the latter being preferred to (8) to ensure
coprimeness in the filters. In (11) we have two cascaded filters, the first one with time
running backwards and the second one with time running forwards, the filters are

Ω5(B)v̆s = e3(B)y̆s, (12)

Ω′2(B)ŝt = d4(B)vt, (13)

where vt is a new process, while (9) is the following central difference equation that will allow
us to compute the Wiener-Kolmogorov filter as a system of linear equations:

Ω4(F )Ω′2(B)ŝt = d2(B)e2(F )Bh2yt. (14)

5



Example 1. Consider the following VARMA system of dimension four, where only two components
are observed:

1− 0.2B 0 0 0.3B
0 1 0.5B 0

0.6B 0 1− 0.4B 0
0 0 0 1




s1t

s2t

y1t

y2t

 =


1 0 0 0

−0.1B 1 0 0
0 0 1 0.7B
0 0 0 1− 0.8B




ε1t
ε2t
ε3t
ε4t

 , (15)

with cov(ε) = I4. The resulting polynomial matrices (with two decimal places) are d0(B) =(
1− .4B 0 0 −.3 + .36B − .096B2

−.1B + .36B2 − .008B3 1− .6B + .08B2 −.5B + .1B2 −.35B − .02B2 + .072B3

)
,

e0(F ) =


−.6F 0

0 0
1− .2F 0

.7F + .04F 2 − .144F 3 1− 1.4F + .56F 2 − .064F 3

 ,

Ω0(z) =

(
1.34− .12z − .075z2 .3z − .08z2

.33 + .272z + .2z2 − .11z3 .87− 1.35z + .68z2 − .11z3

)
,

Ω′2(B) =

(
1− .95B 0
.17− .062B 1

)
, e2(F ) =


.59− .44F .31

0 0
0 0

1.92 1

 , d2(B) =

(
1 + .33B − .79B2 + .77B3 0 0 .044− .36B + .42B2 − .23B3

.17 + .057B + 1.01B2 1− .6B + .08B2 −.5B + .1B2 .0075− .061B − .31B2

)
,

Ω4(F ) =

(
1− .15F 0
−.025F 1

)
, e4(F ) =


.23 + .39F .21
1.28 + .82F −1.18

2.56F + 1.63F 2 −2.36F
1.92 + 1.99F + 1.32F 2 −1.77− .71F

 ,

d3(B) =

(
1.31− 1.27B + .77B2 0 0 .09B − .092B2

−.57 + 1.03B −.4 + .08B 0 −.18B

)
,

Ω5(F ) =


1− .77F + .091F 2 0 0 .19− .027F

2.22F 1 + 2.5F −1.25 −.67
4.45F 2 5F 2 1− 2.5F −1.33F
−2.07F 2 0 0 1 + .62F

 ,

h1 = 0, h2 = 0, h3 = 1, e3(F ) = e2(F ) and d4(B) = Bd3(B). 3

6



Parallel implementations of the filter are also possible. For example, we can transform
(11) into

ŝt = Ω′−1
2 (B)d4(B)e4(F )Ω−1

6 (F )ŷt, (16)

and this filter can be expressed as the sum of two filters, the first one is causal, it is applied
to the original yt process with time running forwards, while the second one is anti-causal,
it is applied to the time reversed y̆s process with time running backwards. To do so, we
have to solve the equation Ω′−1

2 (z)d4(z)e4(z−1)Ω−1
6 (z−1) = Ω′−1

2 (z)g(z) + h(z−1)Ω−1
6 (z−1) for

g(z) and h(z−1). Pre-multiplying this expression by Ω′2(z) and post-multiplying the result
by Ω6(z−1) we obtain the bilateral polynomial equation

d5(z)e1(z−1) = g(z)Ω0(z−1) + Ω′6(z)h(z−1) (17)

and the g(z) and h(z−1) polynomial matrices can be obtained by equating the coefficients of
the corresponding powers of z and z−1. The question arises as if (17) always has a solution,
and the answer is in the affirmative, because the polynomial matrices Ω6(z−1) and Ω′2(z)
have no common factors, since Ω6(z−1) has the same Smith form as Ω0(z−1), see Lemma 1
in Roberts and Newmann (1988).

The procedure that we have used to solve (17) is similar to the one explained in the
appendix in Burman(1980) for the univariate case.

The filtering problem is then solved by running the two filters and summing, that is

Ω′2(B)s1
t = g(B)yt, (18)

Ω7(B)s̆2
s = h2(B)y̆s, (19)

ŝt = ŝ1
t + ŝ2

t , (20)

where h(z)Ω−1
6 (z) = Ω−1

7 (z)h2(z).
Moreover, the parallel implementation contains some additional information, since it

decomposes the transfer function of the Wiener-Kolmogorov filter as the sum of its causal
and non-causal components, allowing us to compute the filter weights by long division in
(18)-(19).

We could also define a parallel implementation directly from (7), instead of (11), but lack
of left-coprimeness between the factors in (7) would make that the equations, similar to (17),
to be solved had a larger number of unknowns and, finally, the two resulting parallel filters
would have to be transformed into left-coprime ones. The lack of coprimeness between the
factors in (7) comes from the pre-multiplication of (1) by Adj(a(B)) to obtain (3)

Example 1 (Continued). The polynomial matrices that define the parallel filters are:

Ω6(F ) =

(
1 + 1.66F −1.44

2.07F 2 1− 1.81F

)
, h(F ) =

(
.25 0
−.0036 0

)
,

Ω7(F ) =

(
1− .15F 0
.014 1

)
, h2(F ) =

(
.25− .46F .37

0 0

)
,

7



and g(B) =

(
−.14 + .15B − .030B2 .11B + .13B2

.02− .51B −.016B

)
.

3

We have solved the non-causal filtering problem, but the causal filtering problem can be
solved in a similar way, provided that we compute at each time point the exact corresponding
ŷt values.

3 An extended innovations algorithm

The innovations algorithm is a well known technique that can be used to efficiently compute
the exact finite sample innovations and one-step predictions of a multivariate time series,
see e.g. Brockwell and Davis (1991), secs. 5.3 and 11.4. In this section we will present
an extension of this algorithm that allows the estimation of any other random variables,
conditional on the observed time series, provided that we know its cross-covariances with
the time series. In section 4.1 we will use this extension to compute the initial and final
values of the filters that realize the Wiener-Kolmogorov filter.

First we will present the idea behind the extended innovations algorithm as a problem
of computing the conditional distribution of a multivariate normal random vector without
having to compute the inverse of a big covariance matrix.

Let ψ be a vector of random variables, that we consider partitioned in the form ψ′ =
(ψ′1, ψ

′
2)′. Assume that ψ follows the normal distribution N

(
( µ1µ2 ) ,

(
Σ11 Σ12
Σ21 Σ22

))
where the

mean vector and covariance matrix are partitioned in accordance with the partition of ψ. It
is well known that the conditional distribution of ψ1, given the value of ψ2, is normal with
conditional mean and covariance matrix given by:

ψ1/ψ2 ∼ N(µ1 + Σ12Σ−1
22 (ψ2 − µ2),Σ11 − Σ12Σ−1

22 Σ21), (21)

that the conditional mean is the best predictor of ψ1 as a function of ψ2 in the least square
sense, and that it has a mean square error (MSE) given by the conditional covariance matrix.
This principle can be applied to filtering and smoothing of multivariate time series. For
example, given the model (1) we can compute the autocovariances of the xt process, and fill
with them the (block Toeplitz) covariance matrix of x1:T , where x′1:T , (x′1, · · · , x′T )′, this is

cov(x1:T ) =


∆0 ∆′1 · · · ∆′T−1

∆1 ∆0 · · · ∆′T−2

· · · · · · · · · · · ·
∆T−1 ∆T−2 · · · ∆0

 , (22)

with ∆h , cov(xt+h, xt), h ≥ 0. Defining ψ′1 , s′1:T , (s′1, · · · , s′T )′ and ψ′2 , y′1:T ,
(y′1, · · · , y′T )′, the mean vector of ψ is zero and its covariance matrix Σ is built by permuting
some rows and columns in (22).

8



With this setting, the exact Wiener-Kolmogorov filter that estimates ψ1, given ψ2 is
simply obtained using (21). Assuming that the model (1) is fixed, the dimension of Σ22

grows with the number of observations T , and its inversion soon becomes a complex numerical
problem, with a number of operations that is O(T 3). Even taking into account the block
Toeplitz structure of (22) the number of operations is O(T 2).

A solution is to transform the ψ2 vector into another vector, say ψ∗2, such that the
covariance matrix of ψ∗2 is a block diagonal matrix, because the inversion of a block diagonal
matrix is very simple: it is enough to invert each block in the diagonal. A transformation
of this kind is equivalent to a Gram-Schmidt ortogonalization, since the vectors of random
variables with finite second order moments can be considered to form a vector space. And
this is what the innovations algorithm does in its basic version, to orthogonalize the random
vectors y1, · · · , yT . Unfortunately, the complexity of the Gram-Schmidt procedure grows
quickly with the number of vectors that are orthogonalized, since the projection of each new
vector over all the preceding ones has to be computed. For this reason, the innovations
algorithm, when applied to a VARMA process, makes a previous step: it first transforms the
original process yt into a new process wt that is only finitely correlated, that is, in geometric
terms, each vector to be orthogonalized is already orthogonal to all the preceding vectors
except the last q ones, where q is the order of the MA part of the marginal model for yt. The
output of the Gram-Schmidt procedure is the innovations process It , wt − ŵt/t−1. From
these quantities, the ŷt and the innovations of the yt process are easily computed.

However, the innovations algorithm considers only the ψ2 vector formed by the wt process,
and it only computes the innovations of the wt and yt processes. The proposed extension
considers a ψ1 vector and estimates it using its cross-covariances Σ12 with the yt process.
In our time series setting ψ1 would be formed by the s1, · · · , sT values to be estimated.
Still, this would create a new problem because, as T grows, we would have to compute
a cross-covariance matrix Σ12 of growing dimension and update it in each iteration of the
innovations algorithm and the number of operatios would be O(T 2) again. The solution to
this problem is to define another ψ1 vector that has a small and fixed (not growing with T)
dimension, but that is enough to compute the Wiener-Kolmogorov filter. For example, if we
were using the parallel filters (18)-(19), we could define ψ1 to contain only the initial values
of yt and s1

t and the final values of yt and s2
t . With these initial and final values, the two

parallel filters could easily be run to estimate s1, · · · , sT . The number of operations of this
procedure grows only linearly with T , since as the sample size increases from T to T + 1
we only have to update the covariances of a fixed number of random variables with a new
innovation and then run the innovations algorithm and the two filters at another time point.

We will now give the details of the extended innovations algorithm. Assume that the
observed process yt follows the model (2), with Φo = Ir (if this is not the case we previously
pre-multiply (2) by Φ−1

o ). Assume also that we have ψ1, a vector of random variables whose
covariance with yt, that we call Ct, is known for all t ∈ {1, · · · , T} and that the joint
distribution of ψ1 and y1:T is multivariate normal, as it will be the case, for example, if ψ1

is composed of some elements of the st and yt processes that follow the gaussian model (1).

9



Initially, we have MSE(ψ̂1) = cov(ψ1), because the best prediction of ψ1 when we do not
have any information is its mean. We will update MSE(ψ̂1) as we iterate in the algorithm.
We define Σ12 , [C1, · · · , CT ]. Let p = ∂(Φ(z)) and q = ∂(Θ(z) be the degrees of the AR and
MA polynomial matrices respectively, r , max(p, q) and Γh , cov(yt+h, yt), for h integer.
We now define wt, the yt process filtered by its own autoregressive part, that is wt = yt,
for t ∈ {1, · · · , r} and wt = Φ(B)yt, for t ∈ {r + 1, · · · , T}. This process is only finitely
correlated, in fact, if i ≥ j are integers, h , i− j and γi,j , cov(wiwj),

γi,j =


0 if h > q,
Γh if i ≤ r,∑p

k=0 ΦkΓh−k if i > r, j ≤ r and h ≤ q∑q
k=hBkΣuB

′
k−h if j > r and h ≤ q

, and for i < j, γi,j = γ′j,i.

If w′1:T , (w′1, · · · , w′T )′, we first compute Σ∗12 , cov(ψ1, w1:T ) , [C∗1 , · · · , C∗T ], using C∗t =∑p
j=1 Ct−jΦj, for t ∈ {r + 1, · · · , T}, and C∗t = Ct for t ∈ {1, · · · , r}.
Defining Vj , cov(Ij) we have, initially, ŵ1 , 0, Î1 , w1 and V1 = cov(w1).
The main iteration begins with i ranging from 1 to T , for i fixed we do:

1. Compute Tij , cov(wi, Ij) = γi,j −
∑i−1

k=max{1,i−q} Ti,kV
−1
k T ′j,k and T ∗ij , cov(wi, Ij)V

−1
j ,

for each j ∈ {max{i− q, 1}, · · · , i− 1},

2. Compute ŵi =
∑i−1

j=max{i−q,1} T
∗
ijIj, and ŷi =

{
ŵi −

∑p
j=1 Φjyi−j if i > r

ŵi if i ≤ r
, the one-

step ahead forecasts of wi and yi, respectively.

3. Compute the innovation Ii = wi − ŵi and Vi = γi,i −
∑i−1

k=max{1,i−q} Ti,kV
−1
k T ′i,k.

4. Update cov(ψ1, Ii) = C∗i −
∑i−1

k=max(1,i−q) cov(ψ1, Ik)T
∗′
ik , ψ̂1 = ψ̂1 + cov(ψ1, Ii)V

−1
i Ii and

MSE(ψ̂1) = MSE(ψ̂1)− cov(ψ1, Ii)V
−1
i (cov(ψ1, Ii))

′.

As we said before, the computational effort added to the innovations algorithm is small for a
fixed dimension of ψ1. In iteration i only the computation of cov(ψ1, Ii) and the updates are
added, and, since ŵi is function of only the last q innovations, this involves few operations.
As a result, the number of operations involved in the extended innovations algorithm is still
O(T ).

Example 2. A VARMA system of dimension two is given:(
1− .7B 0

0 1− .6B

)(
st
yt

)
=

(
1 + .5B .6B
−.7B 1 + .8B

)(
ε1t
ε2t

)
,Σε =

(
1 .71
.71 2

)
(23)

We have a sample of size 3 of yt, y1:3 = (1,−1, .5)′ and we will use the extended innovations
algorithm to estimate ψ1 = (s0, y0, s4)′. Using two decimal places, the marginal model of yt is

10



(1 − .6B)yt = (1 + .44B)ut, with Σu = 2.49, the autocovariances of the joint process (23) and the
covariances of ψ1 with y1:3 and w1:3 are

∆0 =

(
7.24 3.7
3.7 6.72

)
,∆1 =

(
5.99 4.15
2.09 5.13

)
,∆2 =

(
4.2 2.9
1.25 3.08

)
,∆3 =

(
2.94 2.03
.75 1.85

)
,

∆4 =

(
2.06 1.42
.45 1.11

)
,Σ12 =

 2.09 1.25 .75
5.13 3.08 1.85
2.03 2.9 4.15

 ,Σ∗12 =

 2.09 0 0
5.13 0 0
2.03 1.68 2.4

 ,

we also have γi,j , cov(wi, wj) =


0 if h > 1,
6.72 if i = j = 1,
1.1 if i = j + 1,
2.97 if i = j > 1.

We define ψ̂1/0 = (0, 0, 0)′, MSE(ψ̂1/0) =

 7.24 3.7 2.06
3.7 6.72 1.42
2.06 1.42 7.24

 , and the main iteration be-

gins:

• For i = 1, ŵ1 = 0, I1 = 1, V1 = 6.72, ψ̂1/1 = ψ̂1/0 + C∗1V
−1

1 I1 = (.31, .76, .3)′.

MSE(ψ̂1/1) = MSE(ψ̂1/0)− C∗1V
−1

1 C∗′1 =

 6.59 2.1 1.42
2.1 2.79 −.13
1.42 −.13 6.63

 .

• For i = 2 and j = 1, T21 = γ2,1 = 1.1, T ∗21 = .16, ŵ2 = .16, w2 = −1.6, ŷ2 = .76, I2 = −1.76,

V2 = 2.79, cov(ψ1, I2) = C∗2 − C∗1T ∗′21 = (−.34,−.84, 1.35)′, ψ̂1/2 = ψ̂1/1 + cov(ψ1, I2)V −1
2 I2

= (.53, 1.3,−.55)′.

MSE(ψ̂1/2) = MSE(ψ̂1/1)− cov(ψ1, I2)V −1
2 cov(ψ1, I2)∗′ =

 6.55 2 1.59
2 2.54 .28

1.59 .28 5.97

 .

• Finally i = 3 and j = 2. T32 = γ3,2 = 1.1, T ∗32 = .4, ŵ3 = −.7, w3 = 1.1, ŷ3 = −1.3, I3 = 1.8,

V3 = 2.54, cov(ψ1, I3) = C∗3−cov(ψ1, I2)T ∗′32 = (.14, .33, 1.87)′, ψ̂1/3 = ψ̂1/2+cov(ψ1, I3)V −1
3 I3

= (.62, 1.53, .77)′.

MSE(ψ̂1/3) = MSE(ψ̂1/3)− cov(ψ1, I3)V −1
3 cov(ψ1, I3)∗′ =

 6.54 1.98 1.49
1.98 2.5 .031
1.49 .031 4.59

 .

3

4 Computation of the initial values

In this section, two techniques are developed that can be used to compute the initial values
of a general rational filter. Both techniques are new.

11



We will assume that we have a process yt, of dimension r that follows a regular, gaussian,
left-coprime, stationary and invertible model of the form (2), and another m-dimensional
process zt that is defined as the following rational filter applied to yt:

D(B)zt = N(B)yt. (24)

D(z) is assumed to be a non-singular and stable polynomial matrix. The time reversed
process y̆s follows a model that can be obtained as explained in Aparicio-Perez (2011), let
this model be

Φ̆(B)y̆s = Θ̆(B)ŭs, (25)

with ŭs a new white noise process with covariance matrix Σŭ. If gD , ∂D(z) and gN ,
∂N(z), then we need gN initial values of yt and gD initial values of zt to begin the iterations
when computing the values of zt in the filter (24). We will use the subscripts I for the initial
and F for the final values of a process, the meaning of final values being initial values of the
time-reversed process. Then y′I , (y′−gN+1, · · · , y′0)′, z′I , (z′−gD+1, · · · , z′0)′ and yI can be
computed simply by forecasting with its time-reversed model, but we need some procedure
to compute zI .

4.1 Using the extended innovations algorithm

The extended innovations algorithm can be used to compute, using the observed data y1:T

and in only one run, ŷI and ẑI . In the notation of section 3 we have ψ′1 = (z′I , y
′
I)
′ =

(z′−gD+1, · · · , z′0, y′−gN+1, · · · , y′0)′ and we only need to compute the covariances of yI and zI
with y1:T . To do so we first need to obtain the model that follows the joint process formed
by zt and yt, this is the model that follows the filtered yt process, using the rational filter(

D(B) 0
0 Ir

)(
zt
yt

)
=

(
N(B)
Ir

)
yt, (26)

and then we have to compute the autocovariances of this joint process. Of course the joint
process cannot be regular, since all randomness comes from the white noise of the yt process,
but this fact does not pose any additional problems if the methods explained in Aparicio-
Perez (2011) to find the joint VARMA process and its autocovariances are used.

Example 1 (Continued). Assume that we have three observations of yt, these are y1 = (1, 0.9)′,
y2 = (−0.5,−0.4)′ and y3 = (0.8, 0.7)′. The parallel backwards filter is(

1− .15B 0
.014 1

)
s̆2
s =

(
.25− .46B .37

0 0

)
y̆s.

Since the degrees of the filter numerator and denominator are both 1, we have s2
F = s2

4, yF = y4

and ψ′1 = (s2′
4 , y

′
4)′. The backwards marginal model for y̆s is (25) with

Φ̆(B) =

(
1− .6B + .05B2 0

6.87− 2.68B 1

)
, Θ̆(B) =

(
.25− .46B .37

0 0

)
,Σŭ =

(
1.8 −.44
−.44 .87

)
12



and the joint (singular) process of s̆2
s and y̆s can be written in the form

1− .49B + .05B2 0 .052B 0
.014 1 0 0

.15B − .022B2 0 1− .25B 0
−5.11 + .75B 0 −4.71 1

( s̆2
s

y̆s

)
=


.25− .41B + .022B2 .37− .38B + .026B2

0 0
1 + .38B − .0098B2 .4B − .011B2

−6.01− 1.07B −.88− 1.25B

 ŭs.

Computing the autocovariances of this joint process, we can build

Σ12 = cov(

(
s2

4

y4

)
,

 y1

y2

y3

) =


.012 .014 .035 .072 .12 −.38
−.00016 −.00019 −.00049 −.0010 −.0016 .0054
.14 .069 .38 .4 1.13 .33
0 0 0 0 0 −.8


and the extended innovations algorithm gives ŝ2

F = (−.19, .0027)′ and ŷF = (.79,−.55)′. 3

The application of this method to our Wiener-Kolmogorov filtering problem is straight-
forward:

If we are filtering using the central difference equation (14), we need yI , yF , sI and sF ,
and the necessary autocovariances and cross-covariances are readily obtained from the joint
model (1).

If we are filtering with the two cascaded filters (12)-(13) we need yF , vF , vI and sI .
The cross-covariances between vt and yt can be obtained from the joint backwards marginal
model of v̆s and y̆s, that we can compute from (26) and (25). The cross-covariances between
st and yt are computed from (1).

If we are computing the parallel filters we need yI , yF , s1
I and s2

F and the cross-covariances
of s1

I and s2
F with yt can be computed from (18)-(19), using (26) and both the forwards and

backwards marginal models of yt.
In any of the three cases we put in Σ12, as defined in section 3, the corresponding

autocovariances and cross-covariances.

4.2 A left-right matrix geometric series

To compute the initial values zI we can sum something that could be called a left-right
matrix geometric series. The next simple example motivates the development:

Example 3. Assume scalar yt and zt processes, with D(z) = 1−az, N(z) = 1− bz, Φ(z) = 1−φz
and Θ(z) = 1 + θz, where |a| < 1, |b| < 1, |φ| < 1 and |θ| < 1. Once we have computed ŷ0 we can
compute ŷ−j = φj ŷ0, for all j ≥ 1. On the other side, the filter weights in Ψj(z) = D−1(z)N(z)

13



are ψ0 = 1, ψ1 = a − b and ψj = aj−1ψ1, for all j ≥ 2. Then we have ẑ0 =
∑∞

j=0 ψj ŷ−j =

ŷ0 +
∑∞

j=0 a
jψ1φ

j ŷ−1, and the infinite sum can be readily computed as a geometric series, the result
is ẑ0 = ŷ0 + (a − b)φŷ0/(1 − aφ). It is to be noted that the geometric series converges even if the
modulus of one of a and φ is equal to one, provided that the modulus of the other is strictly smaller
than one. 3

The method that follows treats the general VARMA case in the same way, summing a
new kind of matrix geometric series.

First, assume without loss in generality that D0 = Im and that Φ̆0 = Ir, if this is not the
case, D(z) and N(z) are pre-multiplied by D−1

0 , while Φ̆(z) and Θ̆(z) are pre-multiplied by
Φ̆−1
o without affecting the filter (24) or the model (25). Note that D0 has an inverse because

we assumed that the polynomial matrix D(z) is not singular.
Under our assumptions, if k ≥ 0, ẑ−k =

∑∞
j=0 Ψj ŷ−k−j, where Ψ(z) = D−1(z)N(z)

contains the filter weights.
On one side, for k > k0 , max(gD, gN), the filter weights follow the relation D(B)Ψk =

0, that is, we can write for j ≥ 1, Ψk0+j = −
∑gD

i=1 DjΨk0+j−i = MAjNk0 , with M ,

(0, · · · , 0, Im), A ,


0 Im 0 · · · 0
0 0 Im · · · 0
· · ·
0 0 0 · · · Im

−DgD −DgD−1 −DgD−2 · · · −D1

 and Ni ,


Ψi−gD+1

Ψi−gd+2

· · ·
Ψi−1

Ψi.


On the other side, if gf , ∂(Φ̆(x)), for k > k1 , max(∂(Ψ̆(z)), ∂(Θ̆(z))), the back-

casted values of yk satisfy the relation Φ̆(B)ˆ̆y−k = 0, so we can write for j ≥ 1, ˆ̆y−k1−j =

−
∑gf

i=1 Φ̆j
ˆ̆y−k1−j+i = RBjH−k1−j, with B ,


0 Ir 0 · · · 0
0 0 Ir · · · 0
· · ·
0 0 0 · · · Ir
−Φ̆gf −Φ̆gf−1 −Φ̆gf−2 · · · −Φ̆1

, R ,

(0, · · · , 0, Ir), and Hi ,


ŷi+gf−1

ŷi+gf−2

· · ·
ŷi+1

ŷi.

. Therefore, if k2 , max(k0, k1), we can write

ẑ−k =

k2∑
i=0

Ψiŷ−k−i +
∞∑

i=k2+1

Ψiŷ−k−i =

k2∑
i=0

Ψiŷ−k−i +MSH−k−k2−1, (27)

where S ,
∑∞

j=0A
jNk2RB

j.

Now, we have to compute S, but since ASB =
∑∞

j=1 A
jNk2RB

j, then Nk2R = S−ASB,

applying the vec operator, vec(S) = (I −B′ ⊗ A)−1vec(Nk2R).

14



Note that S is the same for all k, so, when computing ẑ−k, for k ∈ {0, · · · , gD − 1} only
the finite sum and the H−k−k2−1 vectors in (27) are different for each value of k.

The convergence of the left-right matrix geometric series that defines S can be proved
taking into account the stability of the filter (24) and the model (25). In fact, it converges
under the milder assumption that only one of (24) or (25) has a stable denominator, provided
that the other has all its roots on or outside the unit disk. This is in accordance with the
remark that we made in example 3 and it will be used in section 7.

Example 1 (Continued). We will compute the initial values of the parallel backwards filter Ω7(B)s̆2s =
h2(B)y̆s with

Ω7(z) =

(
1− .15z 0
.014 1

)
and h2(z) =

(
.25− .46z .37

0 0

)
.

Since this is a backwards filter, the backwards marginal model of y̆s is really the forwards marginal
model of yt, given by Φ(B)yt = Θ(B)ut with

Φ(z) =

(
1− .6z + .08z2 0

0 1

)
,Θ(z) =

(
1− .15z .7z + .04z2 − .144z3

0 1− .8z

)
and Σu =

(
1.37 0

0 1

)
.

We have k0 = 1, k2 = k1 = 3, ŷ4 = ˆ̆y0 = (0.79391,−0.54741)′, ŷ5 = ˆ̆y−1 = (.44255, 0)′, ŷ6 = ˆ̆y−2 =
(.10348, 0)′, ŷ7 = ˆ̆y−3 = (.026686, 0)′.

Since ∂(D(z)) = 1, we need only one initial value ẑ0 =
∑3

i=0 Ψiŷ−i +MSH−4, where M = I2,

H−4 = (ŷ′6, ŷ
′
7, )
′, S =

∑∞
j=0A

jN3RB
j, A =

(
.15 0
−.0021 0

)
, N3 =

(
−.0090 .0011
.00013 −1.61 · 10−5

)
,

R = (02×2, I2), B =


0 0 1 0
0 0 0 1
−.08 0 .6 0

0 0 0 0

. First we compute the finite sum
∑3

i=0 Ψiŷ−i =

(−.19187, .0027176)′, then we compute S =

(
.00011445 0 −.0098056 .0011383

−1.6211 · 10−6 0 .00013889 −1.6122 · 10−5

)
and finally ŝ2

F = ˆ̆z0 = (−.19212, .0027211)′ as before. 3

5 Running the filters

5.1 Simultaneous implementation: a linear system of equations

The Wiener-Kolmogorov filter can be computed using the central difference equation (14).
This reduces to a linear system of equations if we previously compute yI , yF , sI and sF , for
example, using the extended innovations algorithm, and then set all the values t ∈ {1, · · · , T}
in (14). The unknowns are then ŝ1, · · · , ŝT

The number of equations and unknowns in the system grows with the length of the time
series and with the dimension of st, so it would seem that this method can only be used
for small values of T and s. However, the system of equations is block banded and the
denominators Ω2(z) and Ω4(z) are stable polynomial matrices, since they have the same

15



Smith form as Ω0(z). This means that quite large systems can be solved using fast iterative
techniques.

Example 1 (Continued). In this example the central difference equation (14) is P−2st−2+P−1st−1+
P0st + P1st+1 = Q−2yt−2 +Q−1yt−1 +Q0yt +Q1yt+1, with

P−2 =

(
.12 0
0 0

)
, P−1 =

(
−.96 0
−.065 0

)
, P0 =

(
1.14 0
0.2 1

)
, P1 =

(
−.15 0
−.025 0

)
,

Q−2 =

(
0 .18
0 0

)
, Q−1 =

(
−.14 −.25
−.52 −.04

)
, Q0 =

(
.53 .35
.09 .06

)
, Q1 =

(
−.44 0
−.075 0

)
,

and the linear system of equations is P0 P1 0
P−1 P0 P1

P−2 P−1 P0

 ŝ1

ŝ2

ŝ3

 =

 Q−2ŷ−1 +Q−1ŷ0 +Q0y1 +Q1y2 − P−2ŝ−1 − P−1ŝ0

Q−2ŷ0 +Q−1y1 +Q0y2 +Q1y3 − P−2ŝ0

Q−2ŷ1 +Q−1y2 +Q0y3 +Q1ŷ4 − P1ŝ4

 .

The extended innovations algorithm provides the values ŝ−1 = (−.29,−.039)′, ŝ0 = (−.51,−.12)′,
ŝ4 = (−.21,−.4)′, ŷ−1 = (.28, .35)′, ŷ0 = (.86,−.86)′, ŷ4 = (.79,−.55)′ and the right hand side
of the linear system of equations becomes (.76,−.27,−1.21,−.69, .62, .33)′. The solution is ŝ1 =
(.60,−.40)′, ŝ2 = (−.56,−.54)′ and ŝ3 = (.0085, .29)′. 3

5.2 Cascaded implementation

Several possibilities arise. In all of them we need to have ŷF . Then, we have to compute
v̂F to run the first filter, any of the methods in section 4 can be used. We can run the first
filter from s = 1 to T provided that we already have v̂I , that we need for the second filter.
If we do not have v̂I , then, the first filter must be run from s = 1 to T + ∂(d4(z)) and we
also need ŷI . The second filter can be directly run if we already have ŝI , in other case, it
must be computed using any of the methods in section 4, and then the second filter can be
run, obtaining the estimates ŝ1, · · · , ŝT .

Example 1 (Continued). The matrices that define the two cascaded filters (12)-(13) for this exam-
ple were obtained in section 2. We can proceed in several ways. For example, since ∂(Ω5(z)) = 2,
∂(e3(z)) = 1, ∂(Ω2(z)) = 1 and ∂(d4(z)) = 3, we can use the extended innovations algorithm or
the respective forward and backward marginal models of yt and y̆s to get ŷF = ŷ4 = (.79,−.55)′,
ŷ′I = (ŷ′−2, ŷ

′
−1, ŷ

′
0)′, ŷ−2 = (.1, .063)′, ŷ−1 = (.28, .35)′ and ŷ0 = (.86,−.86)′. Then, using

the left-right matrix geometric series we can compute v̂′F = (v̂′4, v̂
′
5)′, v̂4 = (.094, .16, .91, .55)′

and v̂5 = (.096, .45, .21, .75)′. Now we can run the first filter from s = 1 to s = 6 to obtain
ˆ̆
1v = v3 = (.026, 1.19, .31, 2.09)′, v̂2 = (−.24,−1.7, 2.37,−2.46)′, v̂1 = (.0096, 3.47,−3.4, 4.4)′,
v̂0 = (.41,−1.64, 6.94,−2.43)′, v̂−1 = (−.31, .72,−3.29, 2.43)′, v̂−2 = (−.18, .42, 1.43,−.41)′. We
compute ŝI = ŝ0 = (−.51,−.12)′ using the left-right matrix geometric series and run the second
filter, obtaining the same ŝj values as with the central difference equation. 3

16



5.3 Parallel implementation

ŷI and ŷF are needed, they can be computed using the forward and backward models of yt or
using the extended innovations algorithm. ŝ1

I and ŝ2
F are also needed and can be computed

using any of the methods in section 4. Then both filters can be computed and their sum
(after time-reversing ˆ̆s2

s) provides the result.

Example 1 (Continued). The two parallel filters are(
1− .95B 0
.17− .062B 1

)
s1
t =

(
−.14 + .15B − .030B2 .11B + .13B2

.02− .51B −.016B

)
yt

and (
1− .15B 0
.014 1

)
s̆2
s =

(
.25− .46B .37

0 0

)
y̆s

The extended innovations algorithm gives ŷI = ŷ0 = (.86,−.86)′, ŷF = ŷ4 = (.79,−.55)′, ŝ′I =
(ŝ′−1, ŝ

′
0)′, ŝ−1 = (−.029,−.043)′, ŝ0 = (−.059,−.12)′, and ŝF = ŝ4 = (−.19, .0027)′. Run-

ning the filters we obtain ŝ1
1 = (−.12,−.39)′, ŝ1

2 = (.072,−.55)′, ŝ1
3 = (−.059, .29)′, ˆ̆2

1s = ŝ2
3 =

(.068,−.00096)′, ˆ̆2
2s = ŝ2

2 = (−.63, .0089)′ and ˆ̆2
3s = ŝ2

1 = (.72,−.01)′. Summing, we obtain the same
result as with the other methods. 3

6 Forecasting, fixed point and fixed lag smoothing

Fixed point smoothing for a few fixed time points can be easily included in the framework
of this paper. To do so, we simply compute the covariances of the St process with y1:T for t
in the set of fixed time points and run the extended innovations algorithm.

Fixed lag smoothing can also be done, but efficiency is lost, due to the non-recursive
nature of our procedure.

Forecasting or backcasting the st process for a fixed sample of yt can also be easily
included, in fact, the computation of the initial values of st when computing the second of
the two cascaded filters already solved the backcasting problem.

Forecasting when the sample of the yt process grows can also be done, but it faces again
the loss in efficiency associated with our non-recursive procedure.

7 The ARIMA case

If the joint process of yt and st needs some differencing to reach stationarity, we will face
some additional problems. Assume that the joint model of st and yt can be written in the
multiplicative form a(B)M(B)yt = b(B)εt, where M(z) is the differencing matrix polynomial
that contains all the autoregressive roots with unit modulus. Let Φ(B)N(B)yt = Θ(B)ut be
the marginal model of yt, also written in multiplicative form, where N(z) contains all the

17



roots of unit modulus. We define the stationary marginal process as ψt = N(B)yt. We can
forecast and backcast the ψt process, for example using the extended innovations algorithm.
Then we can compute the forecasts and backcasts of yt as explained in Aparicio-Perez (2011)
and, using the Wiener-Kolmogorov filter equations, we can run the Wiener-Kolmogorov filter
to obtain the estimations of the st values. Under some conditions that can be fulfilled even
if the st and yt processes are non-stationary, the relation between them is stationary (Gómez
(2006)). The initial and final values of the filters that implement the Wiener-Kolmogorov
filter can be obtained summing the corresponding left-right matrix geometric series.

An additional problem that can appear is the computation of Gy(z) in (4): since we
have pre-multiplied the MA part of the model by the adjoint of the AR part, the new MA
part can contain several unit modulus roots, and the spectral factorization that is done to
compute Gy(z) may face some difficulties, like poor convergence properties.

8 Numerical computations

All the computations that are needed to implement the techniques explained in this paper
can be done in an efficient and reliable way. We will briefly explain how to do so for some
of them.

The computation of the adjoint of an n by n polynomial matrix P (z) is sometimes done
by transforming the polynomial matrix into an equivalent matrix pencil. We prefer, however,
to use a more direct, and apparently new, method that consists of first transforming P (z)
into an upper triangular form T (z). This can be done by premultiplication by a unimodular
matrix U(z), that is T (z) = U(z)P (z), using the method explained in Henrion and Šebek
(1999). The determinant of the polynomial matrix is simply obtained as the product of the
diagonal elements of T (z) divided by the (scalar) determinant of U(z), and then the adjoint
matrix A(z) is easily obtained from the condition A(z)P (z) = det(P (z))In.

The transformation of a right into a left (or v.v.) matrix fraction description can also be
done in a numerically reliable way, by solving a so-called minimal polynomial basis problem,
see e.g. Chen(1984).

The problems of computing the autocovariances of a VARMA process and finding the
spectral factorization of a vector moving average can both be solved by using the method
explained in Henrion and Šebek (1998) to find the solution of a symmetric matrix polynomial
equation.

The computation of the model that follows a filtered process can be done by transforming
a right into a left matrix fraction and then doing a spectral factorization, see Aparicio-Pérez
(2011). In this reference it is also explained how to compute the model that follows a
time-reversed process.

18



9 Applications in official statistics

Filtering and smoothing is of central importance in time series analysis of macroeconomic
time series. The non-recursive techniques exposed in this paper are well suited for this kind
of applications, where the arrival of new information usually occurs at low frequency (daily
or lower).

The classical fixed filters used in univariate time series signal extraction, like the Hodrick-
Prescott filter, assume all a signal plus noise setting, with specific models for the signal and
the noise. For this reason, the methods explained in this paper can be seen as a unifying
framework for these filters.

But new univariate or multivariate filters can also be computed. As an illustration, we
will now give some details of a particular structural bivariate model that could be used
to extract the components of two observed economic indicators without using state space
techniques.

Example 3. Assume that two quarterly economic indicators y1t and y2t can be written each as
the sum of a trend, a common seasonal component and a white noise, that is yjt = Tjt + St + ejt,
j ∈ {1, 2}. The problem is to estimate the common seasonal component and the two trends.

From all possible specifications for the components, we choose the following:
1 +B +B2 +B3 0 0 0 0

0 1−B 0 0 0
0 0 (1−B)2 0 0
0 0 0 1 0
0 0 0 0 1




St
T1t

T2t

e1t

e2t

 =


1 0 0 0 0
0 1 +B 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




ε1t
ε2t
ε3t
ε4t
ε5t

 ,

(28)
with εjt zero mean and unit variance uncorrelated gaussian variables, j ∈ {1, · · · , 5}. First we
compute the joint model of the five processes St, T1t, T2t, y1t and y2t. This is the model of the
following filtered process: 

St
T1t

T2t

y1t

y2t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 0 1 0
1 0 1 0 1




St
T1t

T2t

e1t

e2t

 . (29)

The result is
1 +B +B2 +B3 0 0 0 0

0 1−B 0 0 0
0 0 (1−B)2 0 0
−1 −1 0 1 0
−1 0 −1 0 1




St
T1t

T2t

y1t

y2t

 =


1 0 0 0 0
0 1 +B 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




ε1t
ε2t
ε3t
ε4t
ε5t

 .

(30)

19



The marginal model of y1t and y2t is that of the filtered process

(
y1t

y2t

)
=

(
1 1 0 1 0
1 0 1 0 1

)
St
T1t

T2t

e1t

e2t

 , (31)

and we obtain (with two decimal places):(
1−B4 0
−(1−B)2 (1−B)2

)(
y1t

y2t

)
=

(
1 + .69B + .752 + .67B3 −.25B − .25B2 − .34B3

−1 + .96B +−.086B2 1− .78B + .14B2

)(
u1t

u2t

)
,

with cov(

(
u1t

u2t

)
=

(
8.77 5.35
5.35 10.40

)
. If, for example, we compute (5), we have

d11(B) =

 1− 3B + 3B2 −B3 0 0
0 1−B2 −B4 +B6 0
0 0 1−B4

 , d12(B) = 03×2,

[
d′21(F )
d′22(F )

]
=


1− 3F + 3F 2 − F 3 1− 3F + 3F 2 − F 3

1− F 2 − F 4 + F 6 0
0 1− F 4

1− 2F + F 2 − F 4 + 2F 5 − F 6 0
0 1− 2F + F 2 − F 4 + 2F 5 − F 6

 ,

Ω11(B) = 2.96 − 4.33B + 1.54B2 − .59B3 − .93B4 + 1.35B5, Ω12(B) = −.66B + .65B2 − .22B3 +
1.15B4 − .92B5, Ω21(B) = 1.81− 2.89B + 1.54B2 − .59B3 + .22B4 − .083B5 and Ω22(B) = 2.67−
2.75B + 1.02B2 − .22B3 − 1.52B4 + 1.17B5 − .37B6 3

This example suggests a new general methodology that could be used to treat multivariate
structural time series models using polynomial methods. After writing a structural model
in polynomial form, an optimization routine would be used to estimate its parameters, and
then the implementation of the Wiener-Kolmogorov filter proposed in this paper could be
used to estimate the unobserved components.

10 Conclusions

This paper has shown how to compute a multivariate Wiener-Kolmogorov filter without
using state-space techniques. The procedure is computationally efficient and numerically
reliable. Some applications in official statistics have been outlined.

Many of the techniques that are proposed in the paper can be optimized taking into
account the Kronecker indices of the processes that are involved. This has not been done in
the paper in order to keep the exposition so simple as possible. As an example, in section

20



4.2 it may be possible, for k > k1 and depending on the Kronecker indices of the backward
process (25), to backcast the values of yk from less than all the components of yk−k1 , · · · , yk−1,
but the inclusion of the details on how to do so would make the paper more difficult to read,
without altering the essential ideas. See sections 1 and 2 in Hannan and Deistler (1988)
for a definition of the Kronecker indices and some applications of polynomial matrices and
state-space methods to discrete time linear stochastic systems theory.

APPENDIX A: Right and left matrix fraction descriptions

Leaving aside the algebraic properties, we provide some basic definitions that involve
polynomial matrices and a result on right and left matrix fraction descriptions.

Definition A1.
a) A s×m polynomial matrix is an s×m array that has as elements polynomials in a scalar
variable.
b) A polynomial matrix is said to be unimodular if its determinant is a constant.
c) Let P (z) and Q(z) be two s ×m polynomial matrices. If P (z) = P1(z) ·M(z) (P (z) =
L(z) ·P1(z)) and Q(z) = Q1(z) ·M(z) (Q(z) = L(z) ·Q1(z)) with M(z) (L(z)) a polynomial
matrix, M(z) (L(z)) is called a common right divisor (common left divisor) of P (z) and
Q(z) and P (z) and Q(z) are said to be multiples of P1(z) and Q1(z) respectively.
d)If M(z) (L(z)) is a multiple of any other common right (left) divisor of P (z) and Q(z), it
is called a greatest common right (left) divisor.

Definition A2.
a) A s×m rational transfer function T (z) is a s×m array that has as elements polynomial
quotients.
b) A right coprime fraction (r.c.f) or right coprime matrix fraction description, of T (z) is
a pair of polynomial matrices, (Nr(z), Dr(z)), of orders s×m and m×m respectively such
that:
(i) Dr(z) is non-singular.
(ii) T (z) = Nr(z)Dr(z)−1.
(iii) (Nr(z), Dr(z)) is right-coprime, that is, all its greatest common right divisors are uni-
modular matrices.
c) A left coprime fraction (l.c.f) or left coprime matrix fraction description, of T (z) is a pair
of polynomial matrices, (Nl(z), Dl(z)), of orders s×m and s× s respectively such that:
(i) Dl(z) is non-singular.
(ii) T (z) = Dl(z)−1Nl(z).
(iii) (Nl(z), Dl(z)) is left-coprime, that is, all its greatest common left divisors are unimod-
ular matrices.

Theorem A1. Given a s×m rational transfer function T (z), it can always be expressed as
a r.c.f. or l.c.f. T (z) = Dl(z)−1Nl(z) = Nr(z)Dr(z)−1

21



For a proof see e.g. Kailath(1980), sections 6.3 and 6.5
We provide an example of a 2× 1 transfer function expressed as a r.c.f and a l.c.f.

T (z) =

(
z(z − 1)(z + 2)

z + 1

)
· ((z + 1)(z − 1))−1 =

(
z + 1 z − 1

0 (z − 1)2

)−1

·
(

(z + 1)2

z − 1

)

References

[1] Ahlén and Sternad (1991), Wiener Filter Design Using Polynomial Equations, IEEE
Transactions on Signal Processing, vol. 39, no. 11, 2387–2399.

[2] Aparicio-Pérez, F. (2010): Polynomial Methods in Time Series Analysis, presented at
COMPSTAT 2010; Paris, France, Springer-Verlag.

[3] Aparicio-Pérez, F. (2011): Matrix Polynomial Computations with Applications in Time
Series Analysis, Working paper, INE, Madrid, Spain, (forthcoming).

[4] Burman, J.P. (1980), Seasonal Adjustment by Signal Extraction, J.R. Statist. Soc. A,
vol. 143, part 3, 321–337.

[5] Brockwell, P.J., and Davis, R.A. (1991), Time Series Analysis, Forecasting and Control
San Francisco: Holden–Day.

[6] Caines, P.E. (1988), Linear Stochastic Systems, New York: John Wiley.

[7] Chen, C.T. (1984), Linear System Theory and Design, Holt, Rinehart and Winston.

[8] Gómez, V. (2006), Wiener-Kolmogorov Filtering and Smoothing for Multivariate Series
with State-Space Structure, Journal of Time Series Analysis, vol. 28, No. 3, 361–385.

[9] Hannan, E.J. and Deistler, M. (1988), The Statistical Theory of Linear Systems, New
York: John Wiley.

[10] Henrion, D. and Sebek, M. (1998), Efficient Numerical Method for the Discrete-time
Symmetric Matrix Polynomial Equation, IEEE Proceedings, Control Theory and appli-
cations. 145 (5), 143–148.

[11] Henrion, D. and Sebek, M. (1999), Reliable Numerical Methods for Polynomial Matrix
Triangularization, IEEE. Transactions on Automatic Control, vol. 44, no. 3, pp 497–508.

[12] Kailath, T. (1980), Linear Systems, Prentice-Hall: Englewood Cliffs, NJ.

[13] Kalman, R.E. (1960), New Results in Linear Filtering and Prediction Theory, J. of Basic
Eng., Trans. ASME, Series D, Vol. 82, No. 1, pp 35-45.

22



[14] Kenney, C. and Laub, A.J. (1988), Controllability and Stability Radii for Companion
Form Systems, Math. Contr. Signals and Syst. vol. 1, pp. 239-256. Reprinted in Pa-
tel, R.V., Laub, A.J. and Van Dooren, P.M. (eds.) (1994) Numerical Linear Algebra
Techniques for Systems and Control, IEEE Press: New York.

[15] Kolmogorov, A.N. (1941), Interpolation and Extrapolation, Bulletin de l’Academie des
Sciences de U.S.S.R., Series Mathematics 5, pp 3-14.

[16] Lancaster, P. and Tismenetsky, M. (1985), The theory of matrices, second edition, with
applications, San Diego: Academic Press.

[17] Roberts, A.P. and Newmann, M.M. (1988), Polynomial Approach to Wiener Filtering,
International Journal of Control, vol 47, pp 681–696.

[18] Wiener, N. (1949), Extrapolation, Interpolation and Smoothing of Stationary Time Se-
ries, The Mit Press, Cambridge, MA. Originally published in 1942 as a classified docu-
ment.

23


	Multivariate Wiener-Kolmogorov Filtering by Polynomial Methods
	Abstract
	Keywords
	Contents
	1 Introduction
	2 Filter Equations
	3 An extended innovations algorithm
	4 Computation of the initial value
	4.1 Using the extended innovations algorithm
	4.2 A left-right matrix geometric series

	5 Running the filters

	5.1 Simultaneous implementation: a linear system of equations
	5.2 Cascaded implementation
	5.3 Parallel implementation

	6 Forecasting, fixed point and 
fixed lag smoothing
	7 The ARIMA case
	8 Numerical computations
	9 Applications in offcial statistics
	10 Conclusions
	APPENDIX A: Right and left matrix fraction descriptions
	Definition A1

	Definition A2

	Theorem A1


	References


