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Abstract

In this paper, we address the question of which subset of time series
should be selected among a given set in order to forecast another series.
We evaluate the quality of the forecasts in terms of Mean Squared Error.
We propose a family of criteria to estimate the optimal subset. Consis-
tency results are proved, both in the weak (in probability) and strong
(almost sure) sense. The results are generalized for the case in which
there are more than one series to forecast. We present the results of a
Monte Carlo experiment and a real data example in which the criteria
are compared to some hypothesis tests such as the ones by Diebold and
Mariano (1995), Clark and McCracken (2001 and 2007) and Giacomini
and White (2006).
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1 Introduction

If we want to forecast a time series #? using time series models, we have to decide

whether to use a univariate or a multivariate model, and in this latter case,
which variables to include in the model. Once the composition of the vector
time series has been decided, there are many tools to identify and estimate

the model. Consequently, in this paper, we focus on the first two decisions.
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More precisely, if we have a certain set of time series, which subset (hereinafter,
’subset’ will mean a certain subset of the whole set of time series available) is
the most convenient to forecast 2?7 An easy answer to this question is to
use all the time series, but if the number of series is large, the number of
parameters of the models is also large (usually growing faster than linearly).
In that case, the parameters are computationally difficult to estimate and even
if the computational difficulties are overcome, the estimates may have large
variances that render the models useless. Methods based in factor models try
to limit the proliferation of parameters while using all the information of the
panel. See, for example, Stock and Watson (2002) or Forni, Hallin, Lippi and
Reichlin (2005). On the other hand, many classes of models like VARMA do
not allow to include many series, since the number of parameter grows too fast.

If we want to use a model that does not allow large cross sections, a usual
approach to the problem is to use hypothesis tests. For example, a two-sided
test is described in Diebold and Mariano (1995), to compare the predictive
efficiency of two models. In Clark and McCracken (2001, 2007), one-side tests
are presented, that allow us to decide between nested models, rejecting the
null when the most parsimonious one does not encompass the other. Granger-
Causality tests (see Granger, 1969) are designed to determine if some series
included in a certain subset are indeed useful to produce forecasts. Giacomini
and White (2006) proposed a test of conditional predictive ability. In Pefia and
Sanchez (2007), a method to compare univariate and multivariate forecasts was
presented.

In this paper, we present a different approach. We select the subset, or cross
section, using a selection criterion rather than a hypothesis test. A great variety
of model selection criteria have been proposed, for example, the AIC by Akaike
(1973 and 1974), Schwarz’s (1978) SBC or the HQ criterion by Hannan and
Quinn (1979). The case of misspecification has been analyzed, among others,
by Nishii (1988) and Sin and White (1996).

Instead of the penalized log-likelihood, our criteria consist of the logarithm
of the mean squared h—step prediction error of 2 plus penalty terms that take
into account, not the number of parameters, but the size of the cross section.
Thus, it is not covered by most of the references cited above. The exception is
section 6 of Sin and White (1996), but we impose less stringent conditions on

the penalty terms.



In section 2, we describe in detail the proble of the optimal cross section
selection. We present in section 3 the class of criteria. Strong and weak consis-
tency results are proved for a relatively general class of models in section 4 and
in section 5 we show that the assumptions are satisfied in the case of VARMA
models.

In section 6, some further generalizations are discussed; we consider in sub-
section 6.1 the case that the subset is selected among a random class and then,
in subsection 6.2 the case that there are more than one series to forecast.

In order to assess the performance of the method, we have used Monte Carlo
simulations to compare the criteria to some hypothesis tests. Specifically, we
have considered the test by Diebold and Mariano and the ENC-T and ENC-
NEW test of Clark and McCracken and the conditional predictive ability test
by Giacomini and White. The results of this experiment are discussed in section

7. Finally, section 8 reports the results of an empirical application.

2 The optimal cross section

Suppose we want to forecast a certain time series z? at horizon h. For this
purpose, besides z¥ itself, we have at our disposal a set of time series {z{} with
i=1,...,N.

We also assume that for any subset I C S = {0,..., N}, such that 0 € I,

there is a forecast %' . of z) ., computed with the information contained in

t+hlt
the series of I. In other words, xgjrlh‘t is Fi(I)—measurable, where F;(I) is the
o—field generated by {z! :s <t}, 2l = (2% ... i) and I = {iy,...,i,}. In

0,1

tohlt is chosen as the optimal predictor in the sense that it minimizes

particular,

oo(1) = Bl(a},, — 2l )] (1)

among a certain class of predictors (later, it will be the class of the linear predic-

tors). The generalization to other loss functions remains for future investigation.
0.1
t+hlt

ments and it is independent from ¢ if z{ is strictly stationary. In the case of

The expression (1) is finite if z{, , and x have bounded second-order mo-
linear predictors, the condition can be relaxed to weak stationarity.

It is possible that some choices of I are ruled out in advance. Consequently,
the selection is restricted to a certain class of subsets Z C P({0,...,N}). Now,

we can state our problem, that is, to minimize o} in Z. Let us denote by Zy



the class of minimizers. In general, for any I € Zy, I C J implies J € Iy,
so the solution will not be unique. Therefore, it is natural to choose, among
the multiple solutions, those most parsimonious in some sense. Let §(I) be an
integer function of I, such that if I C J, then 6() < §(J) and if I C J, then
0(I) < 6(J). For the sake of generality, we allow different possibilities for ¢, but
in our experiments we use the cardinality of I.

Consequently, our aim is to consistently estimate a subset Iy that minimizes
0 in Zg. We call Zyg the set of such minimizers. In general, even Zgy may have

more that one element, but in some cases uniqueness can be proved.

3 Criteria

In real life, rather than the optimal predictor of z? ' ,» we will have an approxima-
0,1

t+h|t
We can define,

tion, & typically computed with an estimated model, say for ¢t =1,...,T.

~0,1 ~0,1

Eg,h = x?+h_x(t)+h\ta (2)

| T=h
i) = 5 Y )’ 3)

t=1

and the family of criteria
S

FO(I) = log 3 (1) +8(1)r (4)

where St is a nondecreasing function of 7" whose properties will be prescribed
in the following sections.

With this criteria, we choose the set It as

Ip = arg min;,FC(I). (5)

The necessity of restraining the choice of It in (5) to a certain class T

is due to the fact that the growth of #P({1,...,N}) = 2 makes, even for
moderate values of N, unfeasible to try all subsets. On the other hand, the
assumption that Z is always fixed in advance is not realistic. In some cases,
7 will be determined using the data of the series and thus it will be random.
Nevertheless, in order to introduce the main ideas of the consistency results, we
will present in section 4 the case of deterministic Z and in 6.1 we describe the

changes necessary to deal with the random case.



We have excluded the possibility of using more than one model for each
subset I. In that case, a natural extension would be to replace 67 (I) by the

minimum MSE across models. This variation remains for future research.

4 Consistency

In this section we will establish some conditions under which the estimate fT
described in the previous section is consistent. Given that the set of optimal
values, Zyg, may contain more than one element, we say that I is almost sure
or strongly consistent if there exists with probability 1 some Ty such that for
any T' > Tp, fT € Too. Then, we write fT 23 Too. We say that fT is consistent
in probability if P[Iy € Zo] = 1 and we write I — Zoo.

Assumption 1. The class T is closed with respect to union.

This assumption is not unreasonable. If two sets, I and J contain relevant
information to predict z9 ' h» it is natural to try I U J, so that the predictions

use both the information from I and J.
Assumption 2. All z] are weakly stationary and linearly regular.

If assumption 2 holds, the Wold decomposition of z{ can be written as

o]
] = WLy = ) Wil g, (6)
k=0

where ¢! are the linear innovations of =} and L is the lag operator.

Assumption 3. The following holds,

(a) €l is ergodic, with bounded fourth-order moments, E[el|F,_1(I)] = 0,
E[ele!l'|F_1(I)] = £, with £1 > 0.

(b) The continuation of ¥(z) to the unit circle has no unit modulus roots.

Under these assumptions, the best linear predictor of m?+h using {z! :1 <

s < t} is the best predictor, in the sense of mean squared error. We may, at

L As defined in Hannan and Deistler (1988). This property is also known as ”linearly, purely

nondeterministic”.



least theoretically, also consider the best predictor using x! with s from —oo to

t. Let us write both predictors as

t—1 [e's}
0,7 _§ : 0,1 k 0,I 0,I rk
IEDt,h - Pt,h,kL ) ]Ph - th,kL ’ (7)
k=0 k=0

where the coefficients in the second expression do not depend on ¢ due to the
stationarity of {. We can now write x?jr]h‘ , as P (L)af.

On the other hand, if we do not know the true model, but rather an estimated
one, we can compute the predictor coefficients as functions of the estimated

model coefficients and then, the estimated predictors can be written as

t—1 00
L0,7  _ 50,1 I_ 500 T ~0,]  _ 70,1 I_ 50,1 T
Topne = Pt,h(L)xt = E : thkTt—k> Toine = Py (L)zy = E , hokTi—k>
k=0
(8)
where, of course, 5@?,{ is a theoretical construct and we only introduce it for the
proof of the consistency results.

Some conditions on the coefficients above are required.
Assumption 4. The following holds,

(a) 151:)’}1],,c = P,?”,g + vr pwr, where [vrg| < rp wniformly in T, with Y, ry <
+oo and Y o e = O(s™%), a > 0 and wr = O(Q7), for Qr =
[loglog T /T2,

(b) With probability 1, uniformly for large T, |15£;L{k — p,?,ﬂ < gy, Vi <T,
where Y70 S 0wy, < +oo.

Here we use O(-) and o(-) for almost sure order (later, we write O,(-) for
order in probability). This assumption is related to the consistency of the model
estimates and to the decay of the predictor terms. The condition ), 7 < 400
is restrictive, but allows for some forms of long memory, since the decay of the
tail of the sum is allowed to be hyperbolic.

If almost sure convergence is not guaranteed, assumption 4 can be replaced
by a weaker version, in probability (of course, with weak consistency), with
wr = 0,(T~/?). We denote the weak version as 4bis.

NOTE: we do not impose any relationship between the data used to com-
pute the estimates and the data used to forecast, besides that the convergence

of the estimated predictors depends on T'. Thus, if we have a time series at our



disposal, we can use the whole series to estimate the model and to obtain the
forecasting residuals of (3) or we can split the series into a length-T, part to
estimate the model and another one of length 7 to obtain the forecasting residu-
als. The assumptions hold as long as 7, and T are in an adequate relationship,
e.g. limrT./T € (0,+00). On the other hand, the models can be nested or
nonnested and they can be identified by whatever method is preferred, as long
as congistency is ensured.

We establish first the following rate of convergence.

Lemma 1. If assumptions 1, 2, 3 and 4 hold, then for any I,J € Iy, 62 (1) —
62(J) = O(Q%). If assumption 4bis holds instead of 4, then 63(I) — 63 (J) =
O,(T71h).

We can state now the main result in this section,
Proposition 1. The following holds.

(i) If the assumptions of lemma 1 hold and St/T — 0, St/loglogT — +o0,
then f E} I()O-

(ii) If assumption 4bis holds instead of 4 and Sy/T — 0, Sy — +oo, then
I -2 Too.

NOTE: if we extended our framework to allow for an infinite time series class
T, we could analyze the case that there is not a finite optimal cross section. In
that case, the asymptotic optimality of the predictors could have more practical
relevance than consistency. Something similar happens in the context of order
determination of autoregressive models when the process is an AR(oc0) (see
Shibata, 1980).

With an additional assumption we can also prove uniqueness.

Proposition 2. If assumptions 1-3 hold and in addition, T is closed with respect

to intersection, then Loy has only one element.

5 The VARMA case

In this section we show that in the framework of VARMA models, with quite
usual methods of identification and estimation, we can use the criteria to con-

sistently estimate the optimal cross section. We will consider models of the



form
®(L)z{ = O(L)ef, 9)

where ®(L) and ©(L) are matrix polynomials and &/ is a vector of innovations.
For identification purposes, the class of the ARMA models is usually partitioned

in subclasses indexed by a multi-index « in some different ways, for example,
(a) a = (p,q), where p and ¢ are the degrees ¢ and O.
(b) a = (ag,...,as) the Kronecker indices.

We denote the subclasses of the partition as M(I,a). Then, the identifi-
cation of the ARMA model for ! consists of estimating the multi-index & (1)

among a certain set A(I). For example, we can use a consistent information

0,1
t+hlt

being the best linear predictor corresponding to the VARMA model estimated
by maximum likelihood in M (I, &(I)).

Let us now express the assumption of good specification as,

criterion such as BIC. Then, I is estimated as described in section 3,z

Assumption 5. For any I € T, there exist a multi-index ag € A(I) and matriz
polynomials ®}(2), 08(2) in M(I,a) such that,

(a) @5(L)xi = Of(L)e; -
(b) For any z such that |z| < 1, |®o(2)], |O0(2)| # 0.

We need a technical lemma, before establishing the consistency of I. In this

lemma we omit for simplicity the superscript 1.

Lemma 2. Let us assume that ®,0 are such that |®(z)|,|0(z)| # 0 for any z,
|2 <1 and, ® = ® + O(Qr), © = O+ O(Qr). Then,

Hpi(z),k — Pyl < uruy, (10)
where ur = O(Qr) and vy, = O(p*) and 0 < p < 1.
With this lemma, we can prove the following proposition.

Proposition 3. If assumptions 1, 2, 3 and 5 hold, then assumption 4 also holds
and jT E) Ioo.

Lemma 2 and proposition 3 can be easily adapted to the case of convergence

in probability.



6 Generalizations

In this section, we consider some variations of the framework described in the
previous sections.

In 6.1, we consider the case that instead of choosing the subset among the
elements a fixed Z, we have a random 7. This generalization is necessary if
there are so many series that a preliminary work is done in order to discard
some subsets before using FC. If the pre-selection is done using the data of the
series, then the subset is in fact selected among a random class. We provide
some natural assumptions under which the FC-selected I7 is still consistent.

In 6.2, we analyze the case that we are interested in forecasting several of

the time series available with the same multivariate model.

6.1 Random 7

We will now choose I as argminsez, FC(I), where Z7 is random and possi-
bly depending on the time series, whence the subscript. In order to achieve
consistency, it is necessary to impose some constraints in the behavior of Zr.
In particular, we have to avoid the case that there are optimal subsets, say I,
such that I € Zp and I ¢ Zp infinitely many times. For the sake of brevity,
we restrict the analysis to the strong convergence results, but it can be easily
adapted to the weak case.
Let us define,

70, = {IeP{0,...,N}): P[I €limsup,Zr] = p}, (11)
7. = {IeP({0,...,N}): P[I € liminfrZr] = p}, (12)
where
limsup;Ar = ﬂ U As, (13)
T=1S5=T
liminfrAr = | [ As. (14)
T=15S5=T

We can now express more precisely the condition on Z7.
Assumption 6. I\ # () and for any J € -, T N\ZL, o3 (1) > O .» where

Ths = in ar(I). (15)



If the inequality holds as equality, then §(.J) > min{6(I): I € Z' }.

With this assumption, we can focus on the set Zio. Let us denote by Zo o
the minimizers of 0% in l(l)o and by Z 00 the minimizers of § in Zo, g. Then,

we can state the following proposition,
Proposition 4. If 1, 2, 8, / and 6 hold, then Ir &% Zs,00-

With the generalization to the random Z7, we can analyze some examples.
We present one in which a scheme to build Z7 using the data is combined with
FC to provide a consistent estimate of the —in this case unique— element of

Zso,00- Then, we analyze other method that produces inconsistent estimates.
Example 1. A consistent method to select fT.

Let us consider the following scheme to build Zr.

(i) 1° = {0}.
(ii) For k>0, I* = I*=1 U {j}, where j = argmin, g pu— G2 (11U {5}).

The process ends with IV = {0,..., N} and then, Zy = {I°,...,IV}. In order

N according to (i)

to study the asymptotic behavior of Z7, we define I°,...,T
and (i) but with o} instead of ;. Let us write o} (I°) > o2(I') > ... >
o2 (I*) = ... = o} (I"V), where for the sake of simplicity we also assume that
the inequalities are strict.

It is easy to see that under the assumptions of section 4, w.p. 1, for any
j < ko, '’ — II. Thus, {I°,...,I*} C Z'_ and for §(I) = #I, assumption 6
holds. Then, I chosen among the elements of Z; according to FC is a consistent

estimate of I*o.
Example 2. An almost surely inconsistent method to select fT.

We want to forecast «f,; using information up to ¢ with VAR models. We
can use the scheme (i)-(ii) from the previous example, but now, we make a
hypothesis test on Hy : @95, = 0, for { = 1,...,p. That is, we test that the
coefficients of z! in the equation of z{ are null. Then if we reject Hy, we go on
to the next iteration of (ii), but if we accept, then the process terminates and
Ir=TI*

10



We can see that with probability 1, Ir » I*o where ko is as in example 1.
Under the assumptions of proposition 1, the estimates (Z)OJCJ satisfy a Law of

the Iterated Logarithm and then, w.p. 1,

Do — P
lim sup 20kt — TORL al/g, (16)
T Qr
where a is the variance of the asymptotic (gaussian) distribution of T2 (&g 4, —
®p 1.1). On the other hand, we reject at 100 x (1 — )%, when

Do.1.1

T-ij2g17z| > S (17)

where &, is the value such that P[Z > £,] = a/2 when Z is a a zero-mean,
unit-variance Gaussian. From (16), we know that with probability 1, even if the
null hypothesis holds, there exists a subsequence such that the left side of (17)
diverges to infinity as loglogT. Thus, with probability 1, Ir # I*o infinitely

many times as T — oo.

6.2 Forecasting Multiple Series

Let us now introduce the case that we want to forecast several time series. In or-
der to maintain as much as possible the notation of the previous sections, in this
section the symbol z mean (2}, ...,2") and thus, 2] = (2},..., 2",z ... zi")".
If we intend to apply the techniques of the previous sections to this case,
it is necessary to adapt the criterion of optimality o7 (I) = minjez o3 (J). We
can use the order relationship defined in the set ST of the symmetric positive

semidefinite matrices by
A<B<+<=3CeST,B=A+C. (18)

Now, we can adapt the results of the m = 1 case. If ¥ (1) is now the matrix

I, (19)

where 5? bt is as in section 2, but now a vector, the symbol Z; denotes the set
all I € 7 such that Xp(I) < Zp(J) for any J. If {0,...,N} € Z, then 7 is

nonempty. Again, Zy is defined as in section 2.

!
En(l) = E[5?+h|t5g+h\t

The relationship < in S™ does not directly provide a criteria to select I be-
cause it is not a total order relationship, so we have to summarize the informa-

tion of 3, (1) into some scalar. We can do it with a scalar function v : ST — R.

11



We will study the asymptotic behavior of I with a quite general family of

such functions. We only restrict v in the following way,
Assumption 7. v satisfies the following properties,
(a) It is strictly increasing, that is, for any A,B € St such that A < B,
v(A) <v(B) and if A < B and v(A) = v(B), then A = B.

(b) In any region A such that VA € A,det A > p > 0, v is Lipschitz with
respect to some matriz norm || ...||, that is, there exists L(A) > 0 such
that [v(4) — v(B)| < L(A)|A - B].

It is obvious that the elements of Zg are minimizers of v, but also if Zy # 0,

then every minimizer of v, belongs to Zy. Hence, if we define the criteria
St

Tﬂ (20)

FC(I) = v(Sh(1)) + 6(1)
then we can consistently estimate Zgy with I as in section 3.

Proposition 5. The following holds,

(i) If assumptions 1, 2, 8, 4 and 7 hold and St /T — 0, Sy /loglogT — +o0,
then f E} Ioo.

(ii) If assumption 4bis holds instead of 4 and St/T — 0, Sy — +o0, then
I -2 Ty
Some examples of v are,
v1(X) = log det X.
2(X) = log try.
v3(X) = log 7Y X;.

Proposition 6. Functions vy, vy and vs satisfy assumption 7.

7 Monte Carlo experimentation

We have made a simulation experiment to assess the performance of the criteria
in selecting the optimal cross section. Let us consider the following bivariate

Data Generating Process,

DGP, 20 = 520+ bxt, +&Y (21)
T = bl +ef ’

12



where (£9,¢])’ is a zero-mean Gaussian white noise with unit covariance matrix.
When b > 0, the optimal cross section to forecast z¢ at horizons h = 1,2,3 is
I ={0,1} and when b =0, it is I = {0}. We want to assess the performance
of the criteria for the selection of the optimal cross section by comparing them
to several tests, namely the S; test of Diebold and Mariano (1995); the ENC-T
and ENC-NEW tests described by Clark and McCracken (2001); the conditional
predictive ability test by Giacomini and White (2006, GW) and a Granger-
Causality test (GC) by Granger (1969). Note that the ENC-T and ENC-NEW
cannot be applied to forecasting horizons greater than 1, whereas the Granger-
causality test does not make an explicit distinction between forecasting horizons.

The performance of the tests is usually measured in terms of power and em-
pirical size, but we are interested in measuring the frequency of correct selection
of the optimal cross section. The acceptance/rejection is related to the choice
of the cross section in different ways depending on the specific test. In the case
of the encompassing tests and the Granger-causality test, we select I= {0,1}
if the test rejects the null and I = {0} if it does not. In the case of the equal
forecast accuracy test Sp, we select I= {0,1} if the test rejects and the error
with I = {0} is larger and we select I = {0} otherwise. For the GW tests of
conditional predictive ability, we use the decision rule proposed in Giacomini
and White (2006) with ¢ = 0. We have to specify in advance the significance
levels of the tests. For each of them, we set significance levels at 90% and at
95%.

Regarding the criteria, we have chosen §(I) as the cardinality of I. Two
penalty functions are considered, the BIC-like, ST = logT and the HQ-like,
St = 2loglogT. We denote the first as FC; and the second as FCs. For
the latter, we have not established strong consistency but only consistency in
probability, but this is not relevant to the experiment.

As we explained in the note before lemma 1, the criteria can be computed
either using the whole series to estimate and forecast or splitting the series into
in-sample and out-of-sample parts. In this section and in the following one, we
denote by FC} and FCJ the criteria with out-of-sample forecasts. The parameter
estimates for FC} and FC35 and for tests S;, ENC-T, ENC-NEW are obtained
with the first 5/7ths of the observations and the out-of-sample forecasts with the
last 2/7ths. The GW test is designed for a fixed or at least bounded estimation

window. In our simulations, the window comprises the first 40 observations for

13



T < 100 and the first 100 for 7" > 100.

In order to obtain the forecasts, we have to determine models for I = {0}
and for I = {0,1}. We have run the simulations in two different ways, (a)
fitting AR(1) and VAR(1) models for I = {0} and I = {0, 1} respectively and
(b) fitting AR(p) and VAR(p), with p selected by the BIC. When the order
is selected by BIC, the order of the univariate model may be greater than the
order of the multivariate one. Then, the models are nonnested and some of the
tests cannot be applied. Furthermore, the results do not show a significantly
different behavior with respect to the ones with fixed p. Thus, we have not
included their results but they can be obtained from the author.

We generated M = 5,000 realizations of DGP; for b = 0,0.05,0.1,0.2 and
for different series lengths (50, 100, 200, 400, 800). In table 2, we represent the
frequencies of selecting {0, 1} for each of the combinations of b and length and
for each of the tests or criteria.

We have designed additional scenarios to check the performance of the crite-
ria under different conditions. In order to check the effect of heavy-tailed noise,
we have run simulations of a process with the same autoregressive structure as
DGPy, but €9 and ¢} are t—distributed with 4 degrees of freedom. We call this,
DGP».

Part (a) of assumption 4 involves consistency of the estimated predictors to
the optimal ones. As we saw in section 5, this holds for well-specified ARMA
models. However, we want to assess the performance of the criteria when the
models are misspecified and thus, consistency is not guaranteed by our theoret-
ical results.

In the first misspecifiacion scenario, the DGP is a VAR(2). In this case, it
only makes sense the fixed order (p = 1) estimation in order to preserve the

misspecification condition.

DGP 2} = 1/32) + bx} +2/929 , +e? (22)
|t = 1/3x)_, +2/9z}_, +el.
The next case, DGP, is as DGPy, but €? and ¢} are GARCH,
e = V& he=pn+phio +alel_)?, (23)

with pp = .05, ¢ = .8, a = .15 and & ~ WN(0, 1).

14



Finally, we generate a MA(1),

20 = &% 450, +bel_
DGP; 4 ! T (24)
xt = Et +'56t—1'

In tables 2-6 we present the frequency of selecting I= {0,1}.

The comparison between different selection methods, either tests or criteria
involves both the probability of correctly selecting {0,1} when b > 0 and the
probability of wrongly selecting {0,1} when b = 0. If both probabilities are
greater for method A than for method B, we say that it is less conservative. If
the probabilities of correct selection are greater for method A in both cases, we
can say that A outperforms B.

By looking at the tables 2 and 3 we see that FC; is more conservative than
FC; (but for b = 0.2), ENC-T at 90%, ENC-NEW at 90% (but for b=0.2), and
GC and outperforms ENC-NEW and ENC-T at 95%, GW and DM except for
h =3 and b,T small.

On the other hand, FCs is less conservative than DM at 90% for h = 1,2,
DM at 95% and ENC-NEW, more conservative than GC and outperforms ENC-
T and GW. The criteria FC} and FC3, not surprisingly, are more conservative
versions of FC; and FCs.

When the model is not correctly specified (tables 4-6), we see that, the
relations are generally not very different, but if we are interested in forecasting
at horizon h > 0, the GC can produce extremely bad results when the model
is misspecified as in DGP5 (in fact, this example was intentionally included to

illustrate the risks of using the GC-test for this purpose).

8 Empirical example

In this section, following Clark and McCracken (2001), we will try to determine
whether the unemployment rate is useful to improve the 1-step forecast of in-
flation. More specifically, the variable to forecast z9 will now be the second
difference of the logarithm of the USA CPI index without food and energy and
x; will be the first difference of the unemployment rate among males between
25 and 54. The quarterly series run from 1958:Q3 to 1998:Q1.

Using the notation of the previous sections, we want to choose among I = {0}
and I = {0, 1} as the optimal cross section. We will make our choice using the

same criteria and tests as in section 7.
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As in the previous section, we have obtained the criteria both using the whole
series to estimate and forecast and splitting it into in-sample and out-of-sample
parts.

All the tests but the Granger-causality require out-of-sample forecasts. We
divide the series into periods 1958:Q3 to 1987:Q1 and 1987:Q2 to 1998:Q1, so
that their lengths are in relationship of 1 to 0.4. We use a fixed scheme, that
is, the models are identified and the parameters estimated with the data of the
in-sample period and they remain fixed for all the out-of-sample period.

Instead of using only autoregressive models, we use ARMA and VARMA
with autoregressive and moving average orders up to 3. According to the BIC
criterion, with the data of the in-sample period we choose a MA(1) model for
I = {0} and a VMA(1) for I = {0,1}. This is very convenient because then,
the models are nested and we can use the encompassing tests ENC-T and ENC-

NEW. The models identified and estimated with the in-sample period data are,
z¥ = &) —0.3298(0.0959)&_,,
where the variance of €? is 2.7882 and
{ z) = e — 0.4415(0.0943)eY_, — 1.3051(0.3798)e}_,
z; = e} +0.0446(0.0187)cY_; + 0.6864(0.0710)e;_,

where the covariance matrix of (e?,¢})" is,

o _ [ 25170 -0.0844
) —0.0844 0.1178 |~

The numbers in parentheses are the standard errors of the estimates. The results
of the tests and criteria that are computed with out-of-sample forecasts are in
the upper part of table 1.

On the other hand, for the GC test and FC; and FC, criteria, we have iden-
tified and estimated the models with the whole series from 1958:Q3 to 1998:Q1.
According to the BIC criterion, we choose now a MA(1) model for the univariate

and a VAR(1) for the multivariate. The estimated univariate model is
z9 =&Y —0.3470(0.0546)Y_,,
where the variance of €7 is 1.4281 and the multivariate one is

29 = —0.3450(0.0749)20 , —1.1229(0.2888)z} | + 2
zl = 0.0550(0.0164)z% , +0.6548(0.0629)z! | + !,
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with covariance matrix

o _( 19083 -0.0629
) ~0.0629 0.0911 |~

In the lower part of table 1 we include the results of the CG test and the
criteria FC; and FC, with parameters and forecasts computed using the full
sample.

The results agree with Clark and McCracken (2001) even if the conditions
are slightly different. The encompassing tests and our criteria indicate that
the unemployment is relevant to forecast inflation based on the out-of-sample
forecasts (upper part of table 1). On the other hand, the GW and S; tests
do not reject their respective null hypotheses of conditional and unconditional
equal predictive ability.

The analysis without splitting of the series, which is summarized in the lower
part of table 1, points in the same direction as the encompassing tests. Both
criteria FC; and FC, yield lower values for I = {0,1} and the Granger-Causality

test clearly rejects the null.

test/crit. | statistic = 10%-CV | crit. I = {0} crit. I = {0,1}

FCT -1.018 -1.045

FC3 -1.042 -1.092
in-sample estimates ENC-T 1.656 1.645
out-of-sample forecasts ENC-NEW 9.697 1.003
S1 0.5481 1.645
GW 3.7862 4.605

full sample FC, 0.7376 0.7083

for estimation FCo 0.7163 0.6859
and forecasting GC 15.115 2.705

Table 1: The first column indicates whether the series is split into in-sample (to
estimate) and out-of-sample (to forecast) periods or we use the full-length series
to estimate and forecast; the second column is the test or criteria; the third is
the value of the test statistic; the fourth is the 10% critical value and the last

two are the values of the criteria for the two possible cross sections.

A Proofs

Proof of Lemma 1. If we prove the lemma for I C .J, then it is easy to see that
it holds for any I,J € Zy. We just have to apply it in turn to I C T U J and
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J C I'UJ. Thus, with no loss of generality, we assume that I C J = I UK,
where IN K = .

We can decompose the predictor as P07 as [P0 PO/?]
P%’J(L)mt = ]P’O e (L)xtI—HP’%J’Q(L)xtK. Since ED?{J is the least squares predictor,

then the minimum of the quadratic functional,

in such way that

(P,Q) = a(P,Q) = Bla}y,, — P(L)z; — Q(L)z( %, (25)

is attained at (P?L’J’l,l}"g"]’g) and the minimal value is o7 (J), but this value is
also attained at (IP’?’}{, 0), because [ is also in Zy. If the functional ¢ is strictly

convex, then the minimum is unique and,
0,71 _ m0,I 0,72 _
Py =P, Py =0.

We can see that the strict convexity of ¢ is equivalent to the condition that
P(L)z! + Q(L)zX = 0 implies P,Q = 0, but this property holds when z;
is linearly regular (see Hannan and Poskitt, 1987) and ¥ does not have unit
modulus roots.

Let us turn now to 63 (.J) — 67 (I). First, we can see that only O(T~') terms

are neglected if we replace 67 () by 67 (1), where

| Tk
. .0,
on(l) = T Z(eg,h)Q, (26)
t=1
and -
.0,1 A0, T I
5?,h = m(t)+h - ?z (L)zf = m?+h - Z Pi?kmt k- (27)
k=0

. R 1 .
AURLAVEED S [EHECHER (28)
t=1

We can write
087 = GOl = 1€t — €l €0 + €0l (29)

and consequently,
|(5th) |<Z| _Pohk| |$t(5th+é?}lz)|§ (30)
P EACYEAAIE (31)
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Using assumption 4(a), we can bound é?’,{ and ég’,{ by random variables with

uniformly bounded second-order moments. This implies that
(€3)° = (E0n)°1 < G (32)
Z E( < +o0. (33)
t
Then, by theorem 2, page 66, in Gihman and Skorohod (1974), we get that
>, [- ] in (28) is bounded with probability 1 and then 63 (I)—63(I) = O(T™1).

We can now use the ¢2 terms instead of the 62 ones, in the difference 63 (J) —

67 (I). Then, we proceed as

— 1 0,J :0,J | 0,1
T Z [ o i) Et h ] [Et,h — & h] [Et,h +Et,h] . (34)
t=1 t=1
On the other hand, we can write
.0,1 A0,
5?,h = $?+h - ?L (L)a:g, (35)
with Q)" = [Q) : 0] and Q)'(L) = Y42} PowLF. Then, 63(J) — 63 (1)
equals
t—1
50,1 % 50,0 | H0,T,x
T Z Z ( R,k )xij—k] l2x?+h - Z (Ph,z + Ph,l ) mij—l] . (36)
t=1 Lk= =1

We will denote the first [...] factor as a; whereas the second is decomposed as

bt + Ct, with

. 0,J
bt = 26t,h7
t—1
_ 0,J  p0J  HOIx\ _J
Ct = (2Ph,l - Ph,l - Ph7l ) L1
1=0

where e}, = 2}, — Let us deal first with the product (1/T) 3", a;by,

t+h|t

| T=h | T=hi-l
50,J 50,1 0,J
T Z aby = 2? Z Z (Ph,k ~Thk )l'i] KE¢.h - (37)
t=1 t=1 k=1

We can swap the order of summation and use that the difference in parentheses

does not depend on t. Thus, it becomes
T—h—1

T—h T—h—1
- - 1
o % A G
2 Z {(P,(;k — ;ik ) T Z xgk6?7h} =:2 Z Aksk,T. (38)
k=1 k=1

t=k+1
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Let us write now

Ay sk sk, 7]
rp—— < 39
Xk: g Qr — (39)
<M Z |3kT| + Z |3kT| (40)
k<g(T QT k>g

where the first inequality is due to assumption 4. If g(T) = (log7T)*, then
by lemma 5.3.5 in Hannan and Deistler (1988, hereafter, HD), we have that
SUPg<g(r) ISk, 7| = O(Q7). Thus, the first term inside the brackets in (40) is
O(1). On the other hand, supy<j |sx,7| = O([log T/T]*/?) by theorem 7.4.3,
again in HD, B

sk, x| logT 1/2
> At < M(logT) ™ ) (41)
k> (log T)e Qr 08108

Thus, if @ > 1/(2«a) then (39) is bounded with probability 1

We put now (1/T) 3", a;e; = Zkyl AkaJ,TA;, where Gy ;.7 is defined as
/7y, mi]—kwij—ll and A, := 2P,?7’ZJ —If’}?”l‘] —13,37’11’*. Using that Gy 1 is almost
surely uniformly bounded (this is implied by Theorem 5.3.2 in HD), then

~/

Z GLlT ; <M<Zrk> : (42)

With this, the first part of the lemma is proved. For the order in probabil-
ity, it is only necessary to replace Q7 by T~'/? and use that T~'/?E|s; 7| is

uniformly bounded. Let us see this.

E|sg,r| = Z\Il‘] Z el ]sth < (43)
t=k+1
o\ 1/2
Z\I} Z el k_j€ (44)
t k+1

The term inside (-)'/? can be written as

h 0

1 J g Il T T 0,7 _0,J =2

w5 O DB (el el e S - (D) S e,
v=1 j

il ts
(45)
because of assumption 3 and the fact that 82’}{ is the first component of vector
h—1
Z ‘Iri (t]Jrh v O

20



Proof of Prop. 1. In order to prove strong consistency of I7 it suffices to prove
that w. p. 1, every convergent subsequence converges to an element of Zgyg.
We avoid cumbersome notation by using Iy for a convergent subsequence. If
Ir - J, we will show that necessarily J € Zyo. Let us consider first the case
J ¢ Iy and then, J € Zy \ Zoo-

If J ¢ Iy, then for any I € Iy, o;(J) > o3 (I). For large T, Ip=J, so

FC(Ir) - FC(I) = log 67, (J) — log 67, (1) + [6(J) — 5(1)]%, (46)

and the first difference in the right hand side converges to a strictly positive
value, whereas the last term converges to zero. Thus, w.p. 1, for large T |
FC(Iy) — FC(I) > 0.

For the case J € Zy \ Zoo we need the order of convergence of log 62 (.J) —
log 63 (I) established in lemma 1 for I € Zy, I C J. We can write

SO0y A2
log 62(.J) —log 62(I) = log { 1 + M : (47)
o (1)
and by a first-order Taylor expansion, we obtain
2207y _ 22
log62(J) — log 2 (1) = [1 + o(1)] { L= 2aD (15)
o, (1)
Since 63(J) — 63 (1) = O(Q%),
FC(J) - FC(I) _ St

Q3 =0+ loglog T’ (49)

that diverges to +oo and then, for large T, Ir #J.

The same arguments can be easily adapted to prove consistency in proba-
bility. O

Proof of Prop. 2. Let us assume that there exist I and J in Zyg such that
I # J. Let us consider a partition of the predictor of K = T U J as ]P’?L’K =

(]P)(}JL,IOJ7 Pg,I\J, P%J\I)'

that IE"%J\I = 0 and ]P(,)L’I\J = 0. Consequently I N J has the same predictor
as I, s0 op(INJ) =0op(I) and INJ € Iy, but I'NJ C I. This implies that
0(INJ) < §(I), which contradicts the assumption that I € Zgg. O

Now, proceeding as in the proof of lemma 1 we get

Proof of Lemma 2. If § is a vector containing the free coefficients of ® and 0,

and p) , = vec(Pp ), Py, = vec(Py ) we can write

ap(f)uk

op’

(£3)(B - B), (50)

00 0
Dik =DPhi T+
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with 5 between 8 and 3. We will see now that 5ph7k/6ﬁ'(§g) = O(p*) uniformly
in T. By introducing the rational function Wy (L) = E?io U,y ;L7, we can
express the h—step predictor of the vector satisfying the ARMA model as Py, =
I, with II(L) = ©'(L)®(L). We can differentiate P, with respect to j3
(using rule 7 from the Appendix A13 in Liitkepohl, 1991) as
Ovec(PPy) Ovec(Il) ovec(¥py))
op' op! ap
where T is the identity matrix. Applying in turn the same property to ¥, =
L~h[&(L)"'O(L) — 2", W, L"] we get that

= (I ¥y +(I'®I) (51)

n Ovec(¥n) _1,0vec(0)
=g = (I=e7) =5~
, Ovec(®™1) <~ dvec(T,)
+ (0'®I) o5 —;:O o5 L. (52)

Let us now consider the expressions above with ®, 0, etc. as functions of
£ 3 and let 1 < r < min{rg,ro} where rg and rg are the radii of convergence
of |®(z) '] and |O(z) | evaluated at {5 = f. With probability 1, there exists
a certain Ty such that for ' > T, 5 is so near to § that the radii of |®(2)
and |©(z)~'| are greater that r. Since the decay of the power series appearing
in (51) and (52) depends only on ® and ©, and given that P as a vector is the
first row of P, we conclude that dp}, , /0B'(€5) = O((1/r")¥) for any r' < 7.

O

Proof of Prop. 3. For any I, by theorem 5.5.1, page 205, in Hannan and Deistler
(1988), &(I) = ap(I). Therefore, with probability 1, there exists some T} such
that for any T > T1, &(I) = ao(I). Then, the estimates ®(z) and ©(z) satisfy
a Law of Iterated Logarithm and we can apply lemma 2 and then, assumption
4(a) is granted.

We can use the state-space representation of the VARMA model to prove
that assumption 4(b) holds,

rl = HZ,

(53)
Zy = FZi 1 +&.

With this representation, we obtain that the predictions of m,{ 1, using either

{2l —co < s <t}or {zl:1< s <t} satisfy
Li+nlt = HFth|t (54)

Zt‘t = (F — KtH)Zt71|t71 + Kt.’EtI

22



For the case of the estimates using all the past from —oo the relationships
hold with the limit Kalman gain K; = K. Then, it can be proved that if
Zy, = P(L)a! is the prediction of Z; with {z : —co < s < t} and Zy, = Py(L)a!
is the prediction with {zf :1 < s < t}, then

Py(L) = K+ (F—-KH)P, (L)L, (55)
K+ (F - KH)P(L)L. (56)

=
>
I

Under the assumptions on ®(L) and ©(L), the eigenvalues of F'— K H are inside
the unit circle and K; — K exponentially. We put ||K; — K|| = O(p!), with
p € (0,1). Then, if we denote by ||-||; the norm || ", A L*|| =Y [|A||, then,

Py —Plly < ||Ke — K|+ ||F — KeHI| - [Pe—1 — Plly + [|[K — K| - [[HP|[, <
O(p") + plIPr—1 = Pl < ... < O(tp"). (57)

IN

Thus, the series Y_;° ||[F"(P; — P)||1 is convergent. If we consider the predictors
with the estimated model, P and ]f”t, then by continuity of the state-space rep-
resentation, it can be proved that the bound is uniform for sufficiently large T
Consequently, assumption 4(b) yields.

O

Proof of Prop. 4. With probability 1, there exists 77 such that for all 7" > T7,

1., cIr c |J e (58)
p>0
Let us assume with no loss of generality that I 1Io. By assumption 6, we can
discard with probability 1 all elements in P({0,..., N})\ Z., as possible limits.
On the other hand, any I such that o3 (I) > 0,217* can be ruled out. We conclude
by applying lemma 1 with Zy = 7 .
O

Proof of Prop. 5. First of all, lemma 1 applies to the m > 1 case without any
changes. Then, the proof of proposition 1 can be easily adapted. It is only

necessary to see that

FC(J) = FC(I) > ~L|IZ3 () — ER(D)| + [6(J) — 5(1)1%, (59)

where |[$2(J) — £2(I)|| = O(Q%). Then, for I € Toy,J € Ty \ Zoo, FC(J) —
FC(I) 2% +o0. O

23



Proof of Prop. 6. Let us see that vy, vs and vs satisfy assumption 7. The fact
that v and v3 are nondecreasing is obvious, since the diagonal elements of any
matrix in ST cannot be negative. On the other hand, for any A € S*, trA =0
implies A = 0 and thus, they are strictly increasing. The property (a) for v; is
a consequence of theorem 18.1.1 in Harville (1997).

The Lipschitz condition is again obvious for v, v3, whereas for v, is due to
the fact that the derivative of log det ¥ is ¥ ! and the norm of X! is bounded
when X is bounded away from zero.

O
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