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1 Introduction

The study of income distributions is a crucial issue in the analysis of welfare, inequality and poverty,
and can be a major concern for economists, governments or different international institutions. It is
well known that any welfare measure and determinant of poverty or inequality can be derived from
either the density or the cumulative distribution function. Besides these aspects, the calculation and
simulation of actual and potential income distribution functions, respectively, as well as their evolu-
tion over time according to different scenarios, it is useful to analyze social mobility, the impact of
a crisis, re-distributive policies, market opening (globalization), or poverty and inequality reduction
(e.g., Fuentes (2005)). This might be of interest at different levels, may it be the regional, national or
global one.

A frequently studied issue in applied economics is the calculation of income aggregate functions
derived from subgroups (Griffiths et al. (2005); Chotikapanich et al. (2007)). A typical example is
the estimation of the global income distribution (see Milanovic (2006); or Sala-i Martin (2006)) by
integrating the income distribution of all countries. In order to compute the world income, often the
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countries are considered as the units of the population. If, however, the households or citizens are
the units of interest, then one has to account for the different population sizes of the countries: so it is
necessary to integrate over the countries’ income distributions, weighted accordingly to the popula-
tion size of each country. Differently from what one can find in the literature, the information about
the mean income and population size of each country is not sufficient for obtaining a reasonable dis-
tribution estimate because the disregard of the national dispersions, asymmetries, kurtosis, etc. will
greatly underestimate the corresponding moments of the international income distribution. Clearly,
any subsequent inference related to them, like for example the derivation of poverty or inequality
measures, is then biased too. The here presented method allows for aggregation with or without any
kind of weighting.

The estimation of income distribution functions essentially depends on the data available to the
researchers. Such data may be obtained through various sources: administrative records, censuses,
samples, surveys, panels, etc. In many cases, however, the information available to researchers is
limited to grouped data or quantiles of income from household surveys or administrative records.
Moreover, grouped data are the only source of information on income distributions in many countries
or regions playing therefore an important role in the determination of poverty and inequality at the
worldwide level. The process of assembling the data can be described as follows: income information
of a large number of individuals is summarized through the use of clusters, say intervals, organized
by an ascending order of income levels. This grouping may be symmetrical (referring to equidistant
quantiles, i.e., the number of individuals in each of the intervals being the same), or asymmetrical
(income intervals with therefore different numbers of individuals associated to each interval).

In the case of estimating the actual income distribution for each region or country of interest, one
would like to have a method that allows for both, recovering the whole income distribution on the
one hand but also recovering the variability or say, uncertainty of the obtained result given the lack
of information when provided only with grouped data. The same is true if the objective is rather the
simulation of distributions that happen to produce grouped data as those we observed. This is an
essential ingredient of micro-simulation studies. In all mentioned situations the correct interpreta-
tion of ’uncertainty’ depends on the underlying model or procedure used for the estimation and/or
simulation. From a statistical point of view this translates to the question of whether a (pre-specified)
parametric or a nonparametric distribution is considered. The choice between them depends on how
researchers use the available information: in either a fixed or a more flexible manner. Nonparametric
methods give more importance to the information provided purely by the data, whereas the paramet-
ric approach gives more weight to the model specification emerging from some hypotheses about the
data generating process. In these cases, the estimable ’uncertainty’ refers exclusively to the statistical
part, i.e., the standard errors of the (few) parameters being estimated, but taking the model as being
’certain’.

The economic literature has proposed different approaches to obtain estimates of income distri-
butions from grouped data. In the past, some of the most popular ones have been based on the
parametric estimation of Lorenz curves: see Kakwani and Podder (1976) for an explicit parametric
Lorenz curve estimator for grouped data; Rasche et al. (1980) for an early review; and Cheong (2002)
for a more recent one.

A second approach, which is very popular in the current literature, involves the non-parametric
estimation of the income distribution. It is typically just the direct estimate of a density function
through the use of kernels (for details see Silverman (1986)). Like the Lorenz curve approach it can
be applied to various types of research such as the study of poverty and inequality, cf. Ackland et al.
(2013); Chotikapanich et al. (2007); Pinkovskiy and Sala-i Martin (2009); Minoiu and Reddy (2009); or
Sala-i Martin (2006). The accuracy of the results depends essentially on the data and bandwidth used



RECOVERING INCOME DISTRIBUTIONS 15

in the calculation of the density, especially when grouped data are the source of information (Minoiu
and Reddy (2014); Wu and Perloff (2003)). These non-parametric techniques perform well when the
number of observations available to researchers is high. Unfortunately, in these kinds of studies, the
available data are often very limited, e.g., to five figures (quintiles). This combination of “limited
structure” and “limited data” produces results that are, in turn, of limited value1 . An econometric
solution to this problem are the so-called semiparametric procedures. They impose structure where
prior knowledge is offered or where the impact of misspecification is less crucial, but maintain all
the nonparametric flexibility elsewhere. In other words, they keep the best part of each. The aim
of this paper is the simulation and estimation of income distributions on the base of grouped data
which may either represent quantiles or refer to (different) income intervals. Imagine we want to es-
timate the income distribution of Africa but are only provided with different quantiles for each single
African country. In a first step we propose to adapt a parametric regression model to the grouped
data of each country. In a second step these models are used to predict (or to randomly draw if sim-
ulation is the objective) as many individual incomes as wished for each country. From these one can
recover (e.g., by the use of nonparametric kernel density estimators) the income distribution for each
country separately as well as the income distribution of any kind of aggregation (e.g., West-Africa).
It should finally be mentioned that our procedure can certainly be used for recovering any other
continuous distribution (e.g., expenditures) for which only such limited information is available.

2 Data problem and proposed method

The decision about what an appropriate method is depends crucially on how the information is
available and grouped. Often researchers have data that are grouped in intervals: you may imagine
different income levels of individuals in ascending order. A data source can be household surveys
or administrative records. If the information originates from a survey, then the available information
is typically given in quantiles, whereas in administrative files, you have prefixed income intervals
that contain different numbers of individuals. A representation of grouped data can be thought of as
shown in Table 1, where the xj denote the boundaries of the income intervals. The mean income for
each interval is rarely provided but if so, it could be used to improve estimation and prediction pro-
cedures. Obviously, one has equidistant quantiles if nj = nk for all j, k, i.e., if all intervals contain the
same number of individuals. In any case we can obtain some quantiles but often not equidistant ones.
Interestingly, most theoretical contributions on the analysis of grouped data (need to) assume to have
the information provided in equidistant quantiles. Papers that allow for asymmetric information are
quite rare. For our proposal we simply assume to be provided with the information given in Table 1
for the population of interest or for each sub-population of a partition of the target population.

Income intervals 0 to x1 x1 to x2 ... xj−1 to xj ... xJ−1 total support
Number of individuals n1 n2 ... nj ... nJ N

Cumul. proportion of pop. P1 = n1

N P1 = n1+n2

N ... Pj =
n1+...+nj

N ... PJ = 1 100%

Table 1: Income Grouped and Relative Accumulated Data.

1It should be mentioned that the existing procedures often exhibit several additional drawbacks. For example, apart
from an inadequate bandwidth selection which in fact renders the estimates rather incomparable than comparable, the
method proposed in Sala-i Martin (2006) makes only sense when the grouped data are provided in form of quantiles, and
if the true underlying density is indeed symmetric.
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We consider two scenarios regarding the available information: (A) the data are census based and
therefore the information on cumulative proportions pj (or quantiles) is exact; (B) the data are only
survey based and consequently subject to sampling variation. In case (A) you would like to exactly
calibrate the further analysis to these cumulative proportions (quantiles), no matter how wiggly the
resulting distributions look like; in case (B) you have a deconvolution problem, so you would rather
prefer to smooth the income data than performing a calibration along some cumulative proportions
(or quantiles) that suffer from sampling errors themselves.

As indicated in the introduction, your objectives could be various: estimate an income distribu-
tion from Table 1, simulate2 an income distribution with proportions equal (if scenario A) or similar
(if scenario B) to the observed ones. Furthermore, one might face a partition of a population in L
subpopulations, being provided with some information as in Table 1 for each subpopulation k (with
potentially different Jk and Nk, k = 1, . . . , L).You could be interested in estimating the joint income
distribution. It may be that for each problem and situation there exists one particular sophisticated
optimal solution, but what we propose here is one simple and straightforward method for dealing
with all these problems in a unified way.

More specifically, we propose a method to generate arbitrarily large samples whose distribution
follows the distribution of the real observations to the extent they provide us with information about
this distribution3. To keep notation simple, at this stage we neglect the subindex k ; in other words
you may only want to estimate or simulate one population (k = 1). Ryu (1993) and Ryu and Slottje
(1996) explain why estimating the inverse of the cumulated distribution of income can be done by
regressing the logarithm of income xj on pj with zero-mean deviations uj , i.e.,

log xj =
M∑

m=0

βmp
m
j + uj with the xj , pj taken from Table 1. (1)

Along our experience, setting M = 3 (if J > 3) gives quite satisfying results, but M can certainly
be increased accordingly to the increase of J (like in the method of sieve regression). For scenario A
you basically want to interpolate and chooseM = J−1. In any of these cases the parameter estimates
of βm can be calculated by the ordinary least squares method.

The next step is to generate N observations from an income distribution that coincides with the
information you have. In order to respect the income distribution according to Table 1 and equa-
tion (1), one has to take N equidistant quantiles q1, ..., qN covering the open interval (0, 1) , i.e.,
q1 = 1/(N + 1) = 1− qN , and generate

yi =

M∑
m=0

β̂mq
m
i for i = 1, ..., N. (2)

Note that yi are the predictions of log x(qi), where the coefficients are the estimates from re-
gression model (1). This generates an artificial sample (or population) {yi}i=1,,N which follows the
wanted income distribution. Even if this might not be your main objective, you will see its usefulness
below.

In case you are interested in the simulation of (various) populations or samples along model (1)
and the information contained in the grouped data at hand, you can use a kind of wild bootstrap
approach4. Specifically, you proceed as before but generating now

2This is of particular interest if you use this method in the context of micro-simulations.
3One may say that the simulated populations are calibrated to the observed quantiles.
4This idea is borrowed from resampling strategies in nonparametric statistics.
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yi =

M∑
m=0

β̂mq
m
i + vi, vi ∼ N(0, σ2u(qi)), for i = 1, ..., N. (3)

That is, for each individual you add a random error v that reflects the deviation u in (1), i.e., the
deviation of the model from the observed data. Like the wild bootstrap itself and discussed above,
this is either done for simulation reasons or because you want to account for the sampling and model-
ing error, too. In practice, the variance of u also has to be estimated, and in case of heteroscedasticity
even as a function of p, respectively q5. The data generating process (3) allows you to generate arbi-
trarily many populations or samples which are all different but follow in their distribution equation
(1) and thus respect the information provided in Table 1.

Until now, we have proposed only relatively simple (parametric) models, because it is supposed
to have only little information, say a small J . Now, if L > 1, then the two steps, namely (1) and (2)
or (3) respectively, have to be done for each (sub)population separately, creating samples of size Nk

for the k-th (sub)population, k = 1, ..., L. Imagine now you are also interested in the distribution of
the entire population. For example, imagine you have the grouped data for each region of Spain but
you are also interested in estimating the income distribution for entire Spain. Another, completely
different but important example is when the information in Table 1 is stratified along some (individ-
ual) characteristics that might be important for income. Therefore, you might have the quantiles for
domestic workers and immigrants separately but you need the entire income distribution. One could
interpret the strata representing different subpopulations in which the population is partitioned. Cer-
tainly, the joint distribution can only be revealed if the size of each subpopulation (respectively strata)
or its proportion of the total population is known. In either case, the size Nk has to be chosen accord-
ingly to the proportions of the subpopulations, i.e., such that Nk/N(N = N1 +N2 +N3 + ...+NL) is
the proportion of subpopulation k in the total population.

Based on the L samples, the joint log income distribution density f(y) is estimated locally at point
y by a nonparametric kernel density estimator with bandwidth h and kernel K(·);

f̂h(y) =
1

hN

N∑
i=1

K(
y − yi
h

). (4)

For details on non-parametric kernel density estimation, see Silverman (1986). The choice of the
kernel is unimportant but not so the choice of the bandwidth, see Härdle et al. (2004). There exist
many selection methods, see Heidenreich et al. (2013) for a recent review. Today, almost all statistic or
econometric software packages provide this estimator as a standard routine, including an automatic
choice of h. If wanted, you can also estimate a density for each subpopulation k separately, simply
by using N = Nk (adapting h accordingly) for each.

3 Method check by Monte Carlo Simulations

The following non-negative distributions are considered: log-normal, Weibull, generalized Gamma
and the Beta distribution. These are some of the most commonly used when modeling income dis-
tributions, see Minoiu and Reddy (2009, 2014). The first goal is to see whether our finally resulting
distribution estimator fits well the true underlying distribution. This is achieved by calculating the

5In our simulations and our applications we use an ordinary least square regression of û2 = γ0 +γ1p+γ2p
2 + ε but you

may use any existing method for estimating scedasticity functions.
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18 I. MORAL-ARCE, A. DE LAS HERAS PEREZ AND S. SPERLICH

mean, standard deviation and deciles but later on also by looking at figures of confidence intervals.
The study works as follows:

1. A sample of observations (of size 4000) is drawn accordingly to the underlying density func-
tion (log-normal, Weibull...): x1, x2, x3, ..., x4000 . The information from all 4000 observations is
summarized in a similar way to that of the first rows of Table 1.

2. Using only the figures of that table, the density is calculated as in (4) with either predictions
as in (2) or simulations as in (3) using M = 3, N = 4000, the kernel K(·) being the standard
normal density, and the bandwidth of Park and Marron (1990)6.

3. Several descriptive statistical measures of the estimated density function are calculated and
compared to the actual values of the original data generating density.

This was repeated 1000 times. The averages of the results are shown in Table 2. The quantities
represent the ratio between the estimated and true values. The accuracy of our method is quite high
except for some values of the Weibull distribution.

In addition to the comparison of position and dispersion measures, the adjustment of our esti-
mator versus the underlying function is illustrated in Figures 1 and 2 which show the 95 simulated
confidence intervals (SCI) of the density estimates together with the true data generating one. The
solid lines represent the true density functions.

Statistics log-normal beta weibull gamma
mean 1.0016 0.9926 1.0019 1.0162

Std. Deviation 0.9855 0.9598 1.0660 1.0325
Deciles

0.1 1.0176 1.0045 1.0919 1.2079
0.2 1.0058 0.9967 1.0298 1.0554
0.3 1.0027 0.9898 0.9633 1.0223
0.4 1.0008 0.9860 0.9292 0.9961

median 1.0039 0.9761 0.9021 0.9652
0.6 0.9937 0.9720 0.9023 0.9508
0.7 0.9876 0.9895 0.8949 0.9491
0.8 0.9901 0.9783 0.9128 0.9520
0.9 1.0024 0.9896 0.9831 0.9947

Table 2: Statistical Summary with estimated values divided by true value.

These figures confirm the results in Table 2. The first conclusion from these figures is the good fit
of our estimation method. The adjustment on the Weibull distributions and log-normal is very high,

6The objective when choosing a bandwidth h is to minimize the mean integrated squared error (MISE):

MISE(f̂h) =

∫
E{f̂h(x)− f(x)}2 dx ≈

1

Nh
‖K‖22 +

h4

4
{µ2(K)}‖f ′′‖22

where the approximation holds as h goes to zero, N and Nh to infinity. Minimization with respect to h gives:

hopt =

(
‖K‖22

‖f ′′‖22{µ2(K)}2n

)1/5

.

The terms ‖K‖22 and {µ2(K)}2 are constants depending only on the kernel function, and are therefore known. However,
although ‖f ′′‖22 denotes a constant, it depends on the second derivative of the unknown density f . Park and Marron (1990)

estimate it by 1
Ng3

∑n
i=1K

′′
(

x−Xi
g

)
. They propose an optimal g and a bias correction for ‖f ′′‖22.
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Figure 1: True (solid) and 95% SCI of density estimates (dashed) for the Log-Normal (left) and the
Weibull (right) distribution.

Figure 2: True (solid) and 95% SCI of density estimates (dashed) for the generalized Gamma (left)
and the Beta (right) distribution.

the bias can be considered negligible. The asymmetric Gamma distribution presents a good fit with
some bias in the right tail of the distribution (similar to the Weibull distribution). The reason lies in
the fact that the standard kernel density estimators suffer from a boundary effect in two ways: Case
1 (the standard boundary effect of kernel estimators) occurs when the true density has a boundary,
say 0 on the left hand side, and we have some data yi very close to zero, say yi < ε. Then a density
estimator with bandwidth h predicts a positive density around ε− h even if this is smaller than zero,
i.e., falls outside the true support. This explains why the estimates for the Beta distribution have
heavier tails than they should. Case 2: A problem that occurs with long tails when only quantiles are
given is that the kernel density must integrate to one but can’t predict a positive density outside the
interval (ymin−h, ymax+h). Moreover, the only information we get for the last quantile is its starting
point but not its end. When using equation (2), then the density estimator will be zero for values
larger than yN + h and pass all the mass of the last quantile to the interval (yN − h, yN + h). This

SJS, VOL. 1, NO. 1 (2019), PP. 13 - 29
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produces the upward biases around the value 10 when the true density was Weibull or generalized
Gamma.

It is clear that our method is consistent for J going to infinity. But as it has been developed right
for the situation where J is mall, such kind of convergence study is irrelevant. However, it could be
interesting to see, whether and how the method improves for increasing sample sizes n and N . To
this end, 400 random samples of size n = 250, 500, 750, 1000, ..., 7000 of a Gamma distribution have
been drawn. Let f̂ (j) be the two-step estimator of the density f from above of the j-th sample. The
measures of discrepancy we consider are the squared expected average deviance (SAvD), the average
variance (AvV) and their sum (SsD), namely

SAvDn(f̂) =

 1

n

n∑
i=1


 1

400

400∑
j=1

f̂ (j)(Xi)

− f(Xi)


2

AvVn(f̂) =
1

n

n∑
i=1

1

400

400∑
j=1

f̂ (j)(Xi)−

 1

400

400∑
j=1

f̂ (j)(Xi)


2

SsDn(f̂) = SAvDn(f̂) +AvVn(f̂)

Using the Gaussian kernel and the bandwidth of Park and Marron (1990) in the estimation, these
values are calculated for different sample sizes n. The results are shown in Figure 3. A bit surpris-
ingly, the values of these quantities tend to zero as the sample size increase, but with J = 10 constant.
This is certainly excellent news.

Figure 3: SsD (solid line), Average Variance (dashed grey line) and squared average deviance for
increasing sample size when the true density is a Gamma.
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4 Two empirical examples

In this section the focus is on the degree of adaptability of our estimation method to any kind of
grouped data, avoiding the problems highlighted in the introduction. To this aim we consider two
data examples for which we can (at least partly) counter-check the results we obtain from our method.
The first example looks at recovering the income distributions and inequality measures for EU mem-
ber states, and the second at recovering the income distribution from Spain when we are only pro-
vided with income quantiles from the various regions.

We start with considering data that are grouped into deciles, provided for the income distribu-
tions of the member states of the European Union before the big enlargement in 2001. So we only
use information given in Table A1 in the appendix. Based on these symmetrically grouped data we
recover the individual and the joint income distribution of the 15 states, and derive various inequal-
ity and poverty measures. The density of each country is obtained by using our two-step estimation
method: the first step estimates equation (1) and draws samples from (3). The second step is the
non-parametric estimation of the income density function based on the generated fictitious samples
for each country. In the first step we apply a third grade polynomial (M = 3) in equation (1). The
adjusted R2s (not shown) were always higher than 0.97 indicating almost perfect calibration. All
calculations of the second stage are performed with the Gaussian kernel and the bandwidth of Park
and Marron (1990). Consequently, each country has a different data-adaptive bandwidth.

Figure 4: Density Function Estimations of EU Countries and U.K. (left) and Italy (right) in 2001.

Figures 4 to 11 show the corresponding income densities for the considered 15 EU members in
2001 together with the aggregated one. Some countries’ distribution is very close to the joint income
distribution like for the UK, Italy, Belgium, Netherlands, France and Finland (Figures 4 to 6); some
are more concentrated on the left though with long tails on the right such as for Spain, Portugal and
Greece (Figures 7 and 8); and finally we have distributions shifted to the right like for Austria, or
generally more spread (Figure 9 to 11) such as for Luxembourg. Actually, Greece and Luxembourg
are those that reflect the most opposite figures: The minimum modal value of the distributions is
the Greek one with a value around 10,500 Euros, while the maximum mode belongs to Luxembourg
with a value of about 42,000 Euros.

Among them, Germany exhibits a very narrow but large middle class. Greece, Portugal and
Spain have two characteristics in their income distributions: they are the most asymmetrical ones
with a significant tail on the right side. In addition, having the smallest modal values reflects that

SJS, VOL. 1, NO. 1 (2019), PP. 13 - 29
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Figure 5: Density Function Estimations of EU Countries and Belgium (left) and Netherlands (right)
in 2001.

Figure 6: Density Function Estimations of EU Countries and Finland (left) and France (right) in 2001.

Figure 7: Density Function Estimations of EU Countries and Spain (left) and Portugal (right) in 2001.
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Figure 8: Density Function Estimations of EU Countries and Greece in 2001.

Figure 9: Density Function Estimations of EU Countries and Austria (left) and Germany (right) in
2001.

Figure 10: Density Function Estimations of EU Countries and Sweden (left) and Ireland (right) in
2001.

SJS, VOL. 1, NO. 1 (2019), PP. 13 - 29
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Figure 11: Density Function Estimations of EU Countries and Denmark (left) and Luxembourg (right)
in 2001.

these countries have the lowest income level and the highest inequality. On the other end, for Swe-
den, Denmark, Austria and Germany, our method detects the most equitable income (i.e., the most
symmetrical distributions) and the highest mean.

Different measures of poverty and inequality are calculated, see Table 3. For estimating the
poverty rates, we chose the threshold which is the most frequently used by Eurostat, i.e., 60% of
the median of the households’ disposable income. In the estimation of Atkinson’s index, we set
the aversion parameter equal to 0.5. Note that the Gini indexes calculated by our method are quite
similar to those presented by the European Commission for 2001 (Eurostat, 2005). Also for the other
indexes, there is a clear consistency with those values published by that reference.

The inequality values like the Gini support the above comments on the shape of the density
functions. The smallest values of inequality refer to Nordic and Central European countries; Austria,
Germany, the Netherlands, Denmark, Finland and Sweden. On the contrary, in the countries of the
Mediterranean area (Spain, Portugal, Greece and Italy) the Gini is substantially higher. The same can
be said in the case of inequality values measured in terms of Atkinson indexes. Similarly, relative
poverty, i.e., when using the European threshold, had the lowest values in Central and Northern
Europe, namely Austria, Germany, the Netherlands, Finland, Sweden and Denmark. The highest
values of relative poverty could be found again in Portugal, Spain and Greece, but also for Belgium
and the United Kingdom, which had higher levels of average and median income but high inequality.

In our second example we are provided with asymmetrically grouped data from tax records of
the Spanish Tax Agency (AEAT, Table A2 in the appendix) for each region (Comunidad Autónoma,
CA henceforth) separately. This information was used to impute the income distributions in each
CA and for entire Spain. We focused on Spain’s 2003 tax information on the common fiscal territory.
The key feature making this example different from the previous one was that this information is
available only in asymmetrical income intervals, so it is not possible to directly estimate the density
function based on quantiles, as done for example in Sala-i Martin (2006).

We need to make two assumptions: firstly, the “taxable income” of individuals is a good proxy of
disposable income before income tax; and secondly, the number of claimants in income tax is a good
proxy for the number of “individuals” in each interval. The latter assumption is less obvious since
the income tax return can be personal or not and therefore the AEAT does not provide the actual
number of “individuals” in each interval. However, the number of tax returns will be treated like
the number of individuals. It is clear that the “taxable income” is not the equivalent to the “gross
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Population Mean Median <60% Med Poverty gap Atkinson Our Gini Gini ES∗

Austria 7,764 27,591.2 25,125.3 6.144 0.088 0.037 0.232 0.24
Belgium 9,555 26,060.7 23,311.2 16.285 0.183 0.054 0.300 0.28
Finland 4,963 23,242.3 21,018.9 6.226 0.094 0.037 0.233 0.27
France 55,868 26,041.7 23,306.0 13.050 0.126 0.049 0.271 0.27

Germany 76,272 26,515.3 24,479.8 8.518 0.135 0.036 0.249 0.25
Greece 10,337 14,548.5 12,276.5 14.434 0.162 0.071 0.322 0.33
Ireland 3,622 26,656.9 22,052.5 11.320 0.126 0.059 0.293 0.29

Italy 54,672 23,263.7 19,905.3 11.103 0.105 0.061 0.289 0.29
Luxembourg 455 45,175.9 41,949.0 10.549 0.132 0.037 0.263 0.27
Netherlands 14,910 27,472.9 25,179.6 10.718 0.134 0.039 0.252 0.27

Portugal 9,330 18,605.2 15,402.5 21.683 0.242 0.088 0.377 0.37
Spain 37,315 20,891.2 18,456.2 16.530 0.185 0.060 0.316 0.33
U.K. 54,503 26,020.8 22,647.2 14.355 0.183 0.063 0.311 0.35

Denmark 8,295 27,191.9 20,368.2 12.168 0.171 0.031 0.228 0.22
Sweden 4,975 30,139.8 28,334.4 10.794 0.162 0.038 0.264 0.24

Table 3: Measures of poverty in the considered 15 UE countries in 2001. * ES = Eurostat: Differences
between our estimates and that of ES might be due to the different income concept used by Euro-
stat (disposable family income), equivalent in terms of national accounts to the income account of
institutional households, while the concept used here is an income equal to GDP, see also Milanovic
(2006). Further, note that the Eurostat indexes are just estimates, typically based on samples and
certain assumptions on the distribution.

income” available to households. However, this fact is irrelevant for the goal pursued by this study,
but can produce negative incomes, cf. Ayala and Onrubia (2001).

For the sake of brevity we skip the presentation of the densities for the 16 CAs and concentrate
directly on the second goal of this application: the problem of generating the income aggregate from
subgroups, i.e., the estimation of the Spanish national income distribution by integrating the income
distributions of CAs. In practice, this is especially interesting for (world) regions where direct infor-
mation about the aggregated area is not available. In our illustration, however, we have this direct
information (the deciles for entire Spain, first line of Table A2) so that we can compare the density
estimates that result from our aggregation method when using only the quantiles of the CAs with an
estimator based on the quantiles for entire Spain. The fact that both estimates, shown in Figure 12,
are virtually identical proves that our aggregation method of the regional information works pretty
well. Note that Nk was set for each CA k equal to the number given in the last column of Table A2 as
this corresponds to its proportion of the entire population.

Our (aggregation) method works even if the available information is different for each region
(symmetric for some, asymmetric for others, different quantiles, different income intervals, etc.); ac-
tually, in this example we did not use the fact that all CAs provided their information for the same
income intervals. Take as a different example the case where you want to calculate the joint income
distribution for West Africa. For each country the information is provided in different terms. While
this would create a problem for all the other presently existing nonparametric density estimation
methods, our method can be applied straightforwardly. Obviously, the same holds true for calculat-
ing the world income distribution.

SJS, VOL. 1, NO. 1 (2019), PP. 13 - 29



26 I. MORAL-ARCE, A. DE LAS HERAS PEREZ AND S. SPERLICH

Figure 12: Comparison- Direct estimation of National Income Distribution âĂŞ Raw data - vs estima-
tion through Aggregation of Regional Income Distributions.

5 A Nonparametric alternative and Conclusions

Readers that are more familiar with complex nonparametric estimation problems might, at least at a
first glimpse, feel uncomfortable with the idea of first estimate the log-income almost parametrically,
generate data from that model to use a nonparametric kernel estimator afterwards. We say here
“almost” because it is open to the practitioner to replace (1) by an arbitrarily complex regression
model. The important point is here, however, that this is a method for grouped data, and especially
when only few information is available (typically not more than percentiles, so maybe 10 points but
often even less). Directly applying a kernel estimator without further information does obviously
not make much sense then.

An alternative way, though quite technical, is sketched in Dai et al. (2013). They apply spline
regression to get an unrestricted estimate of the first derivative of the Lorenz curve. This is used to
derive a convex estimate of the Lorenz curve along the steps of Birke and Dette (2007). It is well
known how to calculate then the income distribution or various interesting derivatives like e.g., the
Gini coefficient. Although the procedure looks quite elegant as it is based on a persistently nonpara-
metric procedure, it has to be admitted that it is also somehow cumbersome. First we use the spline
estimator of a derivative from very few data, followed by a kernel smoothing over the predictions
obtained from this estimator, a numerical integration over the kernel, then a numerical inversion,
and finally another numerical integration of that inverse. Thanks to today’s computer and software
facilities the procedure has proven to be quite stable and fast (given the few data points), but still
strongly dependent on the choice of the spline smoothing method. In practice it does unfortunately
not provide an improvement compared to the here presented simple method. Finally, for the cal-
culation of income functions of merged populations one would need to develop another method to
obtain the weighted average of the density estimates.
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Here we have presented an easy-to-handle method for micro-simulations to recover income dis-
tributions from grouped data even when only (very) few data points are available. As has been seen,
the extension to also obtain corresponding distributions of merged populations like e.g., the one for
the EU calculated from quintiles of its member states is straight forward. The method is particularly
helpful for countries or years for which more detailed information (e.g., micro data) is rarely avail-
able. The excellent performance of the method has been proven in simulations, and its practical use
has been illustrated in two application examples.
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Appendix

Pop. in T GDP p.c. D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Austria 8096.25 26,999.77 4.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 14.00 19.00
Belgium 10303.88 24,661.91 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.50 24.50
Finland 5176.53 22,740.69 4.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.50 19.50
France 59278.01 25,044.54 4.00 5.00 7.00 7.00 8.00 10.00 11.00 12.00 14.50 21.50

Germany 82344.43 25,061.34 4.00 6.00 7.00 8.00 9.00 9.00 10.00 12.00 14.00 21.00
Greece 10975.02 13,982.39 3.00 4.00 6.00 7.00 8.00 9.00 11.00 13.00 15.50 23.50
Ireland 3801.38 24,947.55 3.00 5.00 6.00 7.00 9.00 10.00 11.00 12.00 15.00 22.00

Italy 57714.84 22,487.21 3.00 5.00 6.00 7.00 9.00 1.00 11.00 13.00 14.50 21.50
Luxembourg 435.23 48,217.27 4.00 6.00 7.00 7.00 8.00 9.00 11.00 12.00 14.50 21.50
Netherlands 15897.51 26,293.09 4.00 6.00 7.00 8.00 8.00 9.00 11.00 12.00 14.00 21.00

Portugal 10225.09 17,323.14 3.00 4.00 5.00 6.00 7.00 8.00 10.00 12.50 15.50 29.00
Spain 40717.22 19,536.38 3.33 4.90 5.96 6.94 7.90 8.95 10.22 11.95 14.58 25.27
U. K. 58669.74 24,666.41 3.00 5.00 6.00 7.00 8.00 9.00 11.00 12.00 15.00 24.00

Denmark 8900.87 25,860.69 1.70 3.70 4.60 5.80 7.10 8.70 10.90 13.60 16.60 27.30
Sweden 5359.98 28,551.14 4.10 5.90 6.70 7.50 8.50 9.30 10.20 11.50 13.50 22.80

Table A1: Used data from the EU in 2001. Obtained from www.wider.unu.edu/research/database
"The world income inequality data base" and from the Penn Word Tables 3.1 on pwt.econ.upenn.edu,
(Heston et al., 2005)

Region (CAs) - 1.5 1.5 - 6 6 - 12 12 - 21 21 - 30 30 - 60 60 - 150 >150 Total
España 919,000 2,737,612 4,174,720 4,223,910 2,085,731 1,444,135 307,429 41,325 15,933,862
Andalucía 194,168 513,390 720,178 642,465 302,188 181,310 30,256 3,285 2,587,240
Aragón 34,586 108,684 145,811 170,768 80,111 51,807 9,170 1,039 601,976
Asturias 33,105 76,828 105,730 131,949 72,023 39,760 5,924 789 466,108
I. Baleares 16,194 63,958 116,142 98,130 43,418 33,456 7,720 1,086 380,104
Canarias 33,153 109,819 178,811 150,878 79,798 52,630 9,804 1,321 616,214
Cantabria 14,660 36,523 60,421 65,824 31,641 20,294 3,872 443 233,678
C. La Mancha 45,973 148,669 208,889 170,952 70,195 41,557 6,205 586 693,026
C y León 69,260 206,408 279,787 280,044 133,233 82,225 11,841 1,044 1,063,842
Cataluña 121,560 417,572 694,504 877,293 443,030 318,902 80,146 10,465 2,963,472
C. Valenciana 109,833 353,501 539,153 466,755 207,752 138,361 27,430 3,416 1,846,201
Extremadura 32,380 95,002 117,184 82,061 35,751 20,368 3,216 223 386,185
Galicia 74,966 219,536 286,590 237,712 112,262 70,355 12,057 1,559 1,015,037
La Rioja 7,983 23,433 37,360 38,937 16,561 11,232 2,111 227 137,844
Madrid 102,772 279,369 548,049 696,341 407,189 350,849 92,271 15,205 2,492,045
Murcia 28,407 84,920 136,111 113,801 50,579 31,029 5,406 637 450,890

Table A2: Numbers of Taxpayers (www.aeat.es)
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