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Editorial

2 Presentation of Volume 2, 1, 2020
J.M. Sarabia

Presentation of Volume 2, 1, 2020
José María Sarabia

Editor-in-Chief Spanish Journal of Statistics

Dear readers and dear statistical community:

It is my pleasure to present the second volume of the Spanish Journal of Statistics, corresponding
to the year 2020. This volume includes four papers: two papers in the General Section and another
two papers in the Official Statistics section.

The first paper is titled “Financial and Actuarial Properties of the Beta-Pareto as a Long-Tail
Distribution" by Emilio Gómez-Déniz and Enrique Calderín-Ojeda. This paper presents several
properties of the Beta-Pareto distribution, which might be extremely useful in Economics, and in
Financial and Actuarial fields. These properties are mainly related to the analysis of the tail of the
distribution that makes it a candidate model for fitting actuarial data with extreme observations.

The second article of the general section is titled: “The Gamma-Chen distribution: a new
family of distributions with applications", by Lucas David R. Reis, Gauss M. Cordeiro and
Maria do Carmo S. Lim. This paper presents the gamma-Chen distribution and derive some of
its mathematical and statistical properties. The authors present empirical evidence that support
that this new distribution is better than other relevant statistical distributions using several data sets.

The following two papers cover relevant aspects of Official Statistics. The first of them is:
“Towards a modular end-to-end statistical production process with mobile network data", by David
Salgado, Luis Sanguiao, Bogdan Oancea, Sandra Barragán, and Marian Necula. In the context of the
European Statistical System (ESS), the authors introduce the so-called ESS Reference Methodological
Framework for Mobile Network Data with the first modular and evolvable statistical process, which
involves five different aspects: the geolocation of mobile devices; the deduplication of mobile
devices; the statistical filtering to identify the target population; the aggregation into territorial
units, and inference to the target population. The proposal methodology is illustrated with synthetic
data generated from a network event data simulator developed for these purposes.

The second paper on Official Statistics is titled: “Commonly used methods for measuring output
quality of multisource statistics", by Ton de Waal, Arnout van Delden and Sander Scholtus. The
estimation of output quality based on sample surveys is well established. The paper presents results
of the ESSnet project Quality of Multisource Statistics that studied methods to estimate output
quality. The authors distinguish three main groups of methods: scoring methods, (re)sampling
methods and methods based on parametric modeling. All of these methodologies are developed and

©ine Published by the Spanish National Statistical Institute
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discussed in detail within the paper.

I would like to conclude by thanking all the authors of this volume for choosing our journal as
a means of disseminating their work.I am also extremely grateful to the editors and the reviewers
of the papers for the work devoted to the journal, which is key to maintain a high scientific quality
standard.

3 Research papers



SPANISH JOURNAL OF STATISTICS

Vol. 2 No. 1 2020, Pages 7–21
doi:https://doi.org/10.37830/SJS.2020.1.02

REGULAR ARTICLE

Financial and Actuarial Properties of the
Beta-Pareto as a Long-Tail Distribution

Emilio Gómez-Déniz1, Enrique Calderín-Ojeda2
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Abstract: Undoubtedly, the single parameter Pareto distribution is one of the most attractive distri-
bution in statistics; a power-law probability distribution that is found in a large number of real-world
situations inside and outside the field of economics. Furthermore, it is usually used as a basis for ex-
cess of loss quotations as it gives a pretty good description of the random behaviour of large losses. In
this paper, we provide properties of the Beta-Pareto distribution which can be useful in Economics,
and in Financial and Actuarial fields, mainly related to the analysis of the tail of the distribution
that makes it a candidate model for fitting actuarial data with extreme observations. As empirical
applications two well-known data sources considered in general insurance are used to account for
the suitability of the model.

Keywords: insurance, Beta-Pareto distribution, Danish and Norweigian data; Pareto distribution,
right tail

MSC: 62E10, 62F10, 62P05

1 Introduction

Probability distributions such as the exponential, Pareto, gamma, lognormal and Weibull are fre-
quently used in survival analysis, engineering applications and, specifically, in actuarial statistics to
model losses in insurance and finance. Besides, other parametric families, e.g. Pareto and lognormal
distributions are particularly appropriate to describe data that include large losses (see Boland, 2007,
p. IX). More precisely, the study of the right tail of the distribution is an important issue in order to
not underestimate the size of large claims. This is for example the case of the suitability of the Pareto
distribution to describe fire claim data (Rolski et al., 1999, p. 49). This is also common in defaulted
loans in banking sector. It is needless to say that, due to the simple form of its survival function, the
Pareto distribution is commonly used in these scenarios.

© ine Published by the Spanish National Statistical Institute



8 E. GÓMEZ-DÉNIZ AND E. CALDERÍN-OJEDA

It is well-known that the classical Pareto distribution (for a detailed discussion of the Pareto
distribution see Arnold, 1983) with scale parameter σ > 0 and shape parameter θ > 0 with probability
density function

g(x) =
θσθ

xθ+1
, x > σ > 0, θ > 0 (1)

and survival function

Ḡ(x) =
(σ
x

)θ
, x > σ > 0, θ > 0 (2)

has been proved to be useful as predicting tools in different socioeconomic contexts such as in-
come (Mandelbrot, 1960), insurance (for applications of the Pareto model in rating property excess-
of-loss reinsurance, the Pareto distribution has been used by Boyd, 1988, Hesselager, 1993 and
Brazauskas and Serfling, 2003, among others), city size (Rosen and Resnick, 1980) and also in other
fields as queue service (Harris, 1968). A thorough review of the reinsurance issue can be viewed in
Albrecher et al. (2017). Perhaps, one of the most important characteristics of the Pareto distribution
is that it produces a better extrapolation from the observed data when pricing high excess layers, in
situations where there is little or no experience. In this regard, its efficacy dealing with inflation in
claims and with the effect of deductibles and excess-of-loss levels for reinsurance has been demon-
strated. Henceforward, a continuous random variable that follows the Pareto distribution with pdf
as in (1) will be denoted as X ∼ P ar(θ,σ ). Surely, one of the advantages of working with this proba-
bility distribution is, similarly to the exponential case, the simple form of its survival function which
allows us to easily derive interesting properties. For example, it is straightforward to observe that if
X ∼ P ar(θ,σ ), then τX ∼ P ar(θ,τσ ), τ > 0. This property is useful when dealing with proportional
reinsurance and also with claims inflation. Furthermore, if X > Z we have that X − Z ∼ P ar(θ,Z).
That is, the excess of X over Z is also Pareto (see Boland, 2007, p. 39).

In the last decades, a lot of attempts have been made to achieve generalizations of the classical
Pareto distributions. Many of these new models try to obtain better fits to empirical data related to
city populations and insurance losses. Some of them are the Stoppa’s generalized Pareto distribution
(see Stoppa, 1990 and Kleiber and Kotz, 2003); the Beta-Pareto distribution due to Akinsete et al.
(2008); the Pareto positive stable distribution provided by Sarabia and Prieto (2009) and the recently
proposals of Gómez-Déniz and Calderín (2014), Gómez-Déniz and Calderín (2015) and Ghitany et al.
(2018). In general insurance settings and also in city size, mainly seeking to better adjust the right
tail of the distribution, the recently proposed composite models have also made use of the Pareto
distribution in their formulation and, therefore, can be considered as generalizations of the latter
distribution (see Scollnik, 2007, Calderín-Ojeda and Kwok, 2016 and Calderín-Ojeda, 2016).

In actuarial settings, the single parameter Pareto distribution has been largely considered against
other probability distributions, not only for its nice properties, but also for its appropriateness to
describe the claims size. When modeling losses, there is widely concern on the frequencies and sizes
of large claims, in particular, the study of the right tail of the distribution. On this subject, the single
parameter Pareto distribution gives a good description of the random behaviour of large losses. See,
for instance Boyd (1988) and Brazauskas and Serfling (2003), among others.

In this paper, we pay special attention to one generalization of the Pareto distribution, built from
the scheme proposed by Jones (2004) and which was considered by Akinsete et al. (2008), the Beta-
Pareto distribution. We will see that this distribution can be used as a basis for excess of loss quo-
tations, and similarly to the Pareto distribution (see for instance, Rytgaard, 1990), providing a good
description of the random behaviour of large losses.
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In order to make the paper self-contained, some of the basic properties provided in Akinsete et al.
(2008) are again reproduced here. Furthermore, new properties that are important in financial and
actuarial applications are also provided. In particular, we give expressions for the limited expected
values, integrated tail distribution and mean excess function, among others. Finally, the performance
of the model is examined by using two well-known examples of real claims data in actuarial statistics.

The remainder of the paper is organized as follows. Basic background of the Beta-Pareto dis-
tribution is shown in Section 2. We pay special attention here to some of its more basic properties
and the estimation of the parameters of the distribution by maximum likelihood method. Section 3
discusses properties related to the right tail of the distribution that are very relevant in the field of
reinsurance. Two numerical applications are shown in Section 4 and conclusions are provided in the
last Section.

2 Preliminaries

In an appealing paper Jones (2004) proposed a method to add more flexibility to a parent probability
function by starting with a distribution function G (in that work author only considered symmetric
distributions but the methodology is applicable to any distribution function) and generating the new
one by adding two parameters in order to include skewness and vary the tail weight. The method is
based on order statistics by using the classical Beta distribution. Specifically, for a probability density
function g(x) with distribution functionG(x) and survival function Ḡ(x) = 1−G(x), the author studied
the family of probability distributions given by

f (x;α,β) =
1

B(α,β)
g(x) [G(x)]α−1

[
Ḡ(x)

]β−1
, α > 0, β > 0, (3)

where B(·, ·) is the Euler Beta function.
When (3) is applied to (2), the probability density function of the Beta-Pareto distribution studied

in Akinsete et al. (2008) is obtained with analytical expression given by

f (x) =
1

B(α,β)
θ
x

(σ
x

)αθ [
1−

(σ
x

)θ]β−1

, x > σ. (4)

This distribution includes a wide range of curve shapes as illustrated by the density plots shown
in Figure 1.

Some special cases of the distribution provided in (4) are given below:

• If α = β = 1 we get the classical Pareto distribution given in (1).
• The case β = 1 reduces to a P ar(αθ,σ ).
• The case α = 1 to the Stoppa distribution (see Stoppa, 1990 and Kleiber and Kotz, 2003).

Hereafter, a random variable X that follows the probability density function (4) will be denoted
as X ∼ BP (α,β,θ,σ ).

Simple computations show that the distribution is unimodal with modal value located at

x = σ
[

1 + (α + β − 1)θ
1 +αθ

]1/θ

.

All moments of order r > 0 exist and they are given by,

E(Xr ) =
σΓ (α + β)Γ (α − r/θ)
Γ (α)Γ (α + β − r/θ)

.

SJS, VOL. 2, NO. 1 (2020), PP. 7 - 21
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Figure 1: Graphs of the probability density function (4) for different values of parameter α, β and θ
assuming in all the cases σ = 1.

In particular, the mean value is given by

E(X) =
σB(α∗,β)
B(α,β)

, α >
1
θ
, (5)

where α∗ = α − 1/θ.
The variance is easily computed and it can be seen that the mean value increases with α and β (in

this case when θ > 1) and decreases with θ.
One of the advantage of this distribution is its simple form of its survival function, which is ex-

pressed in terms of the incomplete beta function ratio, a special function available in many statistical
software and spreadsheet packages. That is, the survival function of the random variable following
the probability distribution (4) results

F̄(x) = Iz(x)(α,β), (6)

where z(x) = (σ/x)θ and Iu(·, ·) represents the incomplete beta function ratio, given by

Ic(a,b) =
1

B(a,b)

∫ c

0
ta−1(1− t)b−1dt.

Furthermore, the hazard rate function, h(x) = f (x)/F̄(x), has also a simple and closed-form ex-
pression.

Below, the hazard rate function has been plotted in Figure 2 for different values of the param-
eters α, β and θ and assuming again that σ = 1. It is observable that the hazard rate function is
monotonically decreasing when β ≤ 1. When β > 1 the hazard rate function has inverted-U shape.

Also, if β < 1 the distribution is log-convex, i.e. (logf (x))′′ > 0. Finally, closed-form expression
for the entropy of the distribution can be viewed in Akinsete et al. (2008)



PROPERTIES OF THE BETA-PARETO DISTRIBUTION 11

α 1, β 2, θ 2

α 1, β 1, θ 1

α 0.75, β 2, θ 2

α 2, β 1, θ 0.75

α 3, β 2, θ 0.5

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

h
(x
)

Figure 2: Graphs of the hazard rate function for different values of parameter α, β and θ, assuming
again σ = 1.

2.1 Transformations

Let

X = σ (1−Z)−1/θ ,

then, it is easy to see that the random variable Z follows a Beta distribution with parameters α > 0
and β > 0. This change of variable facilitates computations on properties of the BP distribution
studied here.

2.2 Estimation

In this subsection, we show how to estimate the parameters of the distribution. For that reason, let us
assume that {x1,x2, . . . ,xn} is a random sample selected from the distribution (4) and also assume that
σ = min{xi}, i = 1, . . . ,n. By using the first three moments, numerical computation can be carried out
to obtain the moment estimates of the distribution. Alternatively, by using the maximum likelihood
method, the likelihood function is given by

`(ω; x̃) = n [logΓ (α + β)− logΓ (α)− logΓ (β) + logθ +αθ logσ ]

−αθ
n∑
i=1

logxi + (β − 1)
n∑
i=1

log[1− z(xi)] .

SJS, VOL. 2, NO. 1 (2020), PP. 7 - 21



12 E. GÓMEZ-DÉNIZ AND E. CALDERÍN-OJEDA

The maximum likelihood estimates (MLEs) ω̂ = (α̂, β̂, θ̂), of the parameters ω = (α,β,θ) are ob-
tained by solving the score equations

∂`(ω; x̃)
∂α

= n [ψ(α + β)−ψ(α) +θ logσ ]−θ
n∑
i=1

logxi = 0, (7)

∂`(ω; x̃)
∂β

= n [ψ(α + β)−ψ(β)] +
n∑
i=1

log[1− z(xi)] = 0, (8)

∂`(ω; x̃)
∂θ

= n
(1
θ

+α logσ
)
−α

n∑
i=1

logxi

+(β − 1)
n∑
i=1

(
σ
xi

)θ log(σ/xi)
1− z(xi)

= 0, (9)

where ψ(·) gives the derivative of the digamma function (the logarithm of the gamma function).
Observe that from equation (7) we get

θ =
n [ψ(α + β)−ψ(α)]∑n
i=1 logxi −n logσ

,

which can be plugged into equations (8) and (9) in order to derive system of equations which only
depends on two parameters and that can be solved by a numerical method such as Newton-Raphson.

The second partial derivatives are as follows.

∂2`(ω; x̃)
∂α2 = n [ψ1(α + β)−ψ1(α)] ,

∂2`(ω; x̃)
∂α∂β

= nψ1(α + β),

∂2`(ω; x̃)
∂α∂θ

= logθ −
n∑
i=1

logxi ,

∂2`(ω; x̃)
∂β2 = n [ψ1(α + β)−ψ1(β)] ,

∂2`(ω; x̃)
∂β∂θ

= −
n∑
i=1

(
σ
xi

)θ log(σ/xi)
1− z(xi)

,

∂2`(ω; x̃)
∂θ2 = − n

θ2 − (β − 1)
n∑
i=1

(σ/xi)θ log2(σ/xi)

[1− z(xi)]2 .
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Once the parameters have been estimated the entries of the expected Fisher’s information matrix,
I (ω̂), can be approximated by the following expressions

I11(ω̂) = −n
[
ψ1(α̂ + β̂)−ψ1(α̂)

]
,

I12(ω̂) = −nψ1(α̂ + β̂),

I13(ω̂) ≈ − log θ̂ −
n∑
i=1

logxi ,

I22(ω̂) = −n
[
ψ1(α̂ + β̂)−ψ1(β̂)

]
,

I23(ω̂) ≈ −
n∑
i=1

(
σ
xi

)θ̂ log(σ/xi)

1− (σ/xi)θ̂
,

I33(ω̂) ≈ n

θ̂2
+ (β̂ − 1)

n∑
i=1

(σ/xi)θ̂ log2(σ/xi)[
1− (σ/xi)θ̂

]2 .

3 Tail of the distribution and related issues

As it was previously mentioned, a random variable with non-negative support, such as the classic
Pareto distribution, is commonly used in insurance to model the amount of claims (losses). In this
sense, the size of the distribution tail is of vital importance in actuarial and financial scnearios, if
it is desired that the chosen model allows to capture amounts sufficiently far from the start of the
distribution support, that is, extreme values. Consequently, the use of heavy right-tailed distribu-
tions such as the Pareto, lognormal and Weibull (with shape parameter smaller than 1) distributions,
among others, have been employed to model losses in motor third-party liability insurance, fire
insurance or catastrophe insurance.

3.1 Right tail of the BP distribution

It is already known that any probability distribution, that is specified through its cumula-
tive distribution function F(x) on the real line, is heavy right-tailed (see Rolski et al., 1999) if
limsupx→∞(− log F̄(x)/x) = 0. Observe that − log F̄(x) is the hazard function of F(x). Next result shows
that the BP is a heavy tail distribution.

Proposition 1. The cumulative distribution function F(x) of the Beta-Pareto distribution is a heavy tail
distribution.

Proof. We have that

lim sup
x→∞

1
x

log F̄(x) = lim sup
x→∞

1
x

log

 1
B(α,β)

∫ z(x)

0
tα−1(1− t)β−1


= − lim sup

x→∞

θ [1− z(x)]β−1

σB(α,β)Iz(x)(α,β)

(σ
x

)θ(α+1)

= − lim sup
x→∞

θ
xB(α,β)

[
α + 1−

(β − 1)σθ

1− z(x)

]
= 0,

where we have applied twice L’Hospital rule and the Fundamental Theorem of Calculus. Hence the
result. �

SJS, VOL. 2, NO. 1 (2020), PP. 7 - 21
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Corollary 1. It is verified that limsupx→∞ e
sxF̄(x) =∞, x > σ , s > 0.

Proof. This is a direct consequence of Proposition 1. �

Therefore, as a long-tailed distribution is also heavy right-tailed, the Beta-Pareto distribution
introduced in this manuscript is heavy right-tailed.

An important issue in extreme value theory is the regular variation (see Bingham, 1987 and Kon-
stantinides, 2018). This is, a fexible description of the variation of some function according to the
polynomial form of the type x−δ+o(x−δ), δ > 0. This concept is formalized in the following definition.

Definition 1. A distribution function (measurable function ) is called regular varying at infinity with
index −δ if it holds

lim
x→∞

F̄(τx)
F̄(x)

= τ−δ,

where τ > 0 and the parameter δ ≥ 0 is called the tail index.

Next theorem establishes that the survival function given in (6) is a regular variation Lebesgue
measure.

Proposition 2. The survival function given in (6) is a survival function with regularly varying tails.

Proof. Let us firstly consider the survival function given in (6). Then, after applying L’Hospital rule
and Fundamental Theorem of Calculus we get

lim sup
x→∞

F̄(τx)
F̄(x)

= lim sup
x→∞

∫ z(τx)
0 tα−1(1− t)β−1dt∫ z(x)
0 tα−1(1− t)β−1dt

= lim sup
x→∞

t(θ/σ )(σ/(τx))θ(α+1)[1− z(τx)]β−1

(θ/σ )(σ/x)θ(α+1)[1− z(x)]β−1
= τ−θα ,

and taking into account that θ, α > 0 the result follows. �

An immediate consequence of the previous result is the following (see Jessen and Mikosch, 2006).

Corollary 2. If X,X1, . . . ,Xn are iid random variables with common survival function given by (6) and
Sn =

∑n
i=1Xi , n ≥ 1, then

Pr(Sn > x) ∼ Pr(X > x) as x→∞.

Thus, if X,X1, . . . ,Xn are iid random variables with common survival function given by (6) and
Sn =

∑n
i=1Xi , n ≥ 1, then

Pr(Sn > x) ∼ Pr(X > x) as x→∞.

Therefore, if Pn = maxi=1,...,nXi , n ≥ 1, we have that

Pr(Sn > x) ∼ nPr(X > x) ∼ Pr(Pn > x).

This means that for large x the event {Sn > x} is due to the event {Pn > x}. Therefore, exceedances
of high thresholds by the sum Sn are due to the exceedance of this threshold by the largest value in
the sample.
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The integrated tail distribution or equilibrium distribution (see for example Yang, 2004), given
by

FI (x) =
1

E(X)

∫ x

σ
F̄(y)dy.

is an important concept that often appears in insurance and many other applied probability models.
For the BP distribution studied in this work, the integrated tail distribution can be written as a
closed-form expression as it is given in the following Proposition.

Proposition 3. Let X be a random variable that follows the probability density function given in (4). Then,
the integrated tail distribution of this random variable is given by

FI (x) =
B(α,β)
B(α∗,β)

[ x
σ
Iz(x)(α,β)− I1(α,β)

]
+ I1(α∗,β)− Iz(x)(α

∗,β). (10)

Proof. First, we make the change of variable u = (σ/y)θ by obtaining that∫ x

σ
F̄(y)dy = −σ

θ

∫ z(y)

1
u−1−1/θIu(α,β)du

Now, using the indefinite integration of power functions of the beta incomplete ratio function
given by1 ∫

ur−1Iu(s, t)du =
ur

r
Iu(s, t)− Γ (s+ t)Γ (s+ r)

rΓ (s)Γ (s+ t + r)
Iu(s+ r, t)

and by using (5) and Fundamental Theorem of Calculus, we get the result after some computations.
�

3.2 Actuarial tools

The surplus process of an insurance portfolio is defined as the wealth obtained by the premium pay-
ments minus the reimbursements made at the times of claims. When this process becomes negative
(if ever), we say that ruin has occurred. Let {U (t)}t≥0 be a classical continuous time surplus process,
the surplus process at time t given the initial surplus u =U (0), the dynamic of {U (t)}t≥0 is given by

U (t) = u + c t − S(t),

where S(t) =
∑N (t)
i=1 Xi is the aggregate claim amount up to time t and S(t) = 0 if N (t) = 0. Here,

u ≥ 0 is the insurer’s initial risk surplus at t = 0 and c = (1 + θ)αµ is the insurer’s rate of premium
income per unit time with loading factor ρ ≥ 0. Here the random variables {Xi} are independent and
identically distributed random variables with E(Xi) = µ.

Under the classical model of ruin theory (Yang, 2004) and assuming a positive security loading,
ρ, for the claim size distributions with regularly varying tails it is known that by using (10), an
approximation of the probability of ultimate ruin,

ψ(u) = Pr[U (t) < 0 for some t > 0|U (0) = u] .

1See The Wolfram functions site (https://functions.wolfram.com)

SJS, VOL. 2, NO. 1 (2020), PP. 7 - 21
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can be obtained. This asymptotic approximation of the ruin function is given by

ψ(u) ∼ 1
ρ
F̄I (u), u→∞,

where F̄I (u) = 1−FI (u).
On the other hand, let the random variable X represent either a policy limit or reinsurance de-

ductible (from an insurer’s perspective); then the limited expected value function L of X with cdf
F(x), is defined by

L(x) = E[min(X,x)] =
∫ x

σ
y dF(y) + xF̄(x), (11)

which is the expectation of the cdf F(x) truncated at this point. In other words, it represents the
expected amount per claim retained by the insured on a policy with a fixed amount deductible of x.

A variant of this last expression is given by

E[min(N,max(0,X −M))] =
∫ M+N

M
(x −M)f (x)dx+NF̄(M +N ), (12)

which represents the expected cost per claim to the reinsurance layer when the losses excess ofM > σ
subject to a maximum of N >M.

The following result, concerning to the classical Beta distribution, is useful to derive the Propo-
sitions which will be given later in order to calculate the limited expected value function for the
Beta-Pareto distribution.

Proposition 4. Let h(y) the probability density function of a classical Beta distribution with parameters
α > 0 and β > 0. Then, it is verified that,∫ s

0
(1− y)rh(y)dy =

1
B(α,β)

Is(α,β + r), (13)∫ s+t

s
(1− y)rh(y)dy =

1
B(α,β)

[Is+t(α,β + r)− Is(α,β + r)] . (14)

Proof. It is straightforward. �

Proposition 5. Let X be a random variable denoting the individual claim size taking values only for
individual claims greater than M > σ . Let us also assumed that X follows the probability density function
(4). Then the expected cost per claim of the reinsurance layer when the losses excess of M > σ is given by

L(x) =
σB(α∗,β)
B(α,β)

[
1− Iz(M)(α

∗,β)
]
+MIz(M)(α,β), α >

1
θ
. (15)

Proof. By taking (11), making the change of variable u = 1−z(y) and using (13) we get the result after
some algebra. �

Proposition 6. Let X be a random variable denoting the individual claim size taking values only for
individual claims greater than M > σ . Let us also assumed that X follows the probability density function
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(4). Then the expected cost per claim of the reinsurance layer when the losses excess of M > σ subject to a
maximum of N >M is given by

L(x) =
σ

B(α,β)

{
B(α∗,1 + β)

[
Iz(M)(α

∗,1 + β)− Iz(M+N )(α
∗,1 + β)

]
+B(1 +α∗,β)

[
Iz(M)(1 +α∗,β)− Iz(M+N )(1 +α∗,β)

]}
+(M +N )Iz(M+N )(α,β)−MIz(M)(α,β), α >

1
θ
.

Proof. The proof is similar to that in Propostion 5 but using now (12) and (14). �

3.3 Mean excess function

The failure rate of the integrated tail distribution, which is given by γI (x) = F̄(x)/
∫∞
x
F̄(y)dy is also

obtained in closed-form. Furthermore, the reciprocal of γI (x) is the mean residual life that can be
easily derived. For a claim amount random variable X, the mean excess function or mean residual
life function is the expected payment per claim for a policy with a fixed amount deductible of x > 0,
where claims with amounts less than or equal to x are completely ignored. Then,

e(x) = E(X − x|X > x) =
1
F̄(x)

∫ ∞
x
F̄(u)du. (16)

Next result gives the mean excess function of the BP distribution in a closed-form expression.

Proposition 7. The mean excess function of the BP distribution is given by

e(x) =
σ2B(α∗,β)Iz(x)(α∗,β)

B(α,β)Iz(x)(α,β)
− x. (17)

Proof. Using the expression

e(x) =
E(X)−L(x)

F̄(x)
,

which relates the mean excess function given in (16) with the limited expected value function (see
Hogg and Klugman, 1984, p. 59), the result follows by using and (5), (6), (15) and a some little
algebra. �

Figure 3 shows the mean residual life function (16) for special cases of parameters. It can be seen
that this function can be increasing, decreasing, unimodal or anti-unimodal.

4 Numerical application

Two well-known datasets in the actuarial literature will be used here to analyze hoe the BP dis-
tribution works. The first dataset deals with large losses in a fire insurance portfolio in Denmark.
These dataset include 2157 losses over 1 million Danish Krone in the years 1980-1990. A detailed
statistical analysis of this set of data can be seen in McNeil (1997) in Albrecher et al. (2017) and also
in Embrechts et al. (1997). It can be found in the R package CASdatasets collected at Copenhagen
Reinsurance. The second dataset is norfire comprises 9181 fire losses over the period 1972 to 1992
from an unknown Norwegian company. A priority of 500 thousands of Norwegian Krone (NKR) (if

SJS, VOL. 2, NO. 1 (2020), PP. 7 - 21
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Figure 3: Mean residual life function of BP distribution for selected values of parameters when σ = 1.

this amount is exceeded, the reinsurer becomes liable to pay) was applied to obtain this dataset. This
set of data is is also available in the R package CASdatasets.

Below in Table 1, parameter estimates and their corresponding p-values together with the neg-
ative value of the maximum likelihood function (NLL) evaluated at the maximum likelihood esti-
mates for the two datasets considered are shown. Also the Kolmogorov-Smirnov (KS) and Anderson-
Darling (AD) test statistics are displayed. As judged by the corresponding p-values, the BP distribu-
tion is not rejected for neither of the tests for the Danish dataset. However, for the Norwegian set of
data, the BP distribution is rejected at the 5% significance level.

Danish dataset
BP α̂ β̂ θ̂ NLL KS AD
σ = 0.999 32.113 1.157 0.046 3341.895 0.027 0.00051

(< 0.001) (< 0.001) (< 0.001) (0.398) (0.545)
Norwegian dataset
BP α̂ β̂ θ̂ NLL KS AD
σ = 490 77.090 1.549 0.020 20979.635 0.039 0.0011

(< 0.001) (< 0.001) (< 0.001) 0.038 0.057

Table 1: Parameter estimates and their p-values (in brackets), negative of the maximum of the log
likelihood function, Kolmogorov-Smirnov and Anderson-Darling test for the BP distribution.

These results are confirmed in Figure 4 where the empirical and theoretical cdf are plotted. It
is observable that for the Danish dataset (left panel) the theoretical model adheres closer to the
empirical data than for the Norwegian dataset.
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Figure 4: Empirical (thick line) and fitted cumulative distribution function for the Danish (left) and
Norwegian (right) datasets.

In Figure 5, the limited expected value for the two sets of data have been plotted. It can be seen
that when the policy limit x increases the theoretical model overestimates the empirical values for
the Danish dataset. The converse occurs for the other set of data.
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Figure 5: Empirical (thick line) and fitted limited expected values for the Danish (left) and Norwe-
gian (right) datasets.

In Table 2, the tail value at risk (TVaR) (or first order tail moment), for different security levels
has been calculated for the BP distribution. This risk measure describes the expected loss given that
the loss exceeds the security level (quantile). These values have been calculated directly from the
data. Empirical values have also been obtained. For the different risk levels it is discernible that the
BP distribution overestimate the empirical TVaR values for the three security levels considered and
the two sets of data.

5 Conclusions

In this work, the Beta-Pareto distribution, a generalization of the Pareto distribution that was in-
troduced in the statistical literature not long time ago, has been extended and applied in financial
and actuarial settings. In addition, several interesting properties related with the right-tail of the
distribution were provided including the integrated tail distribution and the limited expected val-
ues among others. These properties, which had not been revealed until now, make the Beta-Pareto
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Risk Level α
Risk Level 0.90 0.95 0.99
Danish dataset
Empirical 15.637 24.305 61.376
BP 18.556 33.079 85.719
Norwegian dataset
Empirical 9936.597 15635.295 42475.200
BP 11423.301 17576.914 53270.056

Table 2: Tail Value at Risk for different risk levels.

distribution a plausible alternative for applications in these fields. Additionally, its usefulness has
been proven in its good performance against some well-known datasets usually considered in general
insurance, improving the performance of other traditionally-used loss models.
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1 Introduction

In the area of survival analysis and new distributions, much is said about proposing families and,
consequently, distributions, which model fatigue data sets, failure time of electronic components,
etc., which constitute engineering data.

Several types of data sets have been used for new distributions from medical and different
branches of engineering and industry. However, Brazilian data sets are seldom used in international
statistical papers. In this context, this work focuses on two applications in engineering area from
Brazil. In addition, given that many workers used data collected over 20 years, we adopt more recent
data sets.

The Weibull and Birnbaum-Saunders models are among the most widely distributions taken for
baseline for several generators in different areas of engineering. The main goal here is to propose
a new distribution that is as flexible as, or more than, the aforementioned, and that fits recent real
engineering data. We believe that this purpose is valid and innovative.

One of the most used methods in the construction of new lifetime distributions is based on well-
established generators by adding shape(s) parameters to parent models. This method is adopted in

© ine Published by the Spanish National Statistical Institute
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this paper. The proposed distribution is interesting for lifetime data analysis as a further option,
where some known distributions do not fit well.

The probability density function (pdf) and cumulative distribution function (cdf) of the gamma-
G family (Zografos and Balakrishnan, 2009) for a baseline G are

f
gg

(x;a,η) =
1

Γ (a)
{− log[1−G(x;η)]}a−1 g(x;η) (1)

and

F
gg

(x;a,η) =
γ (a,− log[1−G(x;η)])

Γ (a)
=

1
Γ (a)

∫ − log[1−G(x;η)]

0
ta−1e−tdt,

respectively, where a > 0, η is the q-parameter vector of the baseline distribution, g(x;η) =
dG(x;η)/dx, Γ (a) =

∫∞
0 ta−1 e−tdt is the gamma function and γ(a,z) =

∫ z
0 t

a−1 e−tdt denotes the lower
incomplete gamma function. This family is flexibilized by the shape parameter a and the support of
f
gg

(x) is the same of g(x).
Many papers adopt the gamma-G family in order to fit several types of data sets. The great ad-

vantage in choosing this family over that one proposed by Torabi and Hedesh (2012) is the reduction
in the problems of parameter estimation, since the proposal by Zografos and Balakrishnan (2009) has
one parameter less than the other one. There are many works involving this family and its structural
properties (Nadarajah et al., 2015). Table 1 lists some of its special models and associated data sets.
In all cases, the gamma-G provides better fits when compared with another well-know distributions
including beta-G models.

Table 1: Some gamma-G models
Model Authors (year) Application

Gamma-Birnbaum-
Saunders

Cordeiro et al. (2016) Failure and fatigue

Gamma-Normal Lima (2015) Agronomy and levels nico-
tine

Gamma-Lindley Lima (2015) Reliability and SAR images
Gamma-Nadarajah-
Haghighi

Lima (2015) Failure and fatigue

Gamma-Extended
Weibull

Lima (2015) Failure and fatigue

Gamma-Pareto Alzaatreh et al. (2012) River flood rates, fatigue and
frequencies for Tribolium
Confusum Strain

Gamma-Exponentiated
Weibull

Pinho et al. (2012) Daily minimum wind speed

Gamma exponentiated
exponential-Weibull
distribution

Pogány and Saboor (2016) Remission times and fatigue

Major topics studied in the sections are as follows. In Section 2, we define the gamma-Chen
(GC) model. In Section 3, we obtain some of its properties. In Section 4, we examine the accuracy
of the maximum likelihood estimators (MLEs). The superiority of the GC model in relation to ten
known distributions (including the well-known exponentiated Weibull model) is proved by means
of two engineering data sets in Section 5. These competitors were chosen based on previous works
in engineering data management (focus of the applications of this work). In Section 6, we conclude
the paper.
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2 Proposed model

In survival analysis it is very common to look for new distributions that have great versatility in the
hazard rate function (hrf). The most common forms of hrfs are bathtub and unimodal. Chen (2000)
proposed a two-parametric distribution that accommodates increasing and bathtub hrf forms, thus
showing the great flexibility of this distribution.

Recently, some extensions of the Chen distribution (Chen, 2000) have appeared in the literature.
Dey et al. (2017) proposed the exponentiated-Chen (exp-Chen) and showed that this distribution also
has unimodal hrf. Among others extensions, we can mention Kumaraswamy-exponentiated-Chen
(Khan et al., 2018) distribution, Weibull-Chen (Tarvirdizade and Ahmadpour, 2019) distribution,
modified Weibull extension (Xie et al., 2002) and odd Chen-G family (Anzagra et al., 2020).

The cdf and pdf of the random variable Y ∼ Chen(λ,β) are

G(y;λ,β) = 1− eλ(1−ey
β

), y > 0

and
g(y;λ,β) = λβyβ−1ey

β+λ(1−ey
β

), (2)

respectively, where λ > 0 is a scale parameter and β > 0 is a shape parameter.
The GC density is determined from (1) and the last two equations

f
gc

(x;a,λ,β) =
λaβ

Γ (a)
xβ−1 (ex

β
− 1)a−1 ex

β+λ (1−ex
β

), x > 0. (3)

For a = 1, we have the Chen density. Henceforth, X ∼ GC(a,λ,β) denotes a random variable with
pdf (3). The three-parameter GC distribution has no problem of identifiability. The Chen distribu-
tion is clearly identifiable since different parameter vectors imply different cumulative distributions.
So, the GC is also identifiable.

A simple motivation for the GC density follows from Zografos and Balakrishnan (2009). If Y(1) <
· · · < Y(p) < · · · are upper record values arising from a sequence of Chen independent and identically
random variables Y1,Y2, · · · , then the order statistic Y(p) has the GC density with a = p. So, the density
of X can approximate the density of the pth order statistic of the Chen(λ,β) distribution by taking
p as the greatest integer less than or equal to a. So, the GC distribution is generated by Chen record
value densities. This explicitly means that the GC distribution is a direct record-Chen analog.

A practical relevance and applicability of the GC distribution is for the lifetime system with n
independent components which function if and only if at least k of the components function is a “k
out of n” system. For such a system, k is less than n, and it includes some parallel, fail-safe and series
systems all as special cases for k = 1, k = n − 1 and k = n, respectively. Suppose Y1, · · · ,Yn denote the
lifetimes of n components having the Chen distribution of a system, where k is assumed unknown
and n is very large. Then, the lifetime of a k-out-of-n system consisting of these components can be
represented by the order statistic Y(n−k+1), which can be modeled by the GC distribution to estimate
a and then k.

Figure 1(a) displays plots of the density of X for some parameter values, which show that it
accommodates several forms. By combining different values of β and a provide great flexibility
for the GC density. In fact, this density can be symmetric, left-skewed or right-skewed, and the
parameter a has significant effects on both skewness and kurtosis.

The cdf and hrf of X are

F
gc

(x;a,λ,β) =
γ(a,−λ(1− ex

β
))

Γ (a)
,
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and

τ
gc

(x;a,λ,β) =
λaβ xβ−1 (ex

β − 1)a−1 ex
β+λ (1−ex

β
)

Γ (a)−γ(a,−λ(1− exβ ))
,

respectively. Note that for a = β = 1 the shape of the hrf is independent of λ. Chen (2000) showed
that the Chen hrf can only be increasing (β ≥ 1) and bathtub (β < 1). However, the hrf of X can be
increasing, decreasing, unimodal and bathtub-shaped as shown in Figure 1(b). Further, the bathtub
shape can be obtained even when β > 1. This fact reveals that the hrf of X gains more flexibility with
the extra parameter a since it can take the most four common forms for applications to real data:
increasing for any positive value of β, bathtub-shaped, unimodal, and also decreasing, which shows
that it has great flexibility due to the parameter a (see Figure 1(b)).

Following the idea in Qian (2012), we can to determine the parameter ranges for the density
shapes. Setting z = exp(xβ), we obtain from (3)

r(z) = f ([logz]1/β) =
λaβ logz
Γ (a)

(logz)−1/β(z − 1)a−1 exp[logz+λ(1− z)].

Applying logarithms of both sides of the previous equation,

logr(z) =a logλ+ logβ + log(logz)− logΓ (a)− 1
β

log(logz)

+ (a− 1)log(z − 1) + logz+λ(1− z).

By taking derivatives of both sides of the last equation, we have

r ′(z)
r(z)

=
1

z logz
− 1
βz logz

+
a− 1
z − 1

+
1
z
−λ

=
β(z − 1)− (z − 1) + βz(a− 1)logz+ β(z − 1)logz −λβz(z − 1)logz

βz(z − 1)logz
.

If s(z) is the numerator of the right side of this equation, we can write

r ′(z) =
r(z)s(z)

βz(z − 1)logz
.

Hence, r ′(z) and s(z) have the same signs, since r(z) > 0 and βz(z − 1)logz > 0 for z > 1. The
condition z > 1 holds since x > 0. In this case, x = log(z)1/β ⇐⇒ z > 1.

Note that in Region I (Figure 2(a)), s(z) takes positive values first and then negative values, which
indicates the unimodal property of the density. In Region II (Figure 2(b)), s(z) has only negative
values, thus indicating decreasing shape. So, Figures 2(a) and 2(b) reveal that the pdf is unimodal
for a ≥ 1 and that it is decreasing for a ∈ (0,1), respectively, as noted in Figure 1(a).

3 Properties

It is not possible to obtain some mathematical properties of the GC distribution in closed form,
that is, according to known mathematical functions. Then, we determine these quantities from the
weighted linear combination for its density function given in Theorem 2 below.

For a given cdf G(z;η) with q-parameter vector η, the cdf and pdf of the exponentiated-G (exp-G)
random variable Za with power parameter a > 0, say Za ∼ exp-G(a,η), are

H(z;a,η) = G(z;η)a and h(z;a,η) = ag(z;η)G(z;η)a−1,
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Figure 1: Plots of the pdf (a) and hrf (b) of the GC distribution.
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Figure 2: Regions for the density shapes. (a) Region I: a ≥ 1 and (b) Region II: a ∈ (0,1).

respectively, where g(z;η) = dG(z;η)/dz.
The gamma-G cdf can be expressed as (Castellares and Lemonte, 2015)

F
gg

(x;a,η) =
∞∑
k=0

ϕk(a)
(a+ k)

H(x; (a+ k),η), (4)
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where ϕ0(a) = 1
Γ (a) , ϕk(a) = (a−1)

Γ (a) ψk−1(k + a− 2) (k ≥ 1), ψk−1(·) are the Stirling polynomials

ψk−1(w) =
(−1)k−1

(k + 1)!

[
T k−1
k − (w+ 2)

(k + 2)
T k−2
k +

(w+ 2)(w+ 3)
(k + 2)(k + 3)

T k−3
k

−· · ·+ (−1)k−1 (w+ 2)(w+ 3) · · · (w+ k)
(k + 2)(k + 3) · · · (2k)

T 0
k

]
,

T 0
0 = 1, T 0

k+1 = 1× 3× . . .× (2k + 1), T kk+1 = 1 and Tmk are positive integers determined from

Tmk+1 = (2k + 1−m)Tmk + (k −m+ 1)Tm−1
k .

The function H(x; (a + k),η) denotes the cdf of Za+k . Thus, we can obtain the properties of the
gamma-G model from those of the exp-G class.

Theorem 1. Let Y be a random variable having density (2). Then, the exp-Chen(a,λ,β) density can be
expressed as

h(y;a,λ,β) =
∞∑
m=1

pm g(y;mλ,β),

where pm = pm(a) = (−1)m+1 ( a
m

)
and g(y;mλ,β) is the Chen density with scale mλ and shape β.

Proof. For |x| < 1 and any real a , 0, the power series

(1− x)a =
∞∑
m=0

(−1)m
(
a
m

)
xm

converges. Thus, the exp-Chen cdf can be expanded as

H(y;a,λ,β) =
[
1− eλ (1−ey

β
)
]a

= 1 +
∞∑
m=1

(−1)m
(
a
m

)
[1−G(y;mλ,β)].

By differentiating the last equation,

h(y;a,λ,β) =
∞∑
m=1

(−1)m+1
(
a
m

)
g(y;mλ,β),

and then the exp-Chen density is a linear combination of Chen densities. �

Theorem 2. The pdf of X in Equation (3) can be expressed as

f
gc

(x;a,λ,β) =
∞∑
m=1

wm g(x;mλ,β),

where g(x;mλ,β) is the Chen density with scale mλ and shape β and the weights are

wm = wm(a) = (−1)m+1
∞∑
k=0

ϕk(a)
(a+ k)

(
a+ k
m

)
.

Proof. The proof comes directly from Equation (4) and Theorem 1. �
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By using Theorem 2, the rth moment of X has the form

E[Xr ] =
∞∑
m=1

wmE[Y rm],

where Ym ∼ Chen(mλ,β).
If Y ∼ Chen(λ,β) has pdf (2), we can write (Pogány et al., 2017)

E[Y r ] = λeλDrβ−1

t

[
Γ (t + 1,λ)
λt+1

]
t=0
. (5)

Here,

D
p
t

[
Γ (t + 1,λ)
λt+1

]
t=0

= Γ (p+ 1)
∑
k≥0

(2)k
k!

Φ
(0,1)
µ,1 (−k,p+ 1,1) 1F1(k + 2;2;−λ),

where Φ
(0,1)
µ,1 (−a,p+ 1,1) =

∑
n≥0

(−a)n
n!(n+1)p+1 for µ ∈C, 1F1(a;b;x) =

∑
n≥0

(a)n
(b)n

xn
n! , for x,a ∈C and b ∈C\Z−0 ,

is the confluent hypergeometric function (Kilbas et al., 2006, page 29, Eq. 1.6.14) and (λ)η = Γ (λ+η)
Γ (λ) ,

for λ ∈C\{0}, is the generalized Pochhammer symbol with (0)0 = 1.
Thus, using (5), the rth moment of X can be reduced to

E[Xr ] = λ
∞∑
m=1

mwm emλDrβ−1

t

[
Γ (t + 1,mλ)

(mλ)t+1

]
t=0
.

Figures 3, 4 and 5 provide the plots of the mean and variance of X as functions of a, λ and
β, respectively, the other parameters being fixed. The mean and variance of X increase when a
increases. In turn, these measures decrease when λ increases. Further, the mean of X increases when
β increases and the variance of X increases to a maximum point and starts to decrease.
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Figure 3: Mean (a) and variance (b) plots of X as functions of a (λ = 2.4,β = 0.5).
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Figure 4: Mean (a) and variance (b) plots of X as functions of λ (a = 0.7,β = 1.4).
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Figure 5: Mean (a) and variance (b) plots of X as functions of β (a = 0.6,λ = 2.7).

Another type of measure that has great applicability is the incomplete moment. For z > 0,
the rth incomplete moment of the random variable Y with Chen distribution, say qr(z;λ,β) =∫ z

0 y
r g(y;λ,β)dy, follows from Pogány et al. (2017) as

qr(z;λ,β) = λeλ
∑
n,k≥0

k∑
j=1

(2)n+k

(2)n

(−1)n+j λn

n!k!(j + 1)rβ−1+1

(
k
j

)
γ
(
rβ−1, (j + 1)(1− z−1)

)
. (6)
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Thus, using Theorem 2 and Equation (6), the rth incomplete moment of X is

mr(z) = λ
∞∑
m=1

memλwm
∑
n,k≥0

k∑
j=1

(2)n+k

(2)n

(−1)n+j (mλ)n

n!k!(j + 1)rβ−1+1

(
k
j

)
γ
(
rβ−1, (1− z−1)(j + 1)

)
.

The first incomplete moment is used to obtain Lorenz and Bonferroni curves and mean devia-
tions.

The generating function (gf) of Y ∼ Chen(λ,β), MY (−t) = E[e−tY ], t > 0, can be written, according
to Pogány et al. (2017), by

MY (−t) = λβ eλ t−β
∑
n≥0

(−λ)n

n! 1Ψ0

[
(β,β);−;

n+ 1
tβ

]
, (7)

where

1Ψ0 [(a,b);−;z] =
∑
n≥0

Γ (a+ bn)zn

n!
, z,a ∈C,b > 0,

is the generalized Fox-Wright function.
Thus, from Theorem 2 and Equation (7), the gf of X follows as (for t > 0)

MX(−t) = λβ t−β
∞∑
m=1

∑
n≥0

memλ (−mλ)nwm
n! 1Ψ0

[
(β,β);−;

n+ 1
tβ

]
.

The quantile function (qf) of X, say Q
gg

(u;a,η) = F−1
gg

(u;a,η), can be expressed as (Nadarajah
et al., 2015)

Q
gg

(u;a,η) =Q
g

(
1− e−Q1(a,u);η

)
, 0 < u < 1,

whereQ
g

is the qf of the baseline G(x;η) andQ1(a,u) is the inverse function of γ1(a,w) = γ(a,w)/Γ (a).
Further, we can write

Q
gc

(u;a,λ,β) =
{
log

[
1 +λ−1Q1(a,u)

]}1/β
. (8)

We can obtain skewness and kurtosis measures of X from Equation (8). The Bowley skewness
and Moors kurtosis are based on quartiles and octiles, respectively. Letting Q

gc
(u) = Q

gc
(u;a,λ,β),

the skewness and kurtosis of X are

B(a,λ,β) =
Q

gc
(3/4) +Q

gc
(1/4)− 2Q

gc
(2/4)

Q
gc

(3/4)−Q
gc

(1/4)

and

M(a,λ,β) =
Q

gc
(7/8)−Q

gc
(5/8)−Q

gc
(3/8) +Q

gc
(1/8)

Q
gc

(6/8)−Q
gc

(2/8)
,

respectively. Plots of these measures as functions of a are displayed in Figure 6, which show that
both of them decrease when a increases. Both measures grow when a decreases from one, and they
can take negative values and higher positive values when a increases from one.
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Figure 6: Skewness (a) and kurtosis (b) plots of X as functions of a.

4 Estimation

Let θ = (a,λ,β)> be the parameter vector of the GC model. Consider the random variablesX1, . . . ,Xn ∼
GC(a,λ,β) with observed values x1, . . . ,xn. The log-likelihood function for θ is

`(θ) =n[a logλ+ logβ − logΓ (a) +λ] +
n∑
i=1

x
β
i + (β − 1)

n∑
i=1

logxi

+ (a− 1)
n∑
i=1

log(ex
β
i − 1)−λ

n∑
i=1

ex
β
i .

The maximum likelihood estimate (MLE) of θ, say θ̂, can be found by maximizing `(θ) numeri-
cally with respect to its components. Some routines such as SAS (PROC NLMIXED), R (optim function)
and Ox (sub-routine MaxBFGS) can be used for the maximization.

We now study the behavior of MLEs in the GC model from 1,000 Monte Carlo replications. All
simulations are performed using R Project (R Core Team, 2019). The sample sizes chosen are n = 25,
50, 100, 200, 300 and 400 and the true parameter vectors are: (a,λ,β) = (1.4,0.7,1.9) for scenario 1,
and (a,λ,β) = (2.5,1.5,0.8) for scenario 2. There were no special reasons for choosing these parame-
ters.

Table 2 reports the average estimates (AEs), biases and mean squared errors (MSEs) for both
scenarios. The MLEs converge to the true parameters and the biases and MSEs decrease to zero when
the sample size n increases, that makes us conclude that the consistency criterion holds.

5 Engineering data

In order to show a superior performance of the new distribution when compared to others already
published in the literature, we provide two applications in recent real data sets in the engineering
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Table 2: Findings under scenarios 1 to 2.
scenario 1

Par
n = 25 n = 50 n = 100

AE Bias MSE AE Bias MSE AE Bias MSE

a 1.965 0.565 5.503 1.656 0.256 1.634 1.496 0.096 0.485
λ 1.065 0.365 2.138 0.868 0.168 0.641 0.762 0.062 0.206
β 2.216 0.316 1.074 2.049 0.149 0.415 1.985 0.085 0.167

Par
n = 200 n = 300 n = 400

AE Bias MSE AE Bias MSE AE Bias MSE

a 1.442 0.042 0.155 1.436 0.036 0.108 1.419 0.019 0.081
λ 0.727 0.027 0.068 0.727 0.027 0.045 0.715 0.015 0.029
β 1.942 0.042 0.077 1.917 0.017 0.048 1.916 0.016 0.040

scenario 2

Par
n = 25 n = 50 n = 100

AE Bias MSE AE Bias MSE AE Bias MSE

a 1.965 0.465 7.624 1.808 0.308 4.813 1.621 0.121 1.326
λ 1.869 0.369 4.307 1.787 0.287 2.159 1.608 0.108 0.806
β 1.393 0.593 2.348 1.043 0.243 0.778 0.891 0.091 0.104

Par
n = 200 n = 300 n = 400

AE Bias MSE AE Bias MSE AE Bias MSE

a 1.539 0.039 0.400 1.547 0.047 0.225 1.477 -0.023 0.345
λ 1.542 0.042 0.246 1.546 0.046 0.155 1.506 0.006 0.134
β 0.851 0.051 0.077 0.819 0.019 0.021 0.839 0.039 0.053

area. In this work, we choose two types of engineering data sets to show the flexibility of the pro-
posed model. One related to ore wagon fleets and the other to natural gas; both sets belong to the
production engineering branch. Table 3 presents the descriptive statistics of the two data sets.

The first data set is obtained in a work by (Sivini, 2006), which involves the execution of a pilot
project of a reliability data applied in natural gas pressure reducing stations (ERPGN) of a com-
pany that operates in Pernambuco (Brazil). The data in question refer to the time until the mainte-
nance time (Tm) in one of the Pressure Reduction and Measurement Stations (ERPM - A) between
10/14/2002 to 05/16/2005.

The second application has a data set taken from the same work (Sivini, 2006). Here, we consider
Tm in ERPM B and C, collected between 11/14/2002 and 6/16/2005.

Table 3 gives the descriptive statistics of the two data sets. Note that the two data sets differ
widely. The first with a mean of 2.9222 and the second with a mean of 6.2062. Their maximum
values and standard deviations (SDs) are also very different.

5.1 Competitive distributions

We compare the GC model with other ten distributions: Chen, exponentiated Weibull (Mudholkar
and Hutson, 1993), Kumaraswamy-log-logistic (de Santana et al., 2012), gamma-extended Frèchet
(da Silva et al., 2013), beta-log-logistic (Lemonte, 2014), Birnbaum-Saunders (Birnbaum and Saun-
ders, 1969), gamma-Birnbaum-Saunders (Cordeiro et al., 2016), beta Birnbaum-Saunders (Cordeiro
and Lemonte, 2011), odd-log-logistic Birnbaum-Saunders (Ortega et al., 2016) and odd-log-logistic
Birnbaum-Saunders Poisson (Cordeiro et al., 2018).
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Table 3: Descriptive statistics.
Description data set 1 data set 2

Min. 1.1700 1.0000
1st Qu. 1.1900 3.0625
Median 1.5850 4.8350
Mean 2.9222 6.2062
3rd Qu. 4.9175 6.1250
Max. 8.0000 30.3300
SD 2.2553 6.7021

The choice of the previous distributions is based on suitable ones with good fits to engineering
data. We emphasize that other distributions could also be used.

The densities of the exponentiated Weibull (EW), Kumaraswamy-log-logistic (KLL), gamma-
extended Frèchet (GEF) and beta-log-logistic (BLL) are (for x > 0)

f
ew

(x;a,λ,β) =
aλ
β

(
x
β

)λ−1
1− exp

−(xβ
)λ


(a−1)

exp

−(xβ
)λ ,

f
kll

(x;a,b,α,δ) =
abδ

αaδ
xaδ−1

[
1−

( x
α

)δ]−a−1
1−

1− 1

1 +
(
x
α

)δ

a
b−1

,

f
gef

(x;a,λ,σ ,α) =
αλσλ

Γ (a)
x−λ−1 exp

[
−
(σ
x

)λ]{
1− exp

[
−
(σ
x

)λ]}α−1

×
{
− log

{
1− exp

[
−
(σ
x

)λ]}α}a−1

,

and

f
bll

(x;a,b,α,β) =
β Γ (a)Γ (b)
α Γ (a+ b)

(x/α)aβ−1

[1 + (x/α)β]a+b
,

respectively, where all parameters are positive.
The cdf and pdf of the Birnbaum-Saunders (BS) are

F
bs

(x;α,β) = Φ

 1
α

(xβ
) 1

2

−
(β
x

) 1
2


 , x > 0 (9)

and

f
bs

(x;α,β) =
exp(α−2)

2α
√

2πβ
x−

3
2 (x+ β)exp

[
− 1

2α2

(
x
β

+
β

x

)]
, (10)

respectively, where α,β > 0 and Φ(·) is the standard normal cdf.
The densities of the gamma-Birnbaum-Saunders (GBS), beta-Birnbaum-Saunders (BBS), odd-log-

logistic Birnbaum-Saunders (OLLBS) and odd-log-logistic Birnbaum-Saunders Poisson (OLLBSP)
distributions are given by

f
bg

(x;a,b,η) =
Γ (a)Γ (b)
Γ (a+ b)

g(x;η)G(x;η)a−1 Ḡ(x;η)b−1,
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f
ollg

(x;a,η) =
ag(x;η)

[
G(x;η)Ḡ(x;η)

]a−1[
G(x;η)a + Ḡ(x;η)a

]2
and

f
ollg-p

(x;a,b,η) =
abg(x;η)

[
G(x;η)Ḡ(x;η)

]a−1

(eb − 1)
[
G(x;η)a + Ḡ(x;η)a

]2 exp
[

bG(x;η)a

G(x;η)a + Ḡ(x;η)a

]
,

respectively, where a,b > 0 and Ḡ(x;η) = 1−G(x;η).
As for the simulations, we adopt the open source computing platform: R Project (R Core Team,

2019). The MLEs of the parameters of the fitted densities are calculated using the goodness.fit

function of the script AdequacyModel (Marinho et al., 2019) available in programming environment
R Project (R Core Team, 2019) with the BFGS method. The best models fitted to the data sets are
chosen based on the statistics: Cramèr-von Mises (W ∗), Anderson-Darling (A∗), Akaike Information
Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion
(BIC), Hannan-Quinn Information Criterion (HQIC) and Kolmogorov-Smirnov (KS) and its p-value.

Initial parameter values are chosen based on a function created using the GenSA package from
R Project (Xiang et al., 2013). Such a package allows implementing a function that seeks the global
minimum of a given function with a large number of optimum points. Therefore, we insert functions
in R that take as arguments the data set to be used and the desired density. The functions in question
return the initial shots of the parameters in question.

5.2 Findings

Tables 4 and 5 give the MLEs and their standard errors (SEs) in parentheses and the information
criteria, respectively. The values for all statistics (except KS) in Table 5 indicate that the GC dis-
tribution is the best model to these data. Further, the p-values of the KS statistic also reveal that
all distributions (except BS, OLLBS and EW models) can be used to fit the current data. So, the
information criteria support that the CG distribution provides the best fit to these data. The plots of
the estimated pdfs and cdfs and the Kaplan-Meier (KM) estimate, for the two best models, displayed
in Figure 7 reveal that the GC distribution is the most adequate model to these data.

For the data set 2, the MLEs, SEs and information criteria are reported in Tables 6 and 7, respec-
tively. All information criteria also indicate to the CG distribution is the best model when compared
to the others. The p-values of the KS statistic show that the BS, OLLBS and OLLBSP models can
not be used for the current data. Based on the histogram, the estimated pdfs and cdfs and the KM
estimate (Figure 8), we can conclude that the GC distribution provides a better fit to these data.

The likelihood ratio (LR) statistics that compare the GC and Chen models, for the two data sets,
are reported in Table 8. For both data sets, the null hypothesis is rejected, and the GC distribution is
a more appropriate model for both data sets.

6 Conclusions

We introduce the gamma-Chen (GC) distribution which extends the Chen model. The new distribu-
tion adds an extra shape parameter thus giving greater flexibility. We obtain some of its mathemati-
cal properties. The hazard rate function of the GC distribution may have increasing, decreasing and
bathtub shapes. We show the consistency of the maximum likelihood estimators via Monte Carlo
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Table 4: Fitted models to data set 1.
Model Estimates

BS(α,β) 29.9850 0.0034
(9.6966) (0.0017)

Chen(λ,β) 0.1410 0.5849
(0.0546) (0.0685)

OLLBS(α,β,a) 67.3595 2.1694 95.2768
(0.0294) (0.0294) (0.1584)

GBS(α,β,a) 0.6451 3.5546 0.5637
(0.1265) (0.3059) (0.1775)

GC(a,λ,β) 159.6704 84.6636 0.0685
(0.8199) (0.1208) (0.0088)

EW(a,λ,β) 0.0438 7.9268 40.2123
(0.0103) (0.0890) (0.0762)

BLL(a,b,α,β) 7.6014 493.3696 6999.9700 0.5272
(0.0003) (<0.0001) (1.8495) (0.0109)

GEF(a,λ,σ ,α) 1.1000 0.3263 1110.5080 999.9747
(<0.0001) (<0.0001) (<0.0001) 0.0027

KLL(a,b,α,δ) 20.5704 0.1668 0.7889 8.4532
(<0.0001) (0.0002) (0.0004) (0.0001)

OLLBSP(α,β,a,b) 479.9736 0.0513 182.0844 6.1178
(0.0004) (0.0004) (0.0019) (0.1940)

BBS(α,β,a,b) 86.2317 0.0551 0.0905 0.0800
(0.0010) (0.0120) (0.0010) (9.9186)

Table 5: Information criteria for data set 1.
Model W ∗ A∗ AIC CAIC BIC HQIC KS p-value (KS)
BS 0.3054 1.7138 113.8926 114.6926 115.6733 114.1381 0.7303 <0.0001
Chen 0.3229 1.7662 78.7075 79.5075 80.4882 78.9530 0.2450 0.2300
OLLBS 0.2973 1.6868 117.663 119.3773 120.3341 118.0313 0.7325 <0.0001
GBS 0.2999 1.6924 77.6396 79.3538 80.3107 78.0079 0.2339 0.2782
GC 0.2613 1.5455 73.9505 75.6648 76.6216 74.3188 0.2254 0.3198
EW 0.2775 1.5989 109.3646 111.0789 112.0357 109.7329 0.4288 0.0027
BLL 0.2716 1.5835 76.7815 79.8584 80.3429 77.2725 0.2368 0.2652
GEF 0.2900 1.6348 77.9778 81.0547 81.5392 78.4689 0.2553 0.1911
KLL 0.2673 1.5726 76.6320 79.7089 80.1934 77.1231 0.2255 0.3194
OLLBSP 0.2731 1.6114 78.3789 81.4559 81.9404 78.8700 0.2189 0.3544
BBS 0.2947 1.6678 78.8362 81.9131 82.3976 79.3273 0.2535 0.1976

simulations. We prove empirically that the new distribution is better than ten known distributions
by means of two real engineering data sets.
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Figure 7: Estimated (a) pdfs and (b) cdfs and empirical cdf for data set 1.

Table 6: Fitted models to data set 2.
Model Estimates

BS(α,β) 0.7743 4.7946
(0.1678) (0.0029)

Chen(λ,β) 0.1247 0.3990
(0.0473) (0.0385)

OLLBS(α,β,a) 0.9426 1252.8320 0.0075
(0.0004) (0.0319) (0.0014)

GBS(α,β,a) 0.6457 9.0578 0.4192
(0.0104) (0.0001) (0.1064)

GC(a,λ,β) 18.1587 6.5901 0.1705
(<0.0001) (0.2862) (0.0178)

EW(a,λ,β) 0.0685 5.5721 64.0574
(0.0171) (0.0018) (0.0018)

BLL(a,b,α,β) 5.4816 465.9178 7001.0060 0.6199
(0.0001) (0.0142) (0.0471) (0.0153)

GEF(a,λ,σ ,α) 0.2547 0.6594 102.7024 78.3443
(0.0634) (0.0013) (0.0051) (0.0015)

KLL(a,b,α,δ) 20.3658 37.5799 0.1393 0.4325
(0.0025) (<0.0001) (0.0763) (0.0633)

OLLBSP(α,β,a,b) 96.3598 9.0409 150.5198 0.1610
(0.0005) (0.0457) (1.7901) (0.0760)

BBS(α,β,a,b) 27.7816 12.3196 827.4882 879.9439
(7.9993) (4.5306) (0.0011) (0.0016)

SJS, VOL. 2, NO. 1 (2020), PP. 23 - 40
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Table 7: Information criteria for data set 2.
Model W ∗ A∗ AIC CAIC BIC HQIC KS p-value (KS)

BS 0.2187 1.3995 125.2946 126.2177 126.8398 125.3737 0.6726 <0.0001
Chen 0.2981 1.8112 100.0162 100.9393 101.5614 100.0953 0.2800 0.1626
OLLBS 0.1231 0.7648 127.8833 129.8833 130.2011 128.0020 0.6861 <0.0001
GBS 0.1217 0.7848 90.1436 92.1436 92.4614 90.2623 0.2116 0.4709
GC 0.1109 0.7403 89.9507 91.9507 92.2685 90.0694 0.2030 0.5245
EW 0.1154 0.7746 90.3318 92.3318 92.6496 90.4505 0.2156 0.4468
BLL 0.1295 0.8653 93.2454 96.8818 96.3358 93.4037 0.2162 0.4433
GEF 0.2212 1.3587 98.9108 102.5472 102.0012 99.0691 0.2226 0.4059
KLL 0.1179 0.7944 92.7261 96.3625 95.8165 92.8844 0.1992 0.5494
OLLBSP 0.1779 1.0750 193.8526 197.4889 196.9429 194.0108 0.5065 0.0005
BBS 0.1515 0.9833 94.2090 97.8454 97.2994 94.3673 0.2599 0.2300

Table 8: LR test (GC vs Chen).
Description hypothesis LR p-value

data set 1 H0 : a = 1 vs H1 : a , 1 6.7570 0.0093
data set 2 H0 : a = 1 vs H1 : a , 1 12.0655 0.0005
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Figure 8: Estimated (a) pdfs and (b) cdfs and empirical cdf for data set 2.
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Abstract: Mobile network data has proved to be an outstanding data source for the production of
statistics in general, and for Official Statistics, in particular. Similarly to another new digital data
sources, this poses the remarkable challenge of refurbishing a new statistical production process.
In the context of the European Statistical System (ESS), we substantiate the so-called ESS Reference
Methodological Framework for Mobile Network Data with a first modular and evolvable proposed
statistical process comprising (i) the geolocation of mobile devices, (ii) the deduplication of mobile
devices, (iii) the statistical filtering to identify the target population, (iv) the aggregation into terri-
torial units, and (v) the inference to the target population. The proposal is illustrated with synthetic
data generated from a network event data simulator developed for these purposes.

Keywords: Statistical production, mobile network data, end-to-end process, geolocation, Dedupli-
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1 Introduction

Mobile network data, i.e. digital data generated in a mobile telecommunication network by the
interaction between a mobile station (mobile device such as a smartphone or a tablet) and a
base transceiver station (commonly known as antenna in an imprecise way) (Miao et al., 2016),
constitutes a remarkable source of information for the production of statistics in Social Science, in
general, and for Official Statistics, in particular. Many one-off studies can already be found in the
literature with applications in different statistical domains (González et al., 2008; Ahas et al., 2010;
Phithakkitnukoon et al., 2012; Calabrese et al., 2013; Deville et al., 2014; Louail et al., 2014; Iqbal
et al., 2014; Blondel et al., 2015; Douglass et al., 2015; Pappalardo et al., 2016; Raun et al., 2016;
Ricciato et al., 2017; Graells-Garrido et al., 2018; Wang et al., 2018) (see Salgado et al. (2020) for a
more comprehensive list).

© ine Published by the Spanish National Statistical Institute
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However, the production of official statistics in National and International Statistical Systems
requests a standardized and industrialised statistical production process so that this new data source
is fully integrated in the daily production framework of statistical offices. This raises remarkable
challenges such as the data access conditions, new methodological and quality frameworks, a larger
IT infrastructure (both in hardware and in software), a deep revision of the statistical disclosure
control, and the identification of relevant aggregates (mostly included as part of legal regulations)
for a diversity of stakeholders and users. Although a number of illustrative case studies dealing with
official statistics can already be found in the literature (Debusschere et al., 2016; Williams, 2016;
Nurmi, 2016; Izquierdo-Valverde et al., 2016; Dattilo et al., 2016; Senaeve and Demunter, 2016;
Meersman et al., 2016; Reis et al., 2017; Sakarovitch et al., 2019; Galiana et al., 2018; Lestari et al.,
2018), we still lack a production framework with a new statistical process.

In this line of thought, efforts in the international community (UN, 2017) and in the Europen
Statistical System (ESS) (Ricciato, 2018) are under way to construct a production framework and
some recent examples of an end-to-end statistical production process have been tested in a statistical
office (Tennekes et al., 2020). The need for a detailed standardised and harmonised statistical
process goes beyond the rise of new digital data sources, since a process-oriented production system
instead of a product-oriented or even domain-oriented system is nowadays considered essential to
achieve high-quality standards (UNECE, 2011). In this sense, the proliferation of one-off studies
with new digital data in different statistical domains may be stressing the risk over statistical offices
of reinforcing production silos, thus becoming clearly inefficient and making Official Statistics
socially irrelevant (DGINS, 2018).

This article presents the fundamentals of a modular and evolvable statistical process with mobile
network data to produce estimates for present population counts and origin-destination matrices
as a concrete business case. This proposal constitutes the first step towards the construction
of the so-called ESS Reference Methodological Framework for Mobile Network Data (see e.g.
Ricciato, 2018), an initiative of the ESS embracing a set of principles to ensure consistency,
reproducibilty, portability, and evolvability of data processing methods for this data source, to
facilitate interworking between statistical offices and mobile network operators (MNOs) both at
technical and organisational levels, and to adapt to the fast-changing technological environment of
telecommunications by clearly detaching technology and statistical analysis.

We shall focus on the integral view of the process underlying its functional modularity and evolv-
ability and on the methodological core bringing novel methods in Official Statistics with a clear goal
of producing both estimates and their quality indicators (accuracy). We shall illustrate the whole
process using synthetic network event data generated by a data simulator developed for these pur-
poses. In section 2 we provide a general description of our approach setting up the general context
under which this proposal is thought to be implemented. In section 3 we shall shortly describe the
main functionalities of the network event data simulator as of this writing. In section 4 we provide
the main contents of each of the modules comprising the statistical process, namely a generic de-
scription of the data in subsection 4.1, geolocation of mobile devices in subsection 4.2, deduplication
of mobile devices carried by the same individual in subsection 4.3, statistical filtering of individuals
in the target population in subsection 4.4, aggregation of device-level data into territorial units in
subsection 4.5, and inference with respect to the target population in subsection 4.6. In section 5 we
close with some conclusions and future prospects.
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2 General description

The development, implementation, and monitoring of a statistical production process with mobile
network data entail several complex and highly entangled issues. We need to solve questions
regarding the access to data (including the integration with other data sources and even data from
several MNOs), the development of statistical methods not traditional used in the production of
official statistics, the according update and modernisation of the quality assurance framework, the
deployment of the corresponding IT infrastructure, the professional and technical skills of staff
necessary to execute this process, and the identification of the key target aggregates to be produced
for the public good.

Official statistics play a key role in democratic socities for decision-taking and policy-making.
For example, public fund allocation is usually conducted taking into account official population
figures published by statistical offices. Thus, high-quality standards must be ensured and verified
usually following international frameworks. In this context, in agreement with the ESS Reference
Methodological Framework, an official statistical process with mobile network data must comprise
the process design from the raw telecommunication data generated in the networks to the final
statistical outputs. Acquiring aggregates or data at device-level from unknown preprocessing
steps is not considered an option here. This is the first assumption motivating our proposal of an
end-to-end process.

Mobile network data are extremely sensitive data and rightful concerns immediately arise to use
them for statistical purposes. Data access is indeed an intricately complex set of legal, administrative,
technical, and business issues, which we shall not dealt with here. Nonetheless, we assume three
principles around which a final solution must be built:

• Privacy and confidentiality: as with any other official statistics produced from any data source
by any statistical office, privacy and confidentiality of data holders and respondents must be
assured. Indeed, stringent legal conditions have recently arisen to prevent privacy and confi-
dentiality in the European context (European Parliament, 2016).

• Public good: there is an evident socioeconomic interest in extracting different insights from
mobile network data valuable for the public good. This is as legitimate as the production of
official statistics from traditional data sources.

• Private business interest: the production of statistical outputs and insights from mobile net-
work data stands also as an increasing economic activity providing value and progress to the
economy. Indeed, the digital data economy is targeted as a pillar in the European context.

All in all, an aligment of these three principles must be reached in practice. The proposed
statistical process herein assumes that a collaborating scenario between statistical offices and MNOs
through public-private partnerships, joint ventures, etc. is possible and leaves room for the design,
execution, and monitoring of the different modules explained below.

In the context of the ESS, as of this writing no definitive agreement for a fully-fledged sustainable
production of official statistics based on mobile network data has been reached between a national
statistical office (NSO) and an MNO. Only specific short-term limited agreements for research have
been reached1. This entails a shortage of data in NSOs to develop the statistical methodology,

1A remarkable exception is the compilation of international travel statistics for the balance of payments produced by
the National Bank of Estonia (National Estonian Bank, 2020), not a statistical office, though.
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the quality frameworks, and the software tools. Furthermore, given the extraordinarily rich and
complex data ecosystem associated to a mobile telecommunication network, the identification of
concrete data for statistical purposes must be undertaken (Radio network data? Core network data?
Network management data? Call Detail Records?). In this sense, our strategy is to produce synthetic
network event data together with a ground truth scenario so that all these aspects can be developed
and investigated. In this way, more specific data requests can be formulated in agreement with the
quality indicators and the ground truth computed in the simulated scenarios. Thus, our starting
point will be the generation of these simulated scenarios.

A key feature of the ESS Reference Methodological Framework is the evolvability of the sta-
tistical process so that improvements and adaptations of the statistical methods to the underlying
technological conditions is always possible and seamless. This justifies the approach of functional
modularity (already present in modern proposals of traditional statistical processes (see e.g. Salgado
et al., 2018)). By breaking the end-to-end process into modules according to the data abstraction
principle we design transparent and independent production steps so that a change in one module
will not affect the next module beyond the quality of the input/output interconnecting them through
a standardised interface. In this proposal we do not include all necessary modules (e.g. data acquisi-
tion, substituted by the simulator) but only those core methodological stages (see Radini et al., 2020,
for an architectural point of view):

• Geolocation.- This module focuses on the computation of location probabilities for each device
across a reference grid used for the statistical analysis.

• Deduplication.- This module focuses on the computation of multiplicity probabilities for each
device, i.e. probabilities of a given device to be carried by an individual jointly with one or
several other devices. This is motivated by our interest on individuals of the target population,
not on mobile devices.

• Statistical filtering.- This module focuses on the algorithmic identification of mobile devices of
individuals of the target population such as domestic tourists, commuters, inbound tourists,
etc.

• Aggregation.- This module focuses on the computation of probability distributions for the
number of individuals detected by the network (i.e. with mobile devices) across different terri-
torial units.

• Inference.- This module focuses on the computation of probability distributions for the number
of individuals of the target population (even with no device) across different territorial units.

A cautious reader will immediately notice how the computation of probabilities is essential across
the whole process. The use of probabilities, in our view, is jointly motivated by several relevant
reasons. Firstly, probability distributions allow us to account for the uncertainty along the whole
process, thus paving the way for the computation of quality indicators, especially those related to ac-
curacy. Secondly, probability models provide a natural way to integrate data through priors and pos-
teriors in a hierarchy of models. This is important because the combination of diverse data sources
will not only produce statistical outputs with higher quality but it is also necessary in many cases,
in particular, with mobile network data to avoid identifiability problems (see below). Thirdly, prob-
ability distributions stand as a flexible module interface between the successive production steps. In
this line, we can use the total probability theorem to connect the original input data (raw telco data)
with the final output data (population estimates):
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Figure 1: Modular structure of the statistical process and its software tools.

P (zout |zin) =
∫

dz1

∫
dz2 · · ·

∫
dzN P(zout |zN ) · · ·P(z2|z1)P(z1|zin). (1)

The modular structure of the methodology is translated into a modular structure for the software
tools. The choice of programming languages to develop these tools is motivated by multiple reasons.
Firstly, software developed with the intention to be used in the future should be portable at the
level of source code. Thus, portability is our first consideration. Secondly, our goal is to produce a
software for statisticians, not for computer scientists. Thus, the language(s) of the implementation
should be familiar for statisticians and easy to use by them. Thirdly, in the line of software
development in the ESS, we planned to use only open source tools like libraries, IDEs, debuggers,
profilers, etc. to maintain the software development process under a strict control regarding the
associated costs. Moreover, the programming language(s) together with these tools should have a
large community of programmers and users which can be seen as a free technical support. Fourthly,
the programming language(s) should have support for parallel and distributed computing. Since all
the algorithms involved by the our methodological approach are computational intensive, and the
size of mobile network data could be very large, this is a mandatory requirement. Last but not least

SJS, VOL. 2, NO. 1 (2020), PP. 41 - 77
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important, the criteria of programming efficiency and resources needed to run the software even on
normal desktops/laptops are also considered.

After analysing different choices, eventually we came to the following two software ecosystems:
R (R Core Team, 2020) or Python (Van Rossum and Drake, 2009). Both systems meet our criteria
and have a large community of users but while Python is considered to be more computationally
efficient, R is better suited for statistical purposes and it seems to gain ground among the official
statistics community (Templ and Todorov, 2016; Kowarik and van der Loo, 2018). Since our target
audience is the official statistics community, we decided to develop our software modules using
R since it has a huge number of available packages, it has support for parallel and distributed
processing, it can be easily interfaced and work together with high performance languages like
C++ when the performance of plain R is not enough, it can be easily interfaced with computing
ecosystems widely used in the Big Data area such as Hadoop (White, 2009) or Spark (Zaharia et al.,
2016) and there are several packages allowing a neat interface between R and these systems (Oancea
and Dragoescu, 2014; Venkataraman et al., 2016) which means that, if needed, all modules in our
software stack can be easily integrated with such systems for a production pipeline.

Thus, to execute the process with simulated data, we have developed an R package for each
module implementing the corresponding statistical methods. With a view on scalability through
distributed computing and parallelization, we use secondary memory instead of main memory to
pass input and output data between modules as well as execution parameters (see figure 1). In the
next section we provide details about the contents of each module.

3 Network event data simulator

The simulator is a highly modular software (Oancea et al., 2019) implementing agent-based simulat-
ing scenarios with different elements configured by the user. The basic elements are:

• a geographical territory represented by a map;
• a telecommunication network configuration in terms of a radiowave propagation model;
• a population of individuals carrying 0, 1, or 2 mobile devices during their displacement;
• a displacement pattern for individuals;
• a reference grid for analysis.

The simulator works essentially by using a radiowave propagation model (Shabbir et al., 2011)
to simulate the connection between the base transceiver stations (loosely, antennas) and each mobile
station (device) during the displacement of each carrying individual. The connection mechanism is
an extreme simplification of the real world extracting the essential features for statistical analysis.
The core output data consists of a time sequence of cell IDs (loosely, antenna IDs) and network event
codes (connection, disconnection, etc.) for each device along the duration of the simulation. We
simulate signalling data (i.e. passive data not depending on subscribers’ behaviour) instead of Call
Detail Records or any other active data generated by individuals (call, SMS, Internet connections,
. . . ).

For the time being, since our priority is the simulator as a whole, the different elements
implemented so far are kept as simple as possible. Firstly, displacement patterns of individuals
are basically a sequence of stays (no movement) and random walks with/without a drift with two
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possible speeds (namely, walk and car speeds). The drift, the speeds, and the shares of individuals
with 0, 1, and 2 devices are easily configured by the user. Only closed populations can be simulated
so far, i.e. individuals cannot abandon or enter into the territory under analysis.

Figure 2: Animation. Positions of 70 antennas and drifted displacement pattern of individuals.

Secondly, an extremely simplified radiowave propagation model and a variant thereof is used
in terms of the Received Signal Strength (RSS – expressed in dBm), the distance r between the BTS
and the device, the emission power P , the so-called path exponent γ (quantifying the loss of signal
strength) and some geometrical parameters regarding the BTS orientation (only for directional an-
tennas (see e.g. Tennekes et al., 2020)). For omnidirectional antennas, the model is simply expressed
by

RSS(r) = 30 + 10 · log10(P )− 10 ·γ · log10(r). (2)

Each device connects to the antenna producing the highest signal strength in each tile until the
antenna reaches its maximum capacity. Both the emission power and the path loss are selected as
input parameters by the user. A convenient variant introduced by Tennekes et al. (2020) performs a
parameterised logistic transformation upon RSS producing the so-called Signal Dominance Measure:

SDM(r) =
1

1 + exp
(
−Ssteep · (RSS(r)− Smid)

) , (3)

where Ssteep and Smid are chosen according to characteristics of each radio cell. Each device connects
to the antenna providing the highest signal dominance measure in each tile until the antenna
reaches its maximum capacity. Both Ssteep and Smid are selected as input parameters by the user, too.

Figure 3 represents the RSS and the SDM for a given antenna in an arbitrary territory depicted
as an irregular polygon with a 10 km× 10 km bounding box.
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Figure 3: Received signal strength and signal dominance measure for an omnidirectional antenna
according to models (2) and (3).

4 Production modules

4.1 Data

When contacting MNOs to access data, the first reaction from telecommunication engineers
and data engineers in these companies is to ask “what data?” The data ecosystem of a mobile
telecommunication network is extremely complex, derived from its nested cellular structure (see
figure 4). Thus, a first step to use mobile network data for statistical purposes is to substantiate the
meaning of these data. In this line, the use of a synthetic simulator allows us to devise an end-to-end
process and to set up an empirical criterion about specific data to compile statistics accurate enough
for official purposes.

Our proposed process helps us to provide a first typology of data required to reach our goal. We
identify three types of data (according to organisation which generates them).

4.1.1 Mobile network data

Under this category we embrace two sorts of data related to mobile telecommunication networks.
On the one hand, we need data about the configuration of the network. Basically, these are
parameters entering the radiowave propagation models used in subsequent stages (see below)
such as emission powers, path loss exponents, frequencies and frequency correction factors, base
station heights and azimuths,. . . Notice that these variables do not contain information about the
subscribers but they are extremely sensitive for MNOs due to the highly competitive degree of
the telecommunication market. Ultimately, the variables to access will depend on the chosen
model, which should be in principle chosen according to the accuracy of the final estimates and
the associated acquisition costs under the public-private agreement. Access to these data does not
mean whatsoever that these data should be made public or even that they have to leave MNOs’
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Figure 4: Nested cellular structure of a GSM-like network (taken from Positium (2016)).
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information systems. This sensitive information must be kept protected also by NSOs and they are
just required to be accessed to produce specific outputs in later stages. Agreements on computing
these outputs and their sharing into the statistical process should be enough for our goals (see below).

On the other hand, so-called network event data generated by each mobile station (device) in
the network must be accessed. These can be variables such as the cell ID (identifying the cell or
sector whether the interaction between a device and a connecting antenna is established), the Time
of Arrival (basically collecting the time for a signal to reach a mobile device from the connecting
antenna), the Angle of Arrival (measuring the angle of the line-of-sight of a device from the
connecting antenna),. . . These data do contain sensitive information about the subscribers. Again,
not only must they be kept private but also they must be preprocessed in the MNOs’ original
information systems (i.e. no transmission whatsoever to NSOs). Identifying precisely what variables
to use will ultimately depend on the accuracy of final estimates and associated accessing and
preprocessing costs. Once more, details must be part of agreements between MNOs and NSOs.

In the illustrative example with the data simulator below we will use the emission power and
path loss exponent of each base station (network configuration) together with the cell ID of each
connection/signal transmission/disconnection and orientation parameters between devices and base
stations every 10 seconds.

4.1.2 Auxiliary NSO information on target aggregates

This is information produced by NSOs themselves, thus providing profuse access to microdata
for alternative (possibly undisclosed) aggregations in finer territorial units. They may be survey
microdata, administrative data, or aggregates from any combination of sources with a relevant
relationship with the target outputs of our analysis.

In the illustrative example with the data simulator below to produce present population counts
and general-mobility origin-destination matrices we shall use data from the current population reg-
ister or some other similar demographic operation. It is important to state that the treatment of both
data sources makes a difference on their role. Whereas mobile network data will be used as the cen-
tral source to produce outputs (thus gaining in both spatial and time breakdowns), the population
register will enter as an auxiliary prior data source. An equal-footing integration of all data sources
to produce, modify, and correct the population register is not pursued here.

4.1.3 Auxiliary (public) information on the geographic territory

As with the production of any other official statistics, the more available information to integrate,
the higher expected quality for the output. In this sense, auxiliary information from (usually public)
organizations such as land use or transport network configurations and schedules may be profitably
integrated in the modelling exercise. For example, for the geolocation of mobile devices, prior
location probabilities upon grid tiles can be fixed according to the land use features of each tile. In
the wilderness this probabilities will differ a great deal from those in the city centers.

In the illustrative example below, since the geographical territory is just an arbitrary irregular
polygon, we shall not use any prior information about land use or transport network. Every tile will
be similar to each other.
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4.1.4 Privacy-preserving data technologies

As an immediate side-effect of this complex and sensitive data ecosystem, the integration of
information in stringent privacy-preserving conditions is a must. A research avenue clearly seems
to be arising extending the traditional statistical disclosure control from output aggregates to also
input and intermediate data.

This brings the privacy-preserving technologies (Zhao et al., 2019) into scene. However, we
would like to pose the following reflection. When considering mobile network data (and probably
similarly sensitive new digital data), we detect a change in society about the role of statistical
officers in producing official statistics. With more traditional data sources such as survey data and
administrative data, statistical officers are undisputedly endowed with the legitimacy of accessing,
processing, and integrating personal data from these diverse sources. Take e.g. the construction of
a business register where sensitive information from all business units in a country are compiled
for further use in the statistical production process. No privacy-preserving technique is demanded
in this case, in spite of which privacy and confidentiality is completely guaranteed and statistical
disclosure control is fully effective. In our view, statistical offices must reclaim their traditional role
as secure recepcionist of information for the public good.

However, having said this, the challenge of integrating MNOs into the statistical production pro-
cess includes the management of trust and privacy-preserving techniques stand as an excellent tool
in this sense.

4.2 Geolocation

The utility of mobile network data to produce statistics for the public good arises at least from
three aspects. Firstly, the geospatial nature of this information makes it ideal to provide population
counts and mobility-related statistics at an unprecedented spatial and time breakdown. Different
social groups can be targeted (tourists, commuters, present population, etc.) provided algorithms
are put into place to identify them within the datasets. Secondly, Internet traffic and the nature of
donwloaded mobile apps can provide relevant insights for social analysis (see e.g. Ucar et al., 2019).
Finally, and more interestingly in our view, mobile network data can provide an excellent source of
network data, i.e. interactions between population units, thus paving the way for the use of network
science in the production of novel statistical outputs.

Currently, the main focus of research is centered on the geolocation of mobile devices. Originally,
Voronoi tessellations of the geographical territory under analysis were used to partition this territory
into disjoint tiles assigning each one to a BTS. In our view, this is an oversimplification of the
network, since coverage areas and sector cells of each BTS can often be intersecting (even nested)
and directional. To overcome this complexity, we divide the territory into a grid of tiles and using
radiowave propagation models compute the so-called event location probabilities P(Edt = ej

∣∣∣Tdt = i),
i.e. the probability that a device d produces network event data ej (e.g. the cell ID of a given BTS to
which the device is connected) conditioned on being located at tile i. This conditional probability
is used to compute the reverse so-called posterior location probability γdti = P(Tdt = i

∣∣∣Ed) at each
time t and each device d. The posterior joint location probabilities γdtij = P(Tdt = i,Tdt−1 = j

∣∣∣Ed) are
also of interest for later modules. Notice that we condition upon all available network information
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Ed = {Edt}t=0,1,...

A first direct approach is to make use of Bayes’ theorem together with the prior location
probabilities P(Tdt = i) (computed according to the prior auxiliary information such as land use or
transport network information): P(Tdt = i

∣∣∣Edt = ej ) ∝ P(Edt = ej
∣∣∣Tdt = i) ·P(Tdt = i). This is the static

approach followed by Tennekes et al. (2020).

A superseding alternative is to consider the dynamical behaviour of individuals in the population
and to postulate a generic transition model across the reference grid, which together with the event
location probabilities computed above, enter into a hidden Markov model (HMM) as transition and
emission models, respectively. Upon estimation of these model parameters, we can compute the
posterior location probabilities for each device d (see figure 5). Mathematical details are provided in
the appendix.

Figure 5: Animation. Event location probabilities [left] and posterior location probabilities [right]
for a given device. True position also included.

The use of HMMs in the context of this reference grid for analysis is notably versatile and pro-
vides a generic framework to deal with multiple aspects. Firstly, at this initial stage of the project,
we have defined the HMM state just as the location in the grid, but more complex states can be
possibly defined taking into account the velocity, the transport mode, or a classification of anchor
points (home, work, second residence, etc.). Secondly, the emission model (i.e. the event location
probabilities) is built independently of the transition model, which allows MNOs to concentrate the
processing of sensitive network information (antenna localizations, network parameters, etc.) on a
this concrete production step. For the HMM, only the output of this step is needed, thus making it
possible to undisclose and protect this sensitive information. Finally, the use of probabilities allows
us to take into account the uncertainty in the estimation process from the onset. Indeed, we can
define familiar accuracy indicators for the geolocation such as bias, standard deviation, and mean
squared error as with traditional survey data (see appendix).
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4.3 Deduplication

Since we focus on estimating population counts of individuals, not of mobile devices, we need to
detect which terminals are carried over by the same individuals. We call it device multiplicity. The
goal is to compute a device-multiplicity probability p(n)

d for each device d to be carried over by the
same individual together with a total of n devices. In our simulated scenario, for computational ease,
with limit the number of devices per individual to 2. Thus, we aim at computing (p(1)

d ,p
(2)
d = 1−p(1)

d ),
i.e. the probability that a device d belongs to an individual with 1 or 2 devices, respectively.

The problem of device duplicity has been often recognised as an overcoverage problem. It is
usually considered after the aggregation step producing number of devices per territorial area and
time interval. Once this aggregation step has been conducted, the challenge is really serious and may
easily drive us into an identifiability problem (Lehmann and Casella, 2003) in any model estimating
the number of individuals from the number of devices. The reader may easily be convinced with
a simple example. Consider a population of N (D) = 10 devices, all corresponding to a different
individual, i.e. N = 10. Consider another population of N (D) = 10 devices, where each individual has
two devices, i.e. N = 5. There is no possible statistical model using only the variable N (D) possibly
distinguishing between these two situations. In other words, we run into an identifiability problem
unless more parameters are introduced, which will require the use of auxiliary information. In this
simple case, we may think of a statistical model based on (N (D),Rdup) where we have introduced
another parameter Rdup standing for the duplicity rate in the population. With these variables, the
identifiability problem ameliorates, but the model complexity increases, apart from the issue about
data availability (is Rdup really available?).

This is why we recommend to address this problem before the aggregation step. This has direct
implications for the access agreements. According to this recommendation, the number of devices
is not a target dataset in the statistical process and the device multiplicity issue must be addressed
upon individual information at the device level, thus ideally in MNOs’ premises (together with the
geolocation step).

Another important consideration arises when considering uncertainty. It is important to remind
that we target at the probability p

(n)
d of each device d. This probability distribution will indeed

be another intermediate distribution in the chain (1). We need to assess the uncertainty (i.e.
probabilities) and not just to conduct a classification. The relevance of this will be evident in the
aggregation step later on.

We have proposed two alternative approaches. On the one hand, we resort to Bayesian reason-
ing to test the hypothesis that two given devices d1 and d2 belong to the same individual. Let us
denote by Hdd the hypothesis that device d uniquely corresponds to an individual, whereas Hd1d2

stands for devices d1 and d2 , d1 belonging to the same individual. Thus, we need to compute
p

(1)
d = P

(
Hdd

∣∣∣E,Iaux
)
, where E = {Edt}

d=1,...,D
t=0,...,T is all network event information. We propose two proce-

dures:

• Pair computation.- We compute p(1)
d = 1−maxd′,dP

(
Hdd′

∣∣∣Ed ,Ed′ ,Iaux
)
, where
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P (Hdd′ |Ed ,Ed′ ,Iaux) =
P

(
Ed ,Ed′ |Hdd′ ,Iaux

)
P (Hdd′ |Iaux)

P (Ed |Hdd ,Iaux)P (Hdd |Iaux) +P (Ed ,Ed′ |Hdd′ ,Iaux)P (Hdd′ |Iaux)
,

(4)

with P (Hdd′ |I), P (Hdd |Iaux) being prior probabilities and P (Ed ,Ed′ |Hdd′ ,Iaux), P (Ed |Hdd ,Iaux)
standing for the likelihoods under each hypothesis, respectively.

• One-to-one computation.- Alternatively, posing Ωd =
⋃D
d′=1Hdd , we compute

p
(1)
d =

P

(
Ed

∣∣∣Hdd ,Iaux
)
·P

(
Hdd

∣∣∣Iaux
)

P

(
Ed

∣∣∣Hdd ,Iaux
)
·P

(
Hdd

∣∣∣Iaux
)

+
∑
d′,dP

(
Ed ,Ed′

∣∣∣Hdd′ ,Iaux
)
·P

(
Hdd′

∣∣∣Iaux
) .

(5)

T0 T1 T2 T3 T4 T5 T6

E0 E ′
0 E1 E ′

1 E3 E ′
3 E5 E ′

5 E6 E ′
6

Figure 6: Extended HMM to compute P (Ed ,Ed′ |Hdd′ ,Iaux) for a given device d (subscript not included
in the graphical model).

In both procedures the probabilities P (Ed |Hdd ,Iaux), P (Ed ,Ed′ |Hdd′ ,Iaux) are computed with the
original HMM and the extended HMM represented in figure 6, respectively. Priors are computed
incorporating prior information e.g. from the Customer Relationship Management Database or any
other complementary information (see Salgado et al., 2020, for some details).

On the other hand, instead of focusing on the network event variables Edt, we can make use of
the random location Rdt ∈ {r

(c)
i }i=1,...,NT estimated according to the posterior location probabilities

γdti . Then, we can follow the same approach as the Bayesian pair computation case (4) substituting
Edt by Rdt (see Salgado et al. (2020) for details).

In figure 7 we show the results for the Bayesian one-to-one case for our illustrative example.
The ROC curves show an excellent performance for the classification of devices according to their
duplicity with values of the area under the curve (AUC) above 0.95. Using the simulated ground
truth and a threshold of 0.50 we can also notice that very few false positive cases result (and they are
due to the short period of time under analysis: basically two individuals following nearly the same
sequence of coverage areas), whereas the number of false negative cases are a bit notable. This is due
to devices of different individuals staying under the same coverage area during the time period: they
are wrongly classified as duplicity cases of analysis. Realistic time periods of analysis will hopefully
avoid these problems.
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Figure 7: [Left] ROC curve for two emission models (RSS and SDM) and two HMM priors (uniform
and network). [Right] Cases for two emission models (RSS and SDM) and two HMM priors (uniform
and network).

4.4 Statistical filtering

As of this writing, this module is the less developed since more complex and realistic displacement
patterns are needed in the simulator to study and analyse different proposals. We limit ourselves to
provide a generic view. Again, we shall be focusing on analyses upon the geolocation data, i.e. upon
the network event data and location probabilities derived thereof.

First of all, the target mobile network data is assumed to be basically some form of signalling data
so that time frequency and spatial resolution are high enough as to allow us to analyse movement
data in a meaningful way. In this sense, for example, CDR data only provides information up to a
few records per user in an arbitrary day which makes virtually impossible any rigorous data-based
reasoning in this line.

The use of HMMs implicitly incorporates a time interpolation which will be very valuable for
this statistical filtering exercise. In this way we avoid the issues arising from noncontinuous traces
approaches (see e.g. Vanhoof et al., 2018, for home location algorithms). However, a wider analysis is
needed to find the optimal time scope. In turn, the spatial resolution issue is dealt with by using the
reference grid. This releases the analyst from spatial techniques such as Voronoi tessellation, which
introduces too much noise for our purposes. Nonetheless, the uncertainty measures computed
from the underlying probabilistic approach for geolocation must be taken into account to deal with
precision issues in different regions (e.g. high-density populated vs. low-density populated).

In our view, the algorithms for statistical filtering should be mainly based on quantitative
measures of movement data. In particular, from the HMMs fitted to the data (especially the
location probabilities) we propose to derive a probability-based coarse-grained trajectory per device
which will be the basis for these algorithms. Once a trajectory is assigned to each device, different
indicators and measures of movement shall be computed upon which we shall apply algorithms
to determine important concepts such as usual environment, home/work location, second home
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location, leisure activity times and locations, etc.

A critical issue in the development of this kind of algorithms is the validation procedure. On
the one hand, the use of the simulator, once more complex and realistic displacement patterns
have been introduced, will offer us in the future a validation against the simulated ground truth.
On the other hand, with real data two main problems need to be tackled, namely (i) the use of
pseudoanonymised real data will prevent us to link mobile device records with official registers, so
only indirect aggregated validation procedures can be envisaged, and (ii) the representativity of the
tested sample of devices (e.g. using GPS signals) to validate the algorithm for the whole population
needs to be rigorously assessed.

Thus, the starting point is the construction of a probability-based coarse-grained trajectory
for each device. In our geolocation model, the state of the HMM was defined in terms of the tile
where the device is positioned. Thus, the concept of trajectory follows immediately as the time
sequence of states, in which we shall use the coordinates of each tile to build the so-called path
{(xdt0 , ydt0), (xdt1 , ydt1), . . . , (xdtN , ydtN )}, where at each time instant ti the spatial coordinates xdti and
ydti for device d are specified. In more complex definitions of states, another procedure should lead
us to deduce the path from the adopted concept of HMM state.

Given an HMM, it is well-known that at least two different methods can be approached to build
a sequence of states, i.e. a trajectory in our case. We can compute either the most probable sequence
of states or the sequence of most probable states. In mathematical terms, the former is the sequence

T ∗dt0:tN
= argmaxTdt0:tN

P

(
Tdt0:tN

∣∣∣Edt0:tN

)
, (6)

which can be computed by means of the Viterbi algorithm (see e.g. Murphy, 2012). The second
method is indeed given by

T ∗dt0:tN
=

(
argmaxTdt0

γdt0 ,argmaxTdt1
γdt1 , . . . ,argmaxTdtN

γdtN

)
, (7)

where γdtj = P

(
Tdtj

∣∣∣Edt0:tN

)
are the posterior location (state) probabilities.

We choose the maximal posterior marginal (MPM) trajectory because it is more robust and
because unimodal probabilities are expected so that differences will not be large (Murphy, 2012).
Furthermore, coherence with other process modules (e.g. duplicity) using the posterior location
probabilities is favoured in this way.

Once a path is assigned to each device we can compute different indicators as well as joint mea-
sures. Following Long and Nelson (2013) (see also multiple references therein) we distinguish the
following groups of measures:

• Time geography.- This represents a framework for investigating constraints such as maximum
travel speed on movement in both the spatial and temporal dimensions. These constraints
can be capability constraints (limiting movement possibilities because of biological/physical
abilities), coupling constraints (specific locations a device must visit thus limiting movement
possibilities), and authority constraints (specific locations a device cannot visit thus also limit-
ing movement possibilities).
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• Path descriptors.- These represent measurements of path characteristics such as velocity, ac-
celeration, turning angles. By and large, they can be characterised based on space, time, and
space-time aspects.

• Path similarity indices.- These are routinely used to quantify the level of similarity between
two paths. Diverse options exist in the literature, some already taking into account that paths
are sequences of stays and displacements (see e.g. Long and Nelson, 2013).

• Pattern and cluster methods.- These seek to identify spatialâĂŞtemporal patterns from the
whole set of paths. These are mainly used to focus on the territory rather than on individual
patterns. They also consider diverse aspects on space, time, and space-time features.

• IndividualâĂŞgroup dynamics.- This set of measures compile methods focusing on individual
device displacement within the context of a larger group of devices (e.g. a tourist within a
larger group of tourists in the same trip).

• Spatial field methods.- These are based on the representation of paths as space or space-time
fields. Different advanced statistical methods can be applied such as kernel density estimation
or spatial statistics.

• Spatial range methods.- These are focused on measuring the area containing the device dis-
placement, such as net displacement and other distance metrics.

Diverse indicators can be defined and used within each group (see Salgado et al. (2020) for pre-
liminary examples on our simulated scenario). Further analysis is needed with realistic displacement
patterns. With a selected set of movement indicators, we shall be able to provide a computational
algorithm to substantiate the concepts of usual environment, home/work location, second home lo-
cation, etc. Notice that the definition of state for the HMM could be enhanced using these concepts,
thus incorporating more information into the geolocation estimation.

4.5 Aggregation

The next step is to aggregate the preceding information at the level of territorial units of analysis.
These territorial units usually come from an administrative division of the geographical territory,
but in general terms they will be undestood as aggregation of tiles of the reference grid. In this
sense, when deciding about the choice of grid, it is highly recommended that the territorial units
of analysis are taken into account from the onset. Obviously, the smaller the tiles, the higher the
flexibility to define different granular levels of the territorial units.

The bottom line the aggregation step is to avoid making further modelling hypothesis as much as
possible. In this line, we use probability theory to define and compute the probability distribution
for the number of individuals (not devices) detected by the network using both the posterior location
and device-duplicity probabilities.

It is important to make the following general remarks about our approach. Firstly, the
aggregation is on the number of detected individuals, not on the number of devices. This is a very
important difference with virtually any other approach found in the literature (see e.g. Deville et al.,
2014; Douglass et al., 2015). We take advantage of the preceding modules working at the device
level to study in particular the duplicity in the number of some devices per individual. This has
strong implications regarding agreements with MNOs to access and use their mobile network data
for statistical purposes. The methodology devised in the preceding section to study this duplicity
(or variants thereof) needs to be applied before any aggregation. As we can easily see, working with
the number of devices instead of the number of individuals poses severe identifiability problems
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Figure 8: Territorial regions.

requiring more auxiliary information. Let us consider an extremely simplified illustrative example.
Let us consider population U1 of 5 individuals with 2 devices each one and population U2 of 10
individuals with 1 device each one. Suppose that in order to we make our inference statement
about the number N of individuals in the population we build a statistical model relating N and
the number of devices N (d), that is, basically we have a probability distribution PN (N (d)) for the
number N (d) of devices dependent on the number of individuals, from which we shall infer N . In
this situation we have PN (1) = PN (2) even when N (1) , N (2). There is no statistical model whatsoever
capable of distinguishing between U1 and U2 (see Definition 5.2 by Lehmann and Casella, 2003, for
unidentifiable parameters in a probability distribution). To cope with the duplicity of devices using
an aggregated number of devices we would need further auxiliary information, which furthermore
must be provided at the right territorial and time scales.

Secondly, we shall use the language of probability in order to carry forward the uncertainty
already present in the preceding stages all along the end-to-end process. In another words, if the
geolocation of network events is conducted with certain degree of uncertainty (due to the nature
itself of the process) and if the duplicity of a given device (carried by an individual with another
device) is also probabilistic in nature, then a priori it is impossible to provide a certain number of
individuals2 in a given territorial unit. For this reason, we shall focus on the probability distribution
of the number of individuals detected by the network and shall avoid producing a point estimation.
Notice that having a probability distribution amounts to having all statistical information about a
random phenomenon and you can choose a point estimation (e.g. with the mean, the mode or the
median of the distribution) together with an uncertainty measure (coefficient of variation, credible
intervals, etc.).

Thirdly, the problem is essentially multivariate and we must provide information for a set of
territorial units. Thus, the probability distribution which we shall provide with our proposed
aggregation step must be a multivariate distribution. Notice that this is not equivalent to providing
a collection of marginal distributions over each territorial unit. Obviously, there will be a correlation

2Notice that this same argument is valid for the number of devices.
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structure, the most elementary expression of which is that individuals detected in a given territorial
unit cannot be detected in another region, so that the final distribution needs to incorporate this
restriction in its construction.

Finally, the process of construction of the final multivariate distribution for the number of
detected individuals must make as few modelling assumptions as possible, if any. In case an
assumption is made (and this should be accomplished in any use of statistical models for the
production of official statistics, in our view), it should be made as explicit as possible and openly
communicated and justified. In this line of thought, we shall strongly based the aggregation
procedure on the results of preceding modules avoiding any extra hypothesis. Basically, our starting
assumptions for the geolocation and the duplicity detection will be carried forward as far as possible
without introducing new modelling assumptions of any kind.

To implement the principles outlined above, we shall slightly change the notation used in
preceding chapters. Firstly we define the vectors e(1)

i = ei and e(2)
i = 1

2 · ei , where ei is the canonical
unit vector in R

NT (with NT the number of tiles in the reference grid). These definitions are set
up under the working assumption of individuals carrying at most 2 devices in agreement with the
deduplication step. Should we consider a more general situation, the generalization is obvious,
although more computationally demanding.

Next, we define the random variable Tdt ∈ {e
(1)
i ,e

(2)
i }i=1,...,NT with probability mass function

P (Tdt |E) given by

P

(
Tdt = e(1)

i |E1:D

)
= γdti × p

(1)
d (8a)

P

(
Tdt = e(2)

i |E1:D

)
= γdti × p

(2)
d (8b)

where p(i)
d are the device-duplicity probabilities introduced in section 4.3. Notice that this is a

categorical or multinoulli random variable. Finally, we define the multivariate random variable
Nnet
t =

(
Nnet
t1 , . . . ,Nnet

tNT

)
providing the number of individuals Nnet

ti detected by the network at each
tile i = 1, . . . ,NT at time instant t:

Nnet
t =

D∑
d=1

Tdt . (9)

The sum spans over the number of devices filtered as members of the target population according
to section 4.4. If we are analysing, say, domestic tourism, D will amount to the number of devices
in the network classified with a domestic tourism pattern according to the algorithms designed
and applied in the preceding module. For illustrative examples, since we have not developed the
statistical filtering module yet, we shall concentrate on present population.

The random variable Nnet
t is, by construction, a Poisson multinomial random variable. The

properties and software implementation of this distribution are not trivial (see e.g. Daskalakis et al.,
2015) and we shall use Monte Carlo simulation methods by convolution to generate random variates
according to this distribution.
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The reasoning behind this proposal can be easily explained with a simplified illustrative example.
Let us consider an extremely simple scenario with 5 devices and 5 individuals (thus, none of them
carry two devices), and 9 tiles (a 3× 3 reference grid). Let us consider that the location probabilities
γdti = γti are the same for all devices d at each time instant and each tile. In these conditions p(2)

d = 0
for all d. Let us focus on the univariate (marginal) problem of finding the distribution of the number
of devices/individuals in a given tile i. If each device d has probability γti of detection at tile i,
then the number of devices/individuals at tile i will be given by a binomial variable Binomial(5,γti).
If the probabilities were not equal, then the number of devices/individuals would be given by
a Poisson binomial random variable Poisson-Binomial(5;γ1ti ,γ2ti ,γ3ti ,γ4ti ,γ5ti), which naturally
generalizes the binomial distribution. If we focus on the whole multidimensional problem, then
instead of having binomial and Poisson-binomial distributions, we must deal with multinomial and
Poisson-multinomial variables. Finally, if p(2)

d , 0 for all d, we must avoid double-counting, hence

the factor 1
2 in the definition of e(2)

i .

Notice that the only assumption made so far (apart from the trivial question of the maximum
number of 2 devices carried by an individual) is the independence for two devices to be detected at
any pair of tiles i and j. This independence assumption allows to claim that the number of detected
individuals distributes as a Poisson-multinomial variable, understood as a sum of independent
multinoulli variables with different parameters. There is no extra assumption in this derivation. The
validation of this assumption is subtle, since ultimately it will depend on the correlation between
the displacement patterns of individuals in the population. If the tile size is chosen small enough,
we claim that the assumption holds fairly well and it is not a strong condition imposed on our
derivations. On the other hand, if the tiles are too large (think of an extreme case about a reference
grid being composed of whole provinces as tiles), we should expect correlations in the detection of
individuals: those living in the same province will have full correlation and those living in different
provinces will show near null correlation. Thus, the size of the tiles imposes some limitation to the
validity of the independence assumption. Even the transport network in a territory will certainly
influence these correlations. Currently, we cannot analyse quantitatively the relationship between
the size of the tiles and the independence assumption with the network data simulator because we
need both realistic simulated individual displacement patterns and simulated correlated trajectories
(probably connected to the sharing of usual environments, home/work locations, etc.).

In figure 9 we show the high-density credible intervals with α = 0.95 for the number of
individuals Nnet

rt detected by the network in each region r and each time instant t. We can compare
with true values from the simulator. Deeper and wider analyses are ongoing to assess this procedure
and its relationship with the geolocation and deduplication modules.

4.6 Inference

The last step comprises the estimation of the number of individuals Nrt in the target population
in each region r at each time instant t. Notice that we aim at estimating also those individuals not
detected by the network, namely, those subscribers of other MNOs and those not having a mobile
device. To avoid identifiability problems, we need to make use of auxiliary information. This
will basically be the register-based population figures N reg

r and the penetration rates P net
r . Notice,

however, the different time scales of the register-based population estimates and of the network-
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Figure 9: Credible intervals (α = 0.95, HDI) for the number of individuals detected by the network.
True values in red.

based population estimates. To avoid losing the higher time breakdown from telecommunication
networks integrating at the same time the register-based population figures we shall consider a
two-stage approach. Firstly, at the initial time t0 we assume that both the register-based target
population and the network-based population can be assimilated in terms of their physical location.
Secondly, at later times t > t0 we assume that individuals move over the geographical territory
independently of the MNO, i.e. subscribers of MNO 1 will show a displacement pattern similar to
those of MNO 2.
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Under these general assumptions, following the approach from preceding steps, we propose to
use hierarchical models (i) to produce probability distributions, (ii) to integrate all data sources,
and (iii) to account for the uncertainty and the differences of concepts (present vs. residential
population) and scales (time).

For the first stage the bottom line of our approach is inspired by the approach to estimate the
species abundance in Ecology (Royle and Dorazio, 2009). If Nnet

r and Nr denote the number of
individuals detected by the network and in the target population, respectively, in a region r and if
pr denotes the probability of detection of an individual by the network in that region r, then we can
model

Nnet
r ' Bin(Nr ,pr ) , (10)

where we have dropped out the time subscript for ease of notation. This model makes the only
assumption that the probability of detection pr for all individuals in region r is the same. This
probability of detection amounts basically to the probability for an individual of being a subscriber
of the given mobile telecommunication network. This assumption will be further modelled. As a
first approximation, we may think of pr as a probability related to the penetration rate P net

r of the
MNO in region r. We shall compute the posterior distribution P

(
Nr |Nnet

r ,Iaux
)
, where Iaux stands

for any auxiliary information which we shall integrate into the estimation process.

As a first illustrative example of this reasoning, let us consider pr as a fixed external parameter
and try to compute the posterior probability distribution for Nr in terms of Nnet

r , i.e.

P

(
Nr |Nnet

r ,pr
)

=
{

0 if Nr < Nnet
r ,

negbin
(
Nr −Nnet

r ;1− pr ,Nnet
r + 1

)
if Nr ≥Nnet

r ,

where negbin(k;p,r) ≡
(k+r−1

k

)
pk(1− p)r denotes the probability mass function of a negative binomial

random variable k with parameters p and r. Once we have a distribution, we can provide point
estimations, posterior variance, posterior coefficient of variation, credible intervals, and as many
indicators as possible computed from the distribution. For example, if we use the MAP criterion we
can provide as point estimator

N̂MAP
r =Nnet

r +
⌊
Nnet
r

pr
−Nnet

r

⌋
, (11)

With the distribution we can also compute accuracy indicators such as the posterior variance,
the posterior coefficient of variation, or credible intervals (see e.g. Gelman et al., 2013).

Moreover, as model assessment we can compute the posterior predictive distribution
P

(
N

net, rep
r |Nnet

r

)
and produce some indicators such as3

ppRB =
E

[
N

net, rep
r − N̂net

r

∣∣∣N̂net
r

]
N̂net
r

ppRV =
V

[
N

net, rep
r − N̂net

r

∣∣∣N̂net
r

]
(N̂net

r )2
(12)

If we take into account the uncertainty in Nnet
r coming from preceding modules, we can promote

these indicators to random variables using the probability distribution P

(
Nnet
r

∣∣∣E,Iaux
)

and study

3Let us call them posterior predictive relative bias and posterior predictive relative variance.
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their mean values and dispersion.

The approach described above took the detection probability pr as an external fixed parameter
built from auxiliary data sources. Furthermore, we assumed that in region r all individuals show the
same probability of being a subscriber of the mobile telecommunication network. Also, the number
of detected individuals Nnet

r accumulates the uncertainty from the preceding modules, since the
geolocation of mobile devices and the determination of duplicities are probabilistic. To account for
this, we propose to further model these quantities, hence the hierarchical approach.

Let us firstly consider how to introduce the uncertainty in Nnet
r . From the preceding modules we

have obtained the posterior probability P

(
Nnet
r |E,Iaux

)
. We still consider the detection probability pr

as an external fixed parameter. Also, we still restrict ourselves to the univariate case. Under these
assumptions, the unnormalized posterior probability distribution for the number of individuals in
the target population and detected by the network will be

P

(
Nr ,N

net
r |E,Iaux

)
∝ negbin

(
Nr −Nnet

r ;1− pr ,Nnet
r + 1

)
×P

(
Nnet
r

∣∣∣E,Iaux
)
. (13)

The normalization needs to be carried out numerically. Again, once we have the probability
distribution for the random variable of interest, we can provide point estimations (MAP or posterior
mean or posterior median) and accuracy indicators (posterior variance, posterior coefficient of
variation, posterior IQR, credible intervals). These must be computed numerically.

The uncertainty in the detection probability pr can be justified straightforwardly. A priori, we
can think of a detection probability pkr per individual k in the target population and try to device
some model to estimate pkr in terms of auxiliary information (e.g. sociodemographic variables,
income, etc.). We would need subscription information related to these variables for the whole
target population, which is unattainable. Instead, we may consider that the detection probability
pkr shows a common part for all individuals in region r plus some additional unknown terms, i.e.
something like pkr = pr + noise. At a first stage, we propose to implement this idea by modeling
pr ' Beta(αr ,βr ) and choosing the hyperparameters αr and βr according to the penetration rates P net

r
and the official population data N reg

r .

Let us denote by P net
r the penetration rate at region r of the network, i.e. P net

r = N
(devices)
r
Nr

. Notice that
this penetration rate is also subjected to the problem of duplicities (individuals having two devices).
To deduplicate, we make use of the duplicity probabilities p(n)

d computed in section 4.3 and of the
posterior location probabilities γd0r in region r for each device d. Notice that t = 0 according to our
first generic modelling assumption. We define

Ω
(1)
r =

∑D
d=1γd0r · p

(1)
d∑D

d=1γd0r
, (14a)

Ω
(2)
r =

∑D
d=1γd0r · p

(2)
d∑D

d=1γd0r
. (14b)

The deduplicated penetration rate is defined as
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P̃ net
r =

Ω(1)
r +

Ω
(2)
r

2

 · P net
r . (14c)

To get a feeling on this definition, let us consider a very simple situation. Let us consider
N

(1)
r = 10 individuals in region r with 1 device each one, N (2)

r = 3 individuals in region r with 2
devices each one, and N

(0)
r = 2 individuals in region r with no device. Let us assume that we can

measure the penetration rate with certainty, so that P net
r = 16

15 . The devices are assumed to be neatly

detected by the HMM (i.e. γd0r = 1 −O(ε)) and duplicities are also inferred correctly (p(2)
d = O(ε)

for d(1) and p(2)
d = 1 −O(ε) for d(2)). Then Ω

(1)
r = 10

16 +O(ε) and Ω
(2)
r = 6

16 +O(ε). The deduplicated
penetration rate will then be P̃ net

r = 13
15 + O(ε), which can be straightforwardly understood as a

detection probability for an individual in this network in region r. In more realistic situations, the
deduplication factors Ω(i)

r incorporate the uncertainty in the duplicity determination.

Now, we fix

αr + βr =N reg
r

αr
αr+βr

= P̃ net
r

}
⇒

{
αr = P̃ net

r ·N reg
r

βr =
(
1− P̃ net

r

)
·N reg

r
(15a)

There are several assumptions in this choice:

• On average, we assume that detection takes place with probability P̃ net
r . We find this assump-

tion reasonable. Another alternative choice would be to use the mode of the beta distribution
instead of the mean.

• Detection is undertaken over the register-based population. We assume some coherence be-
tween the official population count and the network population count. A cautious reader may
object that we do not need a network-based estimate if we already have official data at the same
time instant. We can make several comments in this regard:

– A degree of coherence between official estimates by combining data sources to conduct
more accurate estimates is desirable. By using register-based population counts in the
hierarchy of models, we are indeed combining both data sources. In this combination
notice, however, that the register-based population is taken as an external input in our
model. There exist alternative procedures in which all data sources are combined at an
equal footing (Bryant and Graham, 2013). We deliberately use the register-based popula-
tion as an external source and do not intend to re-estimate by combination with mobile
network data.

– Register-based populations and network-based populations show clearly different time
scales. The coherence we demand will be forced only at a given initial time t0 after which
the dynamical of the network will provide the time scale of the network-based population
counts without further reference to the register-based population.

– For the same model identifiability issues mentioned in the aggregation module, to esti-
mate population counts Nr using network-based population counts Nnet

r we need some
external parameter(s). Otherwise, it is impossible. Detection probabilities are indeed
these external parameters. We are modelling detection probabilities using penetration
rates, which somehow already need register-based population figures. Our pragmatic ap-
proach is to identify external data sources already existing to be used in our model. These
are penetration rates and register-based population counts easily collected by NSOs.
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• The penetration rates P net
r and the official population counts N reg

r come without error. Should
this not be attainable or realistic, we would need to introduce a new hierarchy level to account
for this uncertainty.

• The deduplicated penetration rates are computed as a deterministic procedure (using a mean
point estimation), i.e. the deduplicated penetration rates are also subjected to uncertainty, thus
we should also introduce another hierarchy level to account for this uncertainty.

Then, we can readily compute the posterior distribution for Nr :

P

(
Nr |Nnet

r ,Iaux
)

=
{

0 if Nr < Nnet
r ,

negBetaBin
(
Nr −Nnet

r ;Nnet
r + 1,αr − 1,βr

)
if Nr ≥Nnet

r .

It is a displaced negative beta binomial distribution (negBetaBin(k;s,α,β) ≡ Γ (k+s)
k!Γ (s)

B(α+s,β+k)
B(α,β) ) with

support in Nr ≥Nnet
r and parameters s =Nnet

r + 1, α = αr − 1 and β = βr . The mode is at

N ∗ =Nnet
r +

⌈(
βr − 1
αr

)
·Nnet

r

⌉
.

Using (15) we get as a MAP estimate:

N̂MAP = Nnet
r +

⌈
N

reg
r

P̃r
−Nnet

r − N
net
r

N
reg
r

1
P̃ net
r

⌉
, (16)

which is very similar to (11) with the deduplicated penetration rate playing the role of a detection
probability and a correction factor coming from the register-based population. The uncertainty is
accounted for by computing the posterior variance, the posterior coefficient of variation, or credible
intervals.

Notice that when αr ,βr � 1 (i.e., when min(P̃ net
r ,1 − P̃ net

r ) ·N reg
r � 1) the negative beta binomial

distribution (16) reduces to the negative binomial distribution

P

(
Nr |Nnet

r

)
=

 0 if Nr < Nnet
r ,

negbin
(
Nr −Nnet

r ; βr
αr+βr−1 ,N

net
r + 1

)
if Nr ≥Nnet

r .

Notice that βr
αr+βr−1 ≈ 1− P̃ net

r so that we do not need the register-based population (this is similar
to dropping out the finite population correction factor in sampling theory for large populations).
The mode is at

N̂MAP =Nnet
r +

⌊
Nnet
r

P̃ net
r
−Nnet

r

⌋
,

which is similar to (11).

We can make the model more complex by defining a new level in the hierarchy for the hyperpa-
rameters α and β (see e.g. Gelman et al., 2013) so that the relationship between these parameters and
the external data sources (penetration rates and register-based population counts) is also uncertain.
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For example, we can go all the way down the hierarchy, assume a cross-cutting relationship between
parameters and some hyperparameters and postulate

Nnet
r ' Bin(Nr ,pr ) , for all r = 1, . . . ,R, (17a)

pr ' Beta(αr ,βr ) , for all r = 1, . . . ,R, (17b)(
logit

(
αr

αr + βr

)
,αr + βr

)
' N

(
µβr(β0,β1; P̃ net

r ), τ2
β

)
×Gamma

(
1 + ξ,

N
reg
r

ξ

)
, for all r = 1, . . . ,R,

(17c)(
logβ0,β1, τ

2
β ,ξ

)
' fβ

(
logβ0,β1, τ

2
β

)
× fξ(ξ), (17d)

where µβr(β0,β1; P̃ net
r ) ≡ log

(
β0

[
P̃ net
r

1−P̃ net
r

]β1
)
.

The interpretation of this hierarchy is simple. It is just a beta-binomial model in which the
beta parameters αr ,βr are correlated with the deduplicated penetration rates. This correlation is
expressed through a linear regression model with common regression parameters across the regions,
both the coefficients and the uncertainty degree. On average, the detection probabilities pr will be
the deduplicated penetration rates with uncertainty accounted for by hyperparameters β0,β1, τ

2
β . For

large population cells, the hyperparameter ξ drops out so that finally the register-based population
counts N reg

r play no role in the model, as above. This further hierarchy is under exploration (see
Salgado et al. (2020) for some computational details). Indeed, the hierarchy can be extended also
to model Nr (the so-called state process), e.g. by a Poisson distribution with parameter λr and keep
on modelling λr according to some underlying process integrating more auxiliary information (see
Salgado et al. (2020) for details).

For the second stage we shall focus only on closed populations, i.e. populations with individuals
not allowed to enter or leave the geographical territory during the time period of estimation. This is
a first step in agreement with the current status of the network event data simulator.

The basic assumption is that displacement patterns are not dependent on the subscribing MNO
providing the data, i.e. individuals in a given MNO network show similar displacement patterns to
those in any other network or in the target population in general. We begin by considering a balance
equation. Let us denote by Nt,rs the number of individuals moving from region s to region r in the
time interval (t − 1, t). Then, we can write

Ntr = Nt−1r +
NT∑
rt=1
rt,r

Nt,rrt −
Nr∑
rt=1
rt,r

Nt,rtr

=
NT∑
rt=1

τt,rrt ·Nt−1rt , (18)

where we have defined τt,rs = Nt,rs
Nt−1s

(0 if Nt−1s = 0). Notice that τt,rs can be understood as an aggregate
transition probability from region s to region r at time interval (t − 1, t) in the target population.

According to our general assumption we can use τnet
t,rs ≡

Nnet
t,rs

Nnet
t−1s

to model τt,rs. In particular, we shall
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postulate τt,rs = τnet
t,rs . The probability distributions of Nnet

st−1 and [Nnet
t ]sr =Nnet

t,rs can indeed be already
computed in the aggregation module.

Finally, we mention two points. On the one hand, random variables Nrt are defined recursively
in the time index t, so that once we have computed the probability distribution at time t0, then we
can use equation (18) to compute the probability distribution at later times t > t0. On the other
hand, Monte Carlo techniques should be used to build these probability distributions. Once we have
probability distributions, we can make point estimations and compute accuracy indicators as above
(posterior variance, posterior coefficient of variation, credible intervals).

This same argument can be extended to produce origin-destination matrices. If Ntr and τt,rs
denote, respectively, the number of individuals of the target population at time t in region r and
the aggregate transition probability from region s to region r at the time interval (t − 1, t), then we
can simply define Nt,rs = Nt−1s × τt,rs and trivially build the origin-destination matrix for each time
interval (t − 1, t). Under the same general assumption as before, if individuals are to move across
the geographical territory independently of their mobile network operator (or even not being a
subscriber or carrying two devices), we can postulate τt,rs = τnet

t,rs , as before.

One of the advantages of the simulator is that we can analyse the sensitivity of the final outputs
with respect to the accuracy of the auxiliary information. In particular, we can provide perturbed

values for the register-based population figures in terms of their relative bias E
(
N

reg
r −N

reg,0
r

N
reg, 0
r

)
and their

coefficient of variation

√
V (N reg

r )
N

reg,0
r

.

In figure 10 we represent the high-density credible intervals (α = 0.95) for the target population
counts in each region r at the initial time instant t0 using the negative beta binomial model (16) and
the integration formula (1). Different values of the relative bias and the coefficient of variation for
the register-based population are investigated.

In figure 11 we represent the high-density credible intervals (α = 0.95) for the origin-destination
matrices of the present population using the negative beta binomial model (16) at the initial time
estimation, the integration formula (1) for all time instants, and the assumption τt,rs = τnet

t,rs .

5 Conclusions and future prospects

Mobile network data is a complex data source with multiple potential uses in the production of
official statistics. To achieve the daily incorporation of this data source into statistical offices many
challenges must be overcome. By and large, they are both strategic and technical. To reach a
successful solution, strategy and technique must have a two-way interrelation.

From the technical point of view the design and implementation of a modular end-to-end
process according to the principles of the ESS Reference Methodological Framework stand as a
key element. We have provided a first proposal of such a process where functional modularity
and seamless evolvability arise as the main characteristics. Each module is designed to deal with
different aspects of the whole complex estimation process from raw telecommunication data to final
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Figure 10: Credible intervals (α = 0.95, HDI) for the number of individuals in the target population
at the initial time t0 using the negative beta binomial model and different values for the relative bias
and coefficient of variation of the register-based population. True values of target population counts
in red.

target population estimates together with accuracy indicators.

Since the access to mobile network data is notably limited for different reasons, we make use
of a network event data simulator to provide a proof of concept. Each module needs further
development. The use of HMM for geolocation of mobile devices should be further extended
with more complex definitions of state and more sophisticated proposals such as continuous-time
hidden Markov chains and particle-filter approaches are to be explored. Deduplication procedures
and aggregation methods should be accordingly adapted. Statistical filtering algorithms for target
inidividuals and anchor point identification in terms of movement analysis indicators need to
be proposed and tested using both simulated and real data. Finally, inference models should be
extended for open populations and be essentially multivariate including spatial autocorrelations.

Advances in the design of such a process for multiple statistical domains must be taken into
account in the management of access and use of this data and agreements with MNOs.
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Figure 11: Credible intervals (α = 0.95, HDI) for the O-D matrices in the target population using the
negative beta binomial model and values for the relative bias 20% and coefficient of variation 20%
of the register-based population. True values of target population counts in red.

A Mathematical details

A.1 Geolocation

We include some generic mathematical details to compute the posterior location probabilities from
the input data. This is conducted in steps.

A.1.1 Time discretization and padding

We shall work in discrete times. To do this we need to relate three parameters, namely (i) the
tile dimension l (we assume a square grid for simplicity), (ii) the time increment ∆t between two
consecutive time instants, and (iii) an upper bound vmax for the velocity of the individuals in the
population. In our transition model we impose that in the time interval ∆t, the device d at most
can displace from one tile to an adjacent tile. Under this condition, we can trivially set ∆t . l

vmax
. If

in the dataset the device d is detected at longer time periods, then we artificially introduce missing
values at intervals ∆t between every two observed values. This artificial non-response allows us to
work with parsimonious models easier to estimate instead of using more complex transition matrices.
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Additionally, each observed time instance t is approximated to its closest multiple integer of ∆t
so that we will have as input data a sequence of time instants at multiples tn = ∆t · n, (n ≥ 0) and a
randomly alternate sequence of missing values and of observed event variables Edtn .

A.1.2 Construction of the emission model

The emission model is directly built by computing the so-called emission probabilities, i.e. the event
location probabilities P

(
Etn = ej

∣∣∣Tdtn = i
)
, where ej is a possible value for the observed event variables

Edtn and i denotes the tile index. We assume time homogeneity. This conditional probability is
computed using the radio wave propagation model of our choice (see e.g. Salgado et al., 2020, for
details).

A.1.3 Construction of the transition model

Now we specify a model for the transition between tiles (states) {T = i}i=1,...,NT . For ease of
explanation and notation, let us change the notation of each tile Ti to a two-dimensional index
T(i,j). Accordingly, each tile will be specified in this section by a pair of integer coordinates. The
correspondence between both enumerations is arbitrary, but fixed once it has been chosen. We again
assume time homogeneity for simplicity. Thus, P

(
T(r,s)

∣∣∣T(i,j)

)
will denote P

(
T(r,s)(tn +∆t)

∣∣∣T(i,j)(tn)
)

for any tn = 0,1, . . . We assume a square regular grid for simplicity.

The essential assumption of the model is that an individual can at most reach an adjacent tile in
time ∆t. Thus,

P

(
T(r,s)

∣∣∣T(i,j)

)
= 0 max{|r − i|, |s − j |} ≥ 2, r, s, i, j = 1, . . . ,

√
NT . (19a)

Now, we assume that we have no further auxiliary information to model these transitions and
impose rectangular isotropic conditions:

P

(
T(i±1,j)

∣∣∣T(i,j)

)
= P

(
T(i,j±1)

∣∣∣T(i,j)

)
= θ1 i, j = 1, . . . ,

√
NT , (19b)

P

(
T(i±1,j±1)

∣∣∣T(i,j)

)
= θ2 i, j = 1, . . . ,

√
NT . (19c)

The last set of conditions is row-stochasticity:

NT∑
r,s=1

P

(
T(r,s)

∣∣∣T(i,j)

)
= 1, i, j = 1, . . . ,

√
NT , (19d)

P

(
T(r,s)

∣∣∣T(i,j)

)
≥ 0, i, j, r, s = 1, . . . ,

√
NT .

Now back to the original notation for tiles and using the usual notation for the transition matrix
A = [aij ], with aij = P

(
Tjt

∣∣∣Tit) (Rabiner, 1989), conditions (19) amounts to having a highly sparse
transition matrix A with up to 4 terms equal to θ1 and θ2 (each) per row and diagonal entries
guaranteeing row-stochasticity.

In our proposed implementation, in order to seek future generalization, we will work with a
generic block-tridiagonal matrix where the restrictions (19a) leading to 0 have been included, and
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complemented with the rest of restrictions (19b)-(19d) in matrix form. Thus, we write C ·vec(Ã) = b,
where vec(Ã) stands for the non-null elements of A in vector form. The rows of [C b] encode each of
the restrictions (19b), (19c), and (19d). For example, a12 = θ1 and a21 = θ1 produce a row like this

Ci · vec(Ã) =
[ ··· ··· ··· ··· ··· ··· ··· ··· ···
··· 0 1 0 ··· 0 −1 0 ···
··· ··· ··· ··· ··· ··· ··· ··· ···

]
· ( ··· · a12 · ··· · a21 · ··· )T = bi = 0.

A.1.4 Construction of the initial state (prior) distribution

The HMM prior can be constructed according to any available information. For illustrative purposes,
we consider two choices: (i) uniform prior, i.e. πuniform

i = 1
NT

and (ii) πnetwork
i ∝

∑
k (RSS(d(Ek ,Ti)))

(where RSS is expressed in watts) or πnetwork
i ∝

∑
k (SDM(d(Ek ,Ti))), depending on the emission

model. Any other choice or combination thereof is also possible (see e.g. Tennekes et al., 2020).

A.1.5 Computation of the likelihood

The likelihood is trivially computed using the numerical proviso of setting emission probabilities
equal to 1 when there is a missing value in the observed variables (e.g. due to time padding). The
general expression for the likelihood is

L(Ed) =
NT∑
i0=1

· · ·
NT∑
iT =1

P

(
Tdt0 = i0

) N∏
n=1

P

(
Tdtn = in|Tdtn−1

= in−1

)
P

(
Edtn

∣∣∣Tdtn = in
)

=
NT∑
i0=1

· · ·
NT∑
iT =1

P

(
Tdt0 = i0

) N∏
n=1

adin−1in(θ) ·P
(
Edtn

∣∣∣Tdtn = in
)

(20)

Notice that the emission probabilities only contribute numerically providing no parameter what-
soever to be estimated.

A.1.6 Parameter estimation

The estimation of the unknown parameters θ is conducted maximizing the likelihood. The restric-
tions coming from the transition model (19) makes the optimization problem not trivial. Notice that
the EM algorithm is not useful. Instead, we provide a taylor-made solution seeking for future gener-
alizations with more realistic choices of transition probabilities incorporating land use information.
Formally, the optimization problem is given by:

max h(a)

s.t. C · a = b

ak ∈ [0,1],

(21)

where a stands for the nonnull entries of the transition probability matrix A, the objective function
h(a) is derived from the likelihood L expressed in terms of the nonnull entries of the transition
matrix A, and the system C · a = b expresses the sets of restrictions from the transition model (19)
not involving null rhs terms (restrictions (19b), (19c), and (19d)).

The total number of zeroes in the transition matrix A can be proven to be given by
4 × (NT − 4) + 4 × (

√
NT − 2) × (NT − 6) + (

√
NT − 2)2 × (NT − 9) = N2

T − 9 · NT + 12
√
NT − 4 (Sal-

gado et al., 2020). The number of non-null components of a in problem (21) is d = 9 ·NT −12
√
NT +4.
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The number of restrictions nr not involving zeroes depends very sensitively on the particular
transition model chosen for the displacements. In the rectangular isotropic model considered above,
it can also be proven to be nr = 4 ·NT − 4

√
NT − 1 + 4 × (

√
NT − 1)2 − 1 +NT = 9 ·NT − 12

√
NT + 2

(Salgado et al., 2020). Thus, the matrix C will have dimensions nr × d. Notice that d − nr = 2, as
expected, since we have two free parameters θ1 and θ2.

The abstract optimization problem is thus

max h(a)

s.t. C · a = b

a ∈ [0,1]d ,

, (22)

where C ∈ R
nr×d and b ∈ R

d . The objective function h(a) is indeed a polynomial in the non-null
entries a. This problem can be further simplified using the matrix QR decomposition. Write C =
Q ·R, where Q is an orthogonal matrix of dimensions nr × nr and R is an upper triangular matrix of
dimensions nr × d. Then we can rewrite the linear system as R · a = QT · b and we can linearly solve
variables a1, . . . , anr in terms of variables anr+1, . . . , ad :

(
a1 · · · anr

)T
= C̃nr×(d−nr )

(
anr+1 · · · ad

)T
.

The system (22) then reduces to

max h̃(anr+1, . . . , ad)

s.t. 0 ≤ C̃ ·
(
anr+1 · · · ad

)T
≤ 1.

(23)

In our current software implementation we resort to general-purpose optimizers. It remains for
future work to find an optimised algorithm to solve (23). The solution a∗ to problem (22) will be
introduced in the transition probability matrix, which will thus be denoted by Â.

A.1.7 Application of the forward-backward algorithm

Once the HMM has been fitted, we can readily apply the well-known forward-backward algorithm
(see e.g. Bishop, 2006) to compute the target location probabilities γdti and γtij . No novel method-
ological content is introduced at this point. For our implementation, we have used the scaled version
of the algorithm (see (Bishop, 2006)).

A.1.8 Model evaluation

We propose a bias-variance decomposition of the mean squared error of the estimated location as
main figure of merit. We define the center of location probabilities and the root mean squared dis-
persion. Let us denote by Rdt ∈ {r

(c)
i }i=1,...,NT the random vector for the position of a device according

to the distribution of posterior location probabilities γdti , where r(c)
i stands for the coordinates of the

center of tile c. Let us shortly denote R̄dt ≡ ERdt =
∑NT
i=1γdtir

(c)
i . Let us also denote the true position

of device d at time t by r∗dt. Then, we can decompose
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msddt ≡ E‖Rdt − r∗dt‖
2 = E‖(Rdt − R̄dt) + (R̄dt − r∗dt)‖

2

= E

[
〈Rdt − R̄dt ,Rdt − R̄dt〉

]
+

2 ·E
[
〈Rdt − R̄dt , R̄dt − r∗dt〉

]
+

E

[
〈R̄dt − r∗dt , R̄dt − r∗dt〉

]
= rmsd2

dt + b2
dt . (24)

This decomposition motivates the definition of bias bdt = ‖R̄dt − r∗dt‖ and root mean squared de-
viation

rmsddt =
√
E

[
‖Rdt − R̄dt‖2

]
.
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Abstract: Estimation of output quality based on sample surveys is well established. It accounts for
the effects of sampling and non-response errors on the accuracy of an estimator. When administra-
tive data are used or combinations of administrative data with survey data, more error types need
to be taken into account. Moreover, estimators in multisource statistics can be based on different
ways of combining data sources. That partly affects the methodology that is needed to estimate out-
put quality. This paper presents results of the ESSnet project Quality of Multisource Statistics that
studied methods to estimate output quality. We distinguish three main groups of methods: scoring
methods, (re)sampling methods and methods based on parametric modeling. Each of those is split
into methods that can be used for both single and multisource statistics and methods that can be
applied to multisource statistics only. We end the paper by discussing some of the main challenges
for the near future. We argue that estimating output quality for multisource statistics is still more
an art than a technique.

Keywords: bias, bootstrap, coherence, data integration, parametric modeling, quality framework,
sampling theory, variance
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1 Introduction

The fundamental reason for existence of National Statistical Institutes (NSIs) is that they are re-
sponsible for the official figures for policy making. It is therefore crucial that NSIs produce reliable
estimates of societal phenomena. That implies that NSIs should be able to monitor the quality of
the output that they produce. Estimation of output quality for single source statistics as a function
of sampling error is well established. When administrative data sources are used, or a combination
of administrative and survey data, more error types, such as measurement and linkage errors, need
to be estimated and taken into account. How the effects of those error types can be estimated, the
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methodology, will partly depend on how the data are combined. One example is that a target vari-
able with measurement error is available at micro-level in multiple sources. Another example is that
estimates of primary statistics, again with measurement error, are reconciled into an integrated set of
values that fulfill balancing equations. One needs different methods to measure the output quality
in these two situations.

Estimation of output quality of multisource statistics has been studied in the ESSnet project Qual-
ity of Multisource Statistics (also referred to as Komuso). The Komuso project lasted from January
2016 until October 2019. It was part of the ESS.VIP Admin Project. The main objectives of that lat-
ter project were: (i) to improve the use of administrative data sources, and (ii) to support the quality
assurance of output produced using administrative sources. Partners in Komuso were Statistics Den-
mark (overall project leader of the ESSnet), Statistics Norway, ISTAT (the Italian national statistical
institute), Statistics Lithuania, Statistics Austria, the Hungarian Central Statistical Office, the Central
Statistical Office of Ireland, and Statistics Netherlands.

The main aim of Komuso was to produce quality guidelines for NSIs that are specific enough
to be applied in statistical production by those NSIs. These guidelines take the entire production
chain into account (input, process, and output) and cover a variety of situations in which NSIs work:
various error types and different basic data configurations (BDCs, see Subsection 2.2). The guidelines
list a variety of potential indicators/measures, indicate for each of them their applicability and in
what situation they are preferred or not, and provide an ample set of examples of specific cases and
decision-making processes.

Work Package 3 (WP 3) of Komuso focused on measuring the quality of statistical output based
on multiple data sources. Measuring the quality of statistical output differs fundamentally from
measuring the quality of input data since one ideally wants to take into account all processing and
estimation steps that were taken to achieve the output. The problem encountered in WP 3 was not so
much how to define the quality measures, but rather how these quality measures should be computed
for a given set of input datasets and a certain procedure for combining these input datasets. At the
moment, there is no all-encompassing theory or framework that can be used as a basis for quality
measures for multisource statistics and for methods to calculate such measures. Constructing quality
measures for multisource statistics and calculating them is still more of an art than a technical recipe
that one can simply follow.

The present paper concentrates on methods to compute output quality measures. Those qual-
ity measures and their computational methods were examined and described in WP 3 of Komuso.
They form an appendix to the above-mentioned quality guidelines which were developed in WP 1
of Komuso. Section 2 describes the approach taken in WP 3 of Komuso. Section 3 focuses on scoring
methods for measuring output quality, Section 4 on methods based on (re)sampling, and Section 5 on
methods based on (parametric) modelling. Each of these sections is split into two parts: methods that
can be used to measure output quality for single and multisource statistics, and methods that have
been developed for multisource statistics only. Section 6 concludes this paper with a brief discussion.

Due to the large variety in situations and methods we consider in this paper, the notation varies
slightly over the various (sub)sections. We hope that this will not confuse the reader.

2 Approach taken in Komuso

In WP 3 of Komuso the work was subdivided into three consecutive steps:

1. In the first step a literature review or suitability test was carried out. In a literature review exist-
ing quality measures and recipes to compute them were studied and described. In a suitability
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test also data were used to test quality measures and the recipes to compute them. Suitability
tests were mainly used for newly proposed quality measures, but also for some already known
quality measures to learn more about their properties, or for already known quality measures
that were applied to a new field. In such a suitability test, practical and theoretical aspects of a
quality measure and the accompanying calculation recipe were examined.

2. In order to make the results of Step 1 easily accessible, in Step 2 so-called quality measures
and computation methods (QMCMs) were produced. Such a QMCM is a standardized, short
description of a quality measure and the accompanying calculation recipe as well as a descrip-
tion of the situation(s) in which the quality measure and accompanying recipe can be applied.
In total, 32 QMCMs were developed in the Komuso project.

3. In Step 3 hands-on examples were developed in the Komuso project for 31 of the 32 QMCMs.
The one exception for which no example was provided concerned a general description of error
types.

In order to cover different situations of different NSIs, and for ease of finding the results, the
quality measures were structured along five classifications:

• quality dimensions;
• BDCs;
• error types;
• general approaches;
• computational methods.

The first four classifications are discussed in Subsections 2.1 to 2.4. The fifth classification is dis-
cussed extensively in Sections 3 to 5.

2.1 Quality dimensions

WP 3 of Komuso focused on four quality dimensions: accuracy, timeliness, coherence and relevance.
The selected quality dimensions can more or less be quantified. Accuracy is “the degree of closeness
of computations or estimates to the exact or true values that the statistics were intended to measure”
(Eurostat, 2014). Timeliness was operationalized as “the time lag between the date of the publication
of the results and the last day of the reference period of the estimate of the event or phenomenon they
describe” [Komuso (ESSnet Quality of Multisource Statistics) (2019), in line with Eurostat (2014)].
Coherence “measures the adequacy of statistics to be combined in different ways and for various uses”
(Eurostat, 2014). Relevance is defined as “the degree to which statistical outputs meet current and
potential user needs” (Eurostat, 2014). “It refers to whether all the statistics that are needed are
produced and the extent to which concepts used (definitions, classifications etc.) reflect user needs”
(Komuso (ESSnet Quality of Multisource Statistics), 2019).

2.2 Basic data configurations

As already mentioned above, WP 3 of Komuso used a breakdown into a number of BDCs that are
most commonly encountered in practice. In Komuso, we identified six BDCs [for more information
on BDCs and methods to produce multisource statistics we refer to De Waal et al. (2020)]:

• BDC 1: multiple non-overlapping cross-sectional microdata sources that together provide a
complete dataset without any under-coverage problems;

• BDC 2: same as BDC 1, but with overlap between different data sources;
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• BDC 3: same as BDC 2, but now with under-coverage of the target population;
• BDC 4: microdata and aggregated data that need to be reconciled with each other;
• BDC 5: only aggregated data that need to be reconciled;
• BDC 6: longitudinal data sources that need to be reconciled over time (benchmarking).

2.3 Error types

There exist many different schemes of error categories in survey and administrative sources; see for
instance Zhang (2012). The error categories that are distinguished also depend on the level of detail
that is used. Table 1 provides an overview of the error categories that were distinguished in Komuso.

Error category Type of error included Survey Admin
Validity error Specification error X

Relevance error X
Frame and source error Under-coverage X X

Over-coverage X X
Duplications X X
Misclassification in the contact variables X
Misclassification in the auxiliary variables X X

Selection error Error in terms of the selected sampling units X
Unit non-response X
Missing units in the accessed dataset X

Measurement error and
Item missingness

Arising from: respondent, questionnaire, inter-
viewer, data collection

X

Fallacious or missing information in admin
source

X

Processing error (*) Data entry error X
Coding or mapping error or misclassification X X
Editing and imputation error X X
Identification error X
Unit error X
Linkage errors X X

Model error (examples,
non-exhaustive)

Editing and imputation error, record linkage er-
ror, . . .

X X

Model based estimation error (Small Area Esti-
mation, Seasonal Adjustment, Structural Equa-
tion Modeling, Bayesian approaches, Capture-
Recapture or Dual System Estimation, Statistical
Matching, . . . )

X X

Table 1: Main sources of errors in multisource statistics [from Komuso (ESSnet Quality of Multi-
source Statistics) (2019)]. (*) Processing errors are errors occurring with manual activities. These
include also trivial errors, e.g., typographical errors in writing a procedure or errors in specifying
a variable in the program (also in a model). When the processing steps mentioned are done via a
model they may result in model errors.

2.4 General strategies to measuring output quality

In Komuso, four different general strategies were identified that one can take with respect to mea-
suring quality: (1) using a quality framework without trying to quantify quality measures, (2) us-
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ing generic quality measures that do not rely on any underlying model or design, (3) using non-
parametric models to quantify quality measures (including sampling theory), and (4) using para-
metric models to quantify quality measures.

1. A quality framework is often used for measuring the quality of an entire statistical production
chain, including data collection and data processing steps, since constructing statistical models
for all steps in the statistical production chain is generally not feasible. A quality framework
does not rely on statistical distributions nor on distribution-free quality measures. Instead, a
quality framework often tries to combine various pieces of information on the quality of the
produced output, such as expert opinions, into a set of quality measures.

2. Generic quality measures that do not rely on any underlying model or design are often used
when one wants to measure quality for a single step in the statistical production chain, rather
than measure the quality of the entire statistical production chain as a quality framework aims
to do. Such quality measures are often used for steps in the statistical production that are hard
or impossible to capture in a statistical model. An example is the difference between an earlier
estimate and the latest revisions, which quantifies the effect of revisions (see Subsection 3.1.2).
The QMCMs using generic quality measures that do not rely on any underlying model or design
that have been developed in Komuso all concern the dimension “coherence”.

3. Sampling theory, including resampling techniques, is the most common form of non-
parametric models for measuring output quality, in any case within the Komuso project. Gen-
erally, (re)sampling theory is used to estimate bias and variance for estimators based on random
samples.

4. Parametric models are often used when one wants to measure quality for a single step in the
statistical production chain, and such a step can be captured in a statistical model. Examples
of such methods are constrained optimization, latent class modeling, and structural equation
modeling.

Within each general strategy one can use different methods to calculate quality measures. An
overview of some of the methods encountered in Komuso is given in Sections 3 to 5.

3 Scoring methods: “Art is born of the observation and investigation of
nature”

Scoring methods basically just base any quality measure directly on the observations, without re-
lying, for instance, on statistical models. Scoring methods remind us of a quote by Marcus Tullius
Cicero (Roman statesman, lawyer and scholar): “Art is born of the observation and investigation of
nature.”

3.1 Scoring methods for single and multisource statistics

3.1.1 Qualitative methods

The usual objective of qualitative methods is to collect non-numerical data such as reasons, (expert)
opinions, and motivations. Examples of qualitative methods are individual interviews and group
discussions.

Example: Two-phase and three-phase error framework
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A multisource production process may consist of several administrative registers that are linked and
harmonized by means of micro-integration [see, e.g., Bakker (2011)] for constructing a statistical
register and deriving the variable of interest and related variables. The steps in this production pro-
cess are usually complicated. Zhang (2012) developed a two-phase error framework for the situation
where data from multiple sources are integrated to create a statistical micro dataset (see Table 2).

Measurement dimension Representation dimension
Phase 1 Validity error Frame error

Measurement error Selection error
Processing error Missing/redundancy

Phase 2 Relevance error Coverage error
Mapping error Identification error
Comparability error Unit error

Table 2: Error sources in the two-phase error framework.

The first phase shows the stages and error sources during the construction of each input source
(e.g., an administrative register). For the process along the measurement perspective, the errors are
validity error, measurement error, and processing error; along the representation perspective, the
errors are frame error, selection error, and missing/redundancy. The model of this phase is adapted
from the total survey error model of Groves et al. (2004).

The second phase starts with the target concept and target population, defined according to the
purpose of the integrated statistical data. These targets are typically different from the first phase
where the targets were defined and generated according to the purpose of the data owner. Because of
this, it is sometimes even necessary to “swap” the two measurement and representation dimensions
when moving from the first stage to the second stage; e.g., employment can be considered either as
representation (of the population of employed people) or as measurement (of employment in the
labor force population). During the second phase, the errors related to the measurement dimension
are relevance error, mapping error, and comparability error; for the representation dimension the
errors are coverage error, identification error, and unit error.

Reid et al. (2017) proposed an extension of this two-phase error framework with a third phase:
the estimation phase. According to Reid et al. (2017), phase 2 ends with a unit-level records file
containing units and values of the variables. The third phase then describes inaccuracies that can be
made during the actual estimation process, in which one may try to correct for errors made during the
first two phases. Furthermore, phase three includes estimation of the quality of the output estimates.

To what extent errors are treated can be measured as a simple proportion in this framework,
where 1 stands for complete treatment of all the error sources and 0 if none are treated. These
values may be based on expert knowledge. Alternatively, any Likert scale measure can be defined
subjectively by the expert. Reid et al. (2017) give three examples of how their three-phase error
framework was used to qualitatively compare different possible designs for statistical output, treat-
ing both single-source and multisource statistics. An example of giving scale measures to errors
sources can be found in Biemer et al. (2014). Rocci et al. (2018) also applied an error framework to a
multisource statistic, and for different error types they estimated the fraction of units in which that
error type occurred.

3.1.2 Descriptive summary statistics

A descriptive summary statistic quantitatively describes features of collected data. A descriptive
statistic aims to summarize the observed data and is generally quite simple. Commonly used de-
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scriptive summary statistics are the minimum and maximum values of the variables, the means,
medians and modes of the variables, the standard deviation and variances of the variables and the
correlation between two variables.

In the Komuso project several descriptive summary statistics were examined. Below we give ex-
amples of three such statistics. These examples have been developed by ISTAT in the Komuso project.

Example: Cross-domain and sub-annual versus annual statistics coherence
A descriptive summary statistic to measure the coherence of estimates for the same parame-
ter/variable of interest based on cross-domain or sub-annual statistics versus annual statistics is the
relative difference between the “main” estimate and the “comparison” estimate. It is computed as

I =
yA − yB
yB

× 100,

where yA is the main estimate and yB the comparison estimate. For instance, yB may be the estimate
based on annual statistics and yA the estimate for the same parameter/variable of interest based on
cross-domain or sub-annual statistics. Generally, yB is based on the most accurate/trustable source,
unless there is no reason to consider any of the sources as the most accurate. In the latter case one
could consider setting yB equal to the average of the two estimates.

The above indicator I can be used after the final point estimates have been computed and one or
more estimates for the same parameter/variable of interest are available from different sources or
from processes with a different frequency.

Example: (Change of) sign, size, bias and variability of revisions and discrepancies
In order to quantify the effect of revisions and discrepancies on statistical estimates one can simply
calculate the difference between the latest estimate and earlier estimates in the case of a revision, or
the difference between estimates for similar domains in the case of discrepancies. For convenience
we will only discuss revisions, but the same holds for discrepancies.

The difference is simply computed as Rt = Lt −P t, where Rt denotes the revision for moment t, Lt

the latest estimate for a variable/parameter of interest, and P t a preliminary estimate for the same
variable/parameter of interest. The later calculated estimate Lt is generally considered more reliable
than the preliminary estimate P t. Here, P t may, for instance, denote the estimated period-on-period
growth rate in a certain period, and Lt a later calculated, more accurate, estimated period-on-period
growth rate.

Given the calculated revisions Rti for several statistics i, the following descriptive summary statis-
tics can, for instance, be estimated: the change of sign due to a revision, the size of the revisions (mean
of absolute revisions, median of absolute revisions, mean of relative absolute revisions), bias of the
revisions (revision mean and its statistical significance, revision median) and the variability of the
revisions (root mean square error, range, min, max, . . . ).

Seasonally adjusted estimates may be taken into account to calculate descriptive summary statis-
tics. Such seasonally adjusted estimates can, for instance, be obtained by applying available seasonal
adjustment software on the unadjusted data.

The descriptive summary statistics are, for instance, applied at ISTAT when monthly seasonally
adjusted data of industrial production indices are estimated by means of a direct approach at domain
level, and quarterly seasonally adjusted output of the industrial sector is based on disaggregation
techniques on annual data with seasonally adjusted industrial production indices. At least two
approaches can be applied in such a situation: one can use the quarterly averages of the disseminated
seasonally adjusted indices or one can use seasonally adjusted quarterly averages of the unadjusted
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monthly indices. The descriptive summary statistics offer some help in choosing between these two
(and possibly other) approaches.

Example: Scalar measure of coherence in a reconciled demographic balancing equation
For the situation where estimates related by linear constraints need to be reconciled, descriptive
summary statistics are also available. An example of such a situation is when stocks and flows of
a population have to be balanced. Another example is when macro-economic figures, for instance
figures for the National Accounts, that are connected by accounting equations need to be reconciled.

We will illustrate the descriptive summary statistics that have been examined in the Komuso
project by the demographic balancing equation. More in detail, the population sizes in a domain i
at times t (P ti ) and t + 1 (P t+1

i ) (stocks), and flows (migrations, birth and deaths) within the period
[t, t + 1] need to satisfy the demographic balancing equation P t+1

i = P ti +Ni +Mi , where Ni = Bi −Di
is the natural increase, with Bi and Di the number of births, respectively the number of deaths in
period [t, t + 1], and Mi =

∑
jMij , where Mij is the number of people who immigrated to domain i

from domain j minus the number of people who emigrated from domain i to domain j and the sum
is taken over all domains j. Here a domain may be any disjoint partitioning of the population, for
instance region by sex by age class.

Let us assume that the estimates for domains i and j are given by P̂ ti , P̂ t+1
i , N̂i and M̂ij . A simple

descriptive summary statistic for the degree of incoherence is then the average over the domains of
the differences between the direct estimate for the population P̂ t+1

i and the corresponding estimate
obtained by the estimates of stock of the population at time t and the flows in period [t, t+ 1], that is
by P̂ ti + N̂i + M̂i .

An indicator for the degree of incoherence for domain i is

di =
∣∣∣P̂ t+1
i − (P̂ ti + N̂i + M̂i)

∣∣∣ .
A descriptive summary statistic for the global measure of coherence is then given by the sum of the
differences standardized with respect to the average of the two estimates of the population P t+1

i , i.e.,
by

C =
2
D

∑
i

di
P̂ t+1
i + P̂ ti + N̂i + M̂i

,

where D denotes the number of domains and the summation is over all domains i = 1, . . . ,D.
The above indicator and descriptive summary statistic for the global measure of coherence do not

examine the impact of reconciliation. We will now consider an indicator and descriptive summary
statistic for the impact of reconciliation. Let (P̃ ti , P̃

t+1
i , Ñi , M̃ij ) be reconciled values that satisfy

the demographic balancing equation. Indicators for the impact of reconciliation for the separate
variables for each domain i are then given by

(
P̃ ti − P̂

t
i

)
/P̂ ti ,

(
P̃ t+1
i − P̂ t+1

i

)
/P̂ t+1
i ,

(
Ñ t
i − N̂

t
i

)
/N̂ t

i , and(
M̃t
i − M̂

t
i

)
/M̂t

i . The indicators obviously depend on the reconciled values, and hence on the rec-
onciliation method used.

A descriptive summary statistic for the impact of reconciliation based on these indicators is the
average of the above four indicators over all domains, i.e.,

CR =
1

4D

∑
i

∣∣∣∣∣∣ P̃ ti − P̂ tiP̂ ti

∣∣∣∣∣∣+

∣∣∣∣∣∣ P̃ t+1
i − P̂ t+1

i

P̂ t+1
i

∣∣∣∣∣∣+

∣∣∣∣∣∣Ñi − N̂iN̂i

∣∣∣∣∣∣+

∣∣∣∣∣∣M̃i − M̂i

M̂i

∣∣∣∣∣∣
.

CR can also be seen as a measure of incoherence, since it quantifies the overall change in values
required to obtain the reconciled values. Like the four underlying separate indicators, CR depends
on the reconciliation method.
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When only a subset of the demographic variables P̂ ti , P̂ t+1
i , N̂i and M̂i are reconciled, or when they

are reconciled for a subset of domains i only, the descriptive summary statistic should be computed
on that subset only.

CR allows one to compare the impact of several reconciliation methods to each other. By zooming
in on specific subsets one can study the impact of reconciliation for certain (groups of) domains or
on certain variables.

3.2 Scoring methods developed especially for multisource statistics

3.2.1 Dempster-Shafer theory

Dempster-Shafer theory offers a general methodological framework for dealing with uncertainty. It
enables one to combine, possibly conflicting, information from different sources. With Dempster-
Shafer theory one can take all available information into account and quantify the degree of belief
in a certain outcome by means of a belief function. Such a belief function relates the plausibility of
a certain answer to a certain question to the plausibilities of answers to a related question. These
degrees of belief may be subjective. For instance, they may be based on expert opinions. Dempster-
Shafer theory gives rules for combining degrees of belief that are based on independent sources.

Dempster-Shafer theory can be used in many cases. For instance, the theory can be used when
one wants to combine information from several experts or when one wants to combine expert opin-
ions with information based on observed data. This makes Dempster-Shafer theory a very broadly
applicable methodological tool.

For more on Dempster-Shafer theory, and on an application of Dempster-Shafer theory to the
Austrian Population Census, we refer to Berka et al. (2010), Berka et al. (2012), Schnetzer et al.
(2015), and Asamer et al. (2016).

4 Methods based on (re)sampling: “Design is the intermediary between
information and understanding”

Methods based on (re)sampling generally use the design, for instance the sampling design, by which
the data are collected, to base quality measures upon. For such quality measures the “design is the
intermediary between information and understanding,” a quote by the German painter Hans Hoffman.

Sampling theory allows one to compute the sampling variance for a large number of sampling
designs (Särndal et al., 1992). Assuming a mechanism for the non-response process, sampling theory
may in some cases also be used to estimate non-response variance, besides sampling variance. In
sampling theory, one usually derives analytical formulae to compute sampling (and non-response)
variance.

For single-source statistics, calculating the sampling (and non-response) variance is often the
only realistic way to estimate the quality of the output. Sampling theory is also very useful for
multisource statistics. In the case of multisource statistics, different situations may arise for which
one may want to estimate sampling (and non-response) variance than for single-source statistics (see,
e.g., the first example in Section 4.2).

Resampling can often be used to estimate the variance (and bias) of an estimator. The advantage
of resampling methods is that, while analytic variance formulae need to be derived for different kinds
of estimators separately and can become quite complex, resampling methods offer a relatively simple
computational procedure for obtaining variance estimates that is general enough to be applicable to
many estimation problems.
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There are several resampling techniques, such as the jack-knife, balanced repeated replication
and subsampling (Wolter, 2007). For example, in the jack-knife, one systematically recomputes es-
timates for the statistic of interest, leaving out one or more observations at a time from the dataset.
From the obtained set of replicates of the statistic, estimates for the bias and variance of the statistic
can be obtained.

One of the most frequently used resampling methods is the bootstrap (Efron and Tibshirani,
1993). Bootstrapping is a method of repeated sampling from either a sample (non-parametric boot-
strapping) or from an estimated parametric distribution (parametric bootstrapping). Under certain
conditions, the variance over the set of bootstrap outcomes is an approximately unbiased estimator
for the variance of the original estimator. Likewise, the difference between the mean of the bootstrap
estimates and the estimate derived from the original sample is often an approximately unbiased
estimator of the bias of the original estimator.

For examples of applications of non-parametric bootstrapping in a multisource context, see, e.g.,
Kuijvenhoven and Scholtus (2011) and Scholtus and Daalmans (2020). In these papers, the bootstrap
is used to estimate the variance of an estimated frequency table involving the highest attained level
of education based on combined administrative and survey data, where missing values of education
in the target population are accounted for either by weighting (the first reference) or mass imputation
(the second reference). An example of an application of a parametric bootstrap method will be given
in Section 4.2.

4.1 Methods based on (re)sampling for single and multisource statistics

In this section, we give an example of a case where sampling theory can be applied to both single and
multisource statistics. This example was developed by Statistics Lithuania in the Komuso project.

Example: Effect of frame under-coverage / over-coverage on the estimator of a total and its accuracy
measures
Sampling theory can be applied to a case where a sample is taken from a frame that is kept constant
for a longer time. This may occur in business statistics: some NSIs use a business register that is
“frozen” for a year, i.e., certain population changes are stored during the year and they are effectuated
only once, at the beginning of a year.

In the case of intra-annual estimators (month, quarter), the corresponding population is likely to
have changed compared to the sampling frame. With respect to the true population, the sampling
frame suffers both from under- and over-coverage. Assume that an up-to-date administrative source
is available that does not suffer from coverage errors. Using this administrative source, an adjusted
estimator can be calculated. Next, metrics on differences between the original and the adjusted
estimator quantify the sensitivity of the original estimator to coverage errors in the frozen sampling
frame.

Suppose we have a sampling frame of a population U of size N , divided into non-overlapping
strata Uh of size Nh, with h = 1, . . . ,H . From each stratum Uh a random sample sh is taken of size nh.
For the sample units we collect information on a target variable y. For instance, we are interested in
quarterly gross earnings of enterprises (y) by economic sector h, estimated by a sample survey drawn
from a frozen business registerU . Furthermore we have an auxiliary variable x, for instance the num-
ber of employees per enterprise. This variable is assumed to be available for all units in the sampling
frame U as well as in a population V of a social insurance inspection data base which contains an
up-to-date population for the number of employees. Population V consists of non-overlapping strata
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Vh of size Mh, with h = 1, . . . ,H . As a result of under- and over-coverage, we find that U\V , ∅ and
V \U , ∅.

Now assume that we are interested to study the effect of the frozen register on an estimate of
the true population total ty , the quarterly gross earnings. Based on the sampling frame U we obtain

the Horvitz-Thompson estimator for the total t̂y =
∑H
h=1 t̂yh, with t̂yh = Nh

n′h

∑n′h
i=1 yhi where n′h denotes

the number of responding (and alive) enterprises (n′h ≤ nh). For the auxiliary variable x, we know

the totals for the frozen register: tx =
∑H
h=1 txh and txh =

∑Nh
i=1 xhi . Similar to variable y, the Horvitz-

Thompson estimators of the totals for x are given by t̂x =
∑H
h=1 t̂xh with t̂xh = Nh

n′h

∑n′h
i=1 xhi . Furthermore,

we have more up-to-date totals based on V : t̃x =
∑H
h=1 t̃xh and t̃xh =

∑Mh
i=1 xhi .

Economic sector R̂t R̂Var
Q1 Q4 Q1 Q4

A: Agriculture −0.64 −1.03 −0.46 −0.18
B: Mining and quarrying −1.04 −1.21 −2.08 −2.41
C: Manufacturing −0.52 −0.73 −0.78 −1.26
D: Electricity, gas, steam and air conditioning supply −0.59 −1.17 +9.66 +16.33
E: Water supply; sewerage; waste management and reme-
diation activities

−0.25 −0.51 +0.70 +1.36

F: Construction −1.49 −2.42 −2.77 −4.48
G: Wholesale and retail trade; repair of motor vehicles
and motorcycles

−1.34 −1.71 −2.68 −3.40

H: Transportation and storage −0.94 −1.19 −0.58 −0.21
I: Accommodation and food service activities −1.36 −2.08 −2.67 −4.07

Table 3: Changed totals (R̂t) and changed variances (R̂Var) for separate ratio estimators of quarterly
gross earnings for the first and fourth quarter of 2015 in Lithuania for a selection of economic sectors,
obtained from Krapavickaitė and Šličkutė-Šeštokienė (2017).

We can now use a separate ratio estimator or a combined ratio estimator for ty and compare the
original estimator (based on U ) with an updated version (based on V ). The original separate ratio
estimator and its updated version are given by:

t̂
(sep)
y =

H∑
h=1

txh
t̂yh

t̂xh
,

t̃
(sep)
y =

H∑
h=1

t̃xh
t̂yh

t̂xh
.

Likewise, the original combined ratio estimator and its updated version are given by

t̂
(comb)
y = tx

t̂y

t̂x
,

t̃
(comb)
y = t̃x

t̂y

t̂x
.

Note that when the population has not changed, i.e., when V is the same as U , then txh = t̃xh (for
h = 1, ...,H), and the separate ratio and combined ratio estimators based on V are indeed equal to the
corresponding estimators based on U .
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For both estimators, i.e., the separate ratio estimator and the combined ratio estimator, we can
quantify the effect of the change of the frame by looking into the extent that the totals have changed,
and the extent that their variances have changed:

R̂t =
t̃y − t̂y
t̂y

,

R̂Var =
V̂ar

(
t̃y
)
− V̂ar

(
t̂y
)

V̂ar
(
t̂y
) ,

where we have omitted the superscripts “(sep)” and “(comb)”. The variances can be derived analyti-
cally with standard sampling theory; see, e.g., Särndal et al. (1992, p. 253 and pp. 270-271). Note that
∆̂y = t̂y − t̃y is an estimate of the bias of the total t̂y due to the use of a frozen sampling frame. Note

further that ∆̂y/
√

V̂ar(∆̂y) could be used to test whether the difference between the two estimators is
significant.

The indicators R̂t and R̂Var for the separate ratio estimator have been applied to the Lithuanian
survey on earnings in 2015. Outcomes for the first (Q1) and last quarter (Q4) are shown in Table 3 for
the first nine economic sectors; more results can be found in Krapavickaitė and Šličkutė-Šeštokienė
(2017). The results on R̂t show that the estimator becomes more sensitive to frame updates from Q1
to Q4 when coverage errors have increased.

4.2 Methods based on (re)sampling developed especially for multisource statistics

In this section, we give two examples of methods based on (re)sampling theory that have been
developed especially for multisource statistics.

Example: Variance of cell values in estimated frequency tables
The Repeated Weighting (RW) estimator was developed to ensure numerical consistency among ta-
bles estimated from different combinations of administrative data and sample surveys (Houbiers,
2004). The basic idea of RW is to use the regression estimator to calibrate table estimates to any
marginal tables that have been estimated previously. Calculation of the variances of the resulting
estimates can be rather complicated.

In general, the RW estimation procedure consists of the following three steps:

1. Specify the set of target tables to be estimated, and order them in descending order of available
information.

2. Estimate each table separately from an appropriate subset of the available data, called a block.
In general, a block will consist of the largest survey or combination of surveys in which all
variables of the table are observed. It is assumed that a regression estimator is used in this
step, based on auxiliary variables that are observed throughout the population.

3. Perform reweighting: adjust each table consecutively using the regression estimator, in the
order specified in step 1, so that numerical consistency is achieved for any part of the table
(including its margins) that overlaps with a previously estimated table.

It should be noted that tables that are estimated from the same block using the same regression
estimator (as is done in Step 2) are automatically numerically consistent. Reweighting is applied
when not all tables can be estimated from the same block.
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As an illustration, consider the following example taken from Knottnerus and van Duin (2006).
There are three categorical variables, X, Y and Z. The available data consist of one register and two
without-replacement samples S1 and S2 of sizes n1 and n2, respectively. The auxiliary variable X
is observed in the register for all N units in the population. The target variable Y is observed only
in S2; the target variable Z is observed in S1 and S2. We want to find consistent estimates for two
tables: tZ and tZ×Y . Note that the first table is actually a margin of the second table. Since more
information is available for estimating tZ than for estimating tZ×Y , the two tables will be estimated
in this order from different blocks. [Technically, we are using the so-called “splitting up” variant of
RW here (Knottnerus and van Duin, 2006).]

Let S12 denote the union of S1 and S2. We begin by deriving initial estimates for the two tables
using the regression estimator with X as auxiliary information. This yields: t̂REG(S12)

Z , estimated from

S12, and t̂
REG(S2)
Z×Y , estimated from S2. In general, the estimated margin for Z from t̂

REG(S2)
Z×Y will be

numerically inconsistent with t̂REG(S12)
Z . In the third step of the RW procedure, t̂REG(S2)

Z×Y is therefore
reweighted with respect to its Z-margin, using the regression estimator. This yields:

t̂RWZ×Y = t̂REG(S2)
Z×Y + B̂′w;Z

(
t̂
REG(S12)
Z − t̂REG(S2)

Z

)
.

Here, B̂w;Z denotes a matrix of estimated regression coefficients, and ′ denotes the transpose. More
generally, if there was also additional information available outside S2 about the Y -margin, then the
table would simultaneously be reweighted with respect to this margin, leading to a third term in the
above expression for t̂RWZ×Y .

To estimate the variance of this RW estimator, Knottnerus and van Duin (2006) noted that, under
certain regularity assumptions, t̂RWZ×Y can be approximated by

t̂RWZ×Y = tZ×Y + t̂HT (S2)
e(Z×Y ) +B′Z

(
t̂
HT (S12)
e(Z) − t̂HT (S2)

e(Z)

)
+Op (N/n2) ,

where e(.) denotes a vector of residuals from a regression of (.) on the register variable X, the su-
perscript HT denotes a Horvitz-Thompson estimator, and BZ is the matrix of population regression
coefficients estimated by B̂w;Z . Now, assuming for simplicity that 1� n1,n2 � N and that the two
samples S1 and S2 are independent, the variance-covariance matrix of t̂RWZ×Y can be estimated by

ĉov
(
t̂RWZ×Y

)
=

∑
i∈S1

(
d

(S1)
i

)2
ε1iε

′
1i +

∑
i∈S2

(
d

(S2)
i

)2
ε2iε

′
2i ,

where d(Sk)
i is the design weight of unit i in sample Sk (k = 1,2), ε1i = λ1B

′
Zei (Z), ε2i = ei (Z ×Y ) −

λ1B
′
Zei (Z), and λ1 is a weighting factor that reflects the relative reliability of S1 in S12. A simple

choice that is often made is to set λ1 = n1/(n1 +n2). In particular, the square roots of the diagonal
elements of ĉov

(
t̂RWZ×Y

)
provide standard errors for the cells of the estimated table t̂RWZ×Y .

The variables ε1i and ε2i in the above expression are examples of “super-residuals”, which are
linear combinations of ordinary regression residuals. More generally, Knottnerus and van Duin
(2006) showed that the variance-covariance matrix of an RW estimator for a frequency table can
always be approximated by means of super-residuals. If the above assumptions that n1,n2 � N
and/or that the two samples are independent do not hold, other variance estimators from sample
survey theory can be used (Knottnerus and van Duin, 2006). Unlike the above variance estimator,
these other variance estimators require that all second-order inclusion probabilities are known,
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which may be difficult to achieve in practice.

Example: Bias and variance of parameter estimates affected by classification errors
NSIs often publish statistics that are obtained by aggregating numerical variables separately for each
domain defined by a classification variable. For instance: the total turnover of businesses by type of
economic activity, or the average hourly income of employed persons by highest attained education
level. If the numerical variables are observed accurately for all units in the target population (e.g., in
an administrative dataset), then the main issue affecting the quality of these statistics may be errors in
the assignment of units to the right domain (classification errors). Van Delden et al. (2016) proposed
a parametric bootstrap method to evaluate the bias and variance of statistics due to classification
errors, under the simplifying assumption that these are the only errors that occur.

Let i = 1, . . . ,N denote the units in the target population. Given the classification of interest, each
unit has an unknown true code si ∈ {1, . . . ,H}, whereH is the total number of classes. For each unit in
the population, we observe a code ŝi ∈ {1, . . . ,H} which may or may not be equal to the true code. We
suppose that random classification errors occur, independently across units, according to a (possibly
unit-specific) transition matrix Pi = (pghi), with pghi = P(ŝi = h | si = g). The true codes are considered
fixed.

In general, we write the target parameter as a function θ = f (y1, . . . , yN ;s1, . . . , sN ), where yi denotes
the value of a numerical target variable for unit i (or, more generally, a vector of numerical variables).
For instance, a domain total can be written as θg =

∑N
i=1 yiI {si = g}, where I {.} equals 1 if its argument

is true and 0 otherwise. We assume that all y1, . . . , yN are known. An important special case where this
is trivially true occurs when the target parameter is the number or proportion of units per domain
(i.e., a domain total with yi ≡ 1 and yi ≡ 1/N , respectively). Given the assumption that no errors occur
besides classification errors, θ can be estimated from the observed data by θ̂ = f (y1, . . . , yN ; ŝ1, . . . , ŝN ).
We are interested in the bias and variance of θ̂ as an estimator for θ.

As a preliminary step towards evaluating the bias and variance due to classification errors, we
need to estimate the probabilities in the transition matrix Pi . Typically, this requires the collection
of additional data on the classification variable. Possible approaches include:

• Draw a random audit sample of units for which, in addition to ŝi , the true code si is obtained,
e.g., by manual verification.

• Use process information from an editing step during regular production, where ŝi may have
been checked and corrected for certain units.

• Use multiple measurements of si from different, independent sources (e.g., a population reg-
ister, an external administrative source and a sample survey). Under certain conditions, the
error probabilities can be estimated from these multiple measurements using latent class anal-
ysis (see also Section 5.2.2).

In general, some model assumptions have to be introduced to reduce the number of unknown
parameters. In this way, the unit-specific transition matrix Pi can be estimated as a function of a
limited number of background variables. An example can be found in Van Delden et al. (2016). In
applications where the codes ŝi are predicted from a machine-learning algorithm, an estimate for Pi
may be obtained naturally when the quality of the algorithm is evaluated. See, e.g., Meertens et al.
(2020) for an example of such an application.

Having obtained an estimated transition matrix P̂i = (p̂ghi), we can apply the bootstrap method.
For each unit, we draw a new code ŝ∗ir given the original observed code ŝi , using probabilities that
mimic (our best estimate of) the original process by which ŝi was generated from si :

P
(
ŝ∗ir = h | ŝi = g

)
≡ P̂ (ŝi = h | si = g) = p̂ghi .
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Based on the obtained values ŝ∗1r , . . . , ŝ
∗
Nr , we compute the bootstrap replicate θ̂∗r =

f (y1, . . . , yN ; ŝ∗1r , . . . , ŝ
∗
Nr ). This procedure is repeated R times, yielding replicates θ̂∗1, . . . , θ̂

∗
R. From these

replicates, the bias and variance of θ̂ are estimated as follows [see also Efron and Tibshirani (1993)]:

B̂∗R
(
θ̂
)

=mR
(
θ̂∗

)
− θ̂,

V̂ ∗R
(
θ̂
)

=
1

R− 1

R∑
r=1

{
θ̂∗r −mR

(
θ̂∗

)}2
,

with mR
(
θ̂∗

)
= R−1 ∑R

r=1 θ̂
∗
r . In the bootstrap literature, it is often recommended to take R ≥ 200 for

variance estimates and R ≥ 1000 for bias estimates.
An advantage of the bootstrap is that the above algorithm can be applied to many different types

of estimators in the same way. For instance, θ could be a regression coefficient or a median. For
certain simple target parameters, it is possible to derive an explicit formula for the analytical bias
and variance estimators to which B̂∗R

(
θ̂
)

and V̂ ∗R
(
θ̂
)

converge for R→∞. As an example, Van Delden
et al. (2016) obtained the following formulas for the estimated bias and variance of an estimated
domain total θ̂h =

∑N
i=1 yiI {ŝi = h}:

B̂∗∞
(
θ̂h

)
=

N∑
i=1

yi

(p̂hhi − 1) I {ŝi = h}+
H∑

g=1,g,h

p̂ghiI {ŝi = g}

,
V̂ ∗∞

(
θ̂h

)
=

N∑
i=1

y2
i

H∑
g=1

p̂ghi(1− p̂ghi)I {ŝi = g}.

It can be shown that, in general, these bias and variance estimators are biased for the true bias and
variance of θ̂h; hence, the same holds for the above bootstrap estimators based on a finite number of
replicates. For simple target parameters such as a domain total, it is possible to correct for this bias
in the estimated bias and variance, although this typically leads to bias and variance estimates that
are less stable. See Van Delden et al. (2016) and Kloos et al. (2020) for more details.

5 Methods based on (parametric) modelling: “Artists can spend a life-
time searching for a perfect model”

Finally, we consider methods for calculating quality measures based on (parametric) modelling. Such
methods usually construct a model for the target variable(s) to be estimated, and then use properties
of the estimated model, such as the bias and variance of an estimator based on the model, as (basis
for) quality measures. In some cases, methods based on (parametric) models give excellent results.
In other cases, a suitable model may be difficult or even impossible to construct: “Artists can spend a
lifetime searching for a perfect model,” a quote by the American painter Robert Liberace.

5.1 Methods based on (parametric) modelling for single and multisource statistics

Besides methods that are used for measuring output quality directly, there are also some supporting
methods, which do not measure output quality directly but are often used in combination with other
methods that do measure quality directly. Examples of such supporting methods are estimating
equations, log-linear modelling and mixture models.
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Estimating equations specify how the parameters of a statistical model should be estimated. Ex-
amples of estimating equations are the method of moments, minimum distance methods like least
squares estimation, Bayesian methods and (in some cases) maximum likelihood estimation [see, for
example, Van der Vaart (1998)]. The idea of the estimation equations method is to find a set of
simultaneous equations, involving observed data and model parameters of a statistical model, that
need to be solved in order to find estimates of the model parameters.

In a log-linear model [see, for example, Bishop et al. (1975)], a logarithm of a certain variable
equals a linear combination of the parameters of a statistical model. The technique is often used
to study the relationship between several categorical variables. It can be used to build a statistical
model as well as for statistical hypothesis testing.

Mixture models are often used in statistics when there are several subpopulations with different
characteristics within the population [see, for example, McLachlan and Peel (2000)]. When using
such a mixture model, it is not necessary to identify to which subpopulation each individual obser-
vation belongs. Mixture models can, for instance, be used when there are different subpopulations
within the population with different kinds or different rates of measurement errors.

Below we discuss constrained optimization, a (parametric) modelling method that can be used
for both single and multisource statistics.

5.1.1 Constrained optimization

Constrained optimization aims to optimize an objective function with respect to some variables,
given constraints on those variables. These constraints can be either hard constraints, i.e., constraints
that need to be satisfied, or soft ones, i.e., constraints that preferably – but not necessarily – should
be satisfied. Soft constraints are often taken into account by incorporating them into the objective
function, and penalizing the violation of such soft constraints.

Constrained optimization can, for instance, be used to adjust the values of some variables so they
satisfy (or nearly satisfy) certain hard or soft constraints. Constrained optimization can also be used
to benchmark data over time, i.e., to ensure that high-frequency time series data are reconciled with
low-frequency time series data. These kinds of problems are quite common in, for instance, National
Accounts.

Constrained optimization can also be used for single-source statistics, for instance when one
wants to impute missing data such that constraints within individual records are satisfied (De Waal
et al., 2011, Chapter 10).

Example: Macro integration / Data reconciliation
Macro-integration is often used for National Accounts and other kinds of statistical accounts. It
can be carried out by means of several methods. We start by describing Stone’s method [see, e.g.,
Stone et al. (1942) and Bikker et al. (2011)]. After describing Stone’s method, we will focus on the
univariate Denton method and then on the multivariate Denton method.

Suppose that x = (x1,x2, . . . ,xn)′ is a vector of high frequency, say quarterly, numerical data. We
denote the corresponding estimated covariance matrix by V . Let us assume that our aim is to ensure
by means of macro-integration that the reconciled components of x sum up to the values of low
frequency, say annual, data b = (b1,b2, . . . , bm)′, where n = 4m. We then have to fulfill the following
constraints

4k∑
j=4(k−1)+1

xj = bk , for k = 1, . . . ,m. (1)
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These constraints are generally violated by the initial high frequency data x. The vector x is therefore
adjusted so the adjusted vector x̃ = (x̃1, x̃2, . . . , x̃n)′ does satisfy (1).

In matrix notation (1) can be written as

Ax̃ = b, (2)

where A is an m×n matrix given by

A =


j 0 . . . 0
0 j . . . 0
. . . . . . . . . . . .
0 0 . . . j


with j = (1,1,1,1) and 0 = (0,0,0,0).

In Stone’s method the adjustment is done by minimizing the quadratic distance function

min
x̃

(x̃−x)′V −1 (x̃−x) (3)

subject to the constraints (1). The quadratic optimization problem (3) subject to (1) can be solved by
the Lagrange multiplier method. The thus reconciled vector x̃ is given by

x̃ = x+V A′(AV A′)−1 (b−Ax) (4)

and the variance Ṽ of x̃ is
Ṽ = V −V A′(AV A′)−1AV . (5)

(5) is a measure for the quality of the reconciled data.
A drawback of distance function (3) in the case of quarterly time series and annual time series

is that discontinuity may arise between the last quarter of one year and the first quarter of the next
year. The univariate Denton method (Denton, 1971) aims to avoid this discontinuity by minimizing a
quadratic function based on differences between the first order differences, i.e., on ∆(1)xj = ∆x̃j −∆xj
where ∆x̃j = x̃j − x̃j−1 and ∆xj = xj −xj−1, rather than on differences between the levels of original and
reconciled time series. The underlying idea is to preserve as much as possible the original quarter
to quarter changes (the movement preservation principle). Note that ∆x1 is undefined and a value
needs to be specified for ∆x1. Denton proposed to use ∆x1 = x1. So, the univariate Denton method
consists of solving

min
x̃

n∑
j=1

(
∆x̃j −∆xj

)2
(6)

subject to the boundary condition ∆x1 = x1.
That ∆x1 needs to be fixed to a value can be seen as a disadvantage of the univariate Denton

method. This disadvantage can be overcome by using the Cholette adaptation. For the Cholette
adaptation we first rewrite (6) as

min
x̃

(x̃−x)′ (D′D) (x̃−x) , (7)

where

D =



1 0 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

...
...
. . .

...
...

...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


.
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That is, we use V −1 =D′D in formula (3). In the Cholette adaptation, the first line from the matrix
D is deleted and the generalized inverse of D′D needs to be taken to find V in (4) and (5).

Denton’s idea can be taken further: the quadratic distance function can also be based on the
second order differences ∆(2)xj = ∆(1)x̃j −∆(1)xj (Sax and Steiner, 2013), i.e., instead of minimizing
(6) one can minimize

min
x̃

n∑
j=1

(
∆(1)x̃j −∆(1)xj

)2
, (8)

or even on third or higher order differences. Again, the Cholette adaptation can be used for the
alternative distance function (8) as well.

Thus far we discussed additive Denton methods. Besides additive Denton methods also propor-
tional Denton methods exist. We first define

∆prop

(
xj

)
=
x̃j − xj
xj

−
x̃j−1 − xj−1

xj−1
=
x̃j
xj
−
x̃j−1

xj−1
.

Instead of solving (6), we then solve

min
x̃

n∑
j=1

(
∆prop

(
xj

))2
.

In a similar way a proportional version of (8) can be formulated.
The univariate Denton method can be extended to multiple variables. The multivariate Denton

method allows linear restrictions for separate variables as well as linear restrictions involving several
variables. So, besides reconciliation of quarterly data to annual data, relationships between different
variables can be taken into account.

By x we now denote a vector consisting of M variables that are observed k times per year for T
years, i.e., x is an MkT -dimensional vector. The multivariate Denton method consists of solving a
quadratic optimization problem (3) subject to (2). The only difference with Stone’s method is that
x now consists of several variables, and that A and b are now a matrix, respectively vector, that
together describe the reconciliation constraints and constraints between different variables. V is
again the covariance matrix of vector x. The solution is given by (4) with variance given by (5). For
more details on the multivariate Denton method we refer to Di Fonzo and Marini (2003) and Bikker
et al. (2011).

5.2 Methods based on (parametric) modelling developed for multisource statistics only

In this section we discuss five commonly used methods for measuring output quality that can be
used for multisource statistics only, and were examined in Komuso.

5.2.1 Capture-recapture methodology

Capture-recapture methodology is commonly used to estimate the size of a population. The method-
ology originated in ecology where it is used to estimate an animal population’s size. In that context,
a number of animals are captured, marked and then released. Later, again a number of animals
are captured. The number of marked animals in the second sample can then be used to obtain an
estimate for the total number of animals.

The methodology is also used by NSIs to estimate the size of a population. To estimate the total
number of individuals that possess a certain characteristic, one records the individuals with that
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characteristic occurring in a certain dataset, for example, a census. Next, one counts how many of
the recorded individuals occur in another dataset, for example, a post-enumeration survey. This
allows one to obtain an estimate for the total number of individuals with this characteristic in the
population. Instead of a census or survey, administrative data may also be used.

Example: Capture-recapture methodology in its basic form
We will describe the basic form of capture-recapture methodology. We assume that two datasets A
and B of the same fixed population sizeN are linked. We also assume that the following five technical
assumptions are satisfied:

1. inclusion of an element into dataset A is independent of its inclusion in dataset B;
2. inclusion probabilities of units in at least one of the datasets are homogeneous, i.e., all units

have an equal probability to be included in this dataset;
3. the population is closed;
4. it is possible to link the elements of datasets A and B perfectly;
5. The datasets do not contain units that do not belong to the target population (“erroneous cap-

tures”), nor do they contain duplicates.

Table 4 below describes how many units in datasets A and B occur in both datasets (nAB), in
dataset A only (nA), in dataset B only (nB), and how many units in the population occur in neither of
the two datasets (n00). The value of n00 is unknown and has to be estimated. Once the value of n00 is
estimated, the population size can easily be estimated.

Dataset B
Yes No

Dataset A Yes nAB nA
No nB n00

Table 4: Numbers of units in datasets A and B.

When all five above-mentioned assumptions are valid, n00 can be estimated by means of the
Petersen estimator [see, e.g., Sekar and Deming (1949)]. The Petersen estimate for n00 is

n̂00 =
nAnB
nAB

.

The Petersen estimate for the population size is then given by

N̂ = nA +nB +nAB + n̂00.

An estimator for the variance of N̂ is given by [see, e.g., Sekar and Deming (1949) and Bishop et al.
(1975)]:

V̂ar
(
N̂

)
=

(nA +nAB) (nB +nAB)nAnB
(nAB)3 .

Van der Heijden et al. (2012) and Gerritse et al. (2015) consider more complicated approaches
involving covariates. Those approaches are based on log-linear modelling instead of the Petersen
estimator to estimate the unknown population size.
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In general, the saturated log-linear model for a contingency table as in Table 4 would be given by

log(n00) = µ, (9)

log(nA) = µ+µA, (10)

log(nB) = µ+µB, (11)

log(nAB) = µ+µA +µB +µAB, (12)

where µA, µB, and µAB indicate that the number of units in the corresponding cell depends on dataset
A, on dataset B, or on both. However, in our case, equation (12) of the saturated log-linear model has
to be replaced by

log(nAB) = µ+µA +µB, (13)

since the interaction term µAB cannot be identified. Assuming that datasets A and B are independent
(i.e., the first technical assumption made above) this term can be set to zero.

We can estimate the model parameters µ, µA, and µB using those relations for which we know
the cell totals, i.e., (9), (10) and (11) in our case. In general, we can estimate the model parameters
by means of maximum likelihood estimation. In our simple example we can compute µ, µA and µB
directly. From (9) to (11) and (13), we directly obtain n00 = exp(µ), nA = exp(µ+µA), nB = exp(µ+µB)
and nAB = exp(µ+µA +µB). This means that

n̂00 = exp(µ̂) =
exp(µ̂+ µ̂A) exp(µ̂+ µ̂B)

exp(µ̂+ µ̂A + µ̂B)
=
nAnB
nAB

.

That is, the saturated log-linear model under the assumption that datasets A and B are independent
gives the same estimate as the Petersen estimator.

An advantage of using log-linear models instead of the Petersen estimator is that they are easy to
extend to more general cases, such as:

• three or more datasets instead of two;
• using auxiliary data besides the cell counts, for instance using an available auxiliary variable

“gender” to differentiate between counts for women and counts for men, which may improve
the quality of the final estimate for the population size;

• adding interaction terms between counts and available auxiliary variables.

For a given situation one can base one or more log-linear models on substantive knowledge,
and then select the “best” model. What is considered “best” in a given situation may depend on the
model fit (e.g., one can use a chi-square distribution where observed values are compared to expected
values), the number of model parameters, and substantive considerations.

As already mentioned, the parameters of log-linear models can be estimated by means of max-
imum likelihood estimation. In this estimation procedure it may be necessary to set some model
parameters to zero beforehand, since otherwise some parameters cannot be identified.

The variance of population size estimates based on a log-linear model can be estimated by means
of a bootstrap procedure. For an example where log-linear models are used to estimate the popu-
lation size, and bootstrapping is used to estimate the variance of the estimated population size, we
refer to Van der Heijden et al. (2012) and Gerritse et al. (2015). For more on log-linear modelling in
general, see, e.g., Bishop et al. (1975) and Agresti (2013).
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5.2.2 Latent variable/class modeling and structural equation modeling

A latent variable model is a statistical model that relates a set of observable variables to a set of
non-observable variables. The non-observable variables are called latent variables; the observable
variables manifest variables. In a latent class model (Hagenaars and McCutcheon, 2002; Biemer,
2011), the latent variables are categorical.

Latent variable modeling is strongly related to structural equation modeling. In structural equa-
tion modeling, one also relates one or more unobserved latent variables to a set of observed variables.
Structural equation modeling can be applied to both categorical and numerical variables. In fact, la-
tent class analysis can be considered as a type of structural equation modeling for categorical data.

In both latent class modeling and structural equation modeling, true values can be fitted as a
function of background variables or they can be modeled over time. In latent class modeling one
estimates the probability that a certain value is observed given the true value. In structural equation
modeling, each observed value is considered to be a function of the latent true value plus an error.

In the context of measuring the quality of multisource statistics, latent class modeling and
structural equation modeling can be used in a situation where one has several datasets measuring
the same target variable with measurement error. One can then see these error-prone measurements
as observed indicators for an unobserved (latent) variable that represents the true values. Quality
assessments based on these latent class models or structural equation models can then be used to
assess the quality of output based on the observed indicators. If the model is trusted sufficiently, one
could also correct output for measurement error using the predicted latent variable.

Example: Variance of estimates based on microdata reconciled by means of latent class analysis
Suppose that we have observed data on S ≥ 3 categorical variables for the same units, where all vari-
ables are intended to measure the same categorical target variable. These multiple measurements
could be obtained by linking data from different sources (e.g., administrative datasets, or a com-
bination of administrative datasets and a survey) or by asking multiple questions about the same
construct in a single survey. We use Y = (Y1,Y2, . . . ,YS )′ to denote the observed variables in general
and y = (y1, y2, . . . , yS )′ for a particular realization of values. The underlying target variable that these
variables attempt to measure is denoted by X (with a particular value x) and is considered to be
unobserved (latent) for all units. For simplicity we assume here that the set of categories is the same
for all variables Yj and X, denoted by {1, . . . ,L}.

Using some standard rules of probability theory, the marginal probability of observing Y = y can
be written as

P(Y = y) =
L∑
x=1

P(X = x,Y = y) =
L∑
x=1

P(X = x)P(Y = y | X = x),

where P(Y = y | X = x) denotes the conditional probability of observing Y = y when the true value
of the target variable is x.

In latent class analysis, it is often assumed that each Yj is measured independently of the other
observed variables. Thus, the errors in different observed variables for the same unit are assumed to
be independent. This assumption is known as “local independence” or “conditional independence”.
Under this assumption, we can write:

P(Y = y | X = x) = P(Y1 = y1 | X = x) P(Y2 = y2 | X = x) · · · P(YS = yS | X = x) .
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Applying the local independence assumption to the above expression for P(Y = y), we obtain the
formula that describes the basic latent class model:

P(Y = y) =
L∑
x=1

P(X = x)
S∏
j=1

P
(
Yj = yj | X = x

)
.

To estimate the latent class model, we need to estimate the unknown probabilities on the right-hand
side of this expression from the observed values for the probabilities on the left-hand side. This
can be done, for instance, by maximum likelihood estimation for incomplete data (Hagenaars and
McCutcheon, 2002; Biemer, 2011). Without additional assumptions, the latent class model is not
identified with S < 3 observed variables.

Note that each factor P
(
Yj = yj | X = x

)
can be interpreted as a model for classification errors in

one of the observed variables. Hence, estimates of these probabilities can provide information about
the quality of each observed variable as an indicator for the true target variable X. For instance,
the probability that a unit with true value X = 1 is misclassified on observed variable Yj is given by

P
(
Yj , 1 | X = 1

)
= 1−P

(
Yj = 1 | X = 1

)
. In this way, a latent class model could provide input for the

parametric bootstrap method discussed in Section 4.2.
The estimated model also provides predictions for the probability that a unit with a certain com-

bination of observed values belongs to a particular category of the true target variable. These predic-
tions can be obtained by the formula

P(X = x | Y = y) =
P(X = x)

∏S
j=1 P

(
Yj = yj | X = x

)
∑L
x′=1 P(X = x′)

∏S
j=1 P

(
Yj = yj | X = x′

) ,
which follows from the previous expressions by Bayes’ rule.

Boeschoten et al. (2017) proposed the MILC method to construct an error-corrected estimator
based on the probabilities P(X = x | Y = y), along with a variance estimate for this estimator. The
acronym MILC stands for the combination of multiple imputation (MI) and latent class (LC) analysis.
An application of the MILC method consists of the following steps:

1. From the original dataset containing all observations of Y , select M bootstrap samples.
2. For each bootstrap sample, estimate the latent class model. Denote the predicted prob-

abilities P(X = x | Y = y) from the parameter estimates for the mth bootstrap sample by
P̂m (X = x | Y = y).

3. In the original dataset, construct M multiply imputed versions of X, based on the predicted
probabilities from the bootstrap samples. That is, create M empty variables (W1, . . . ,WM )
and impute variable Wm by drawing one category from {1, . . . ,L} for each unit based on
P̂m (X = x | Y = y).

4. Obtain M estimates for the parameter of interest based on the imputed variables W1, . . . ,WM .
5. Apply Rubin’s rules for multiple imputation to pool the estimates from the previous step [see

Rubin (1987)]. These pooling rules yield both a final estimate and an associated variance es-
timate. This variance estimate reflects the uncertainty about the true value of the parameter
of interest due to classification errors in the observed variables and, if relevant, also due to
sampling error.

The basic latent class model as described here can be extended in many ways. For instance,
auxiliary variables can be added to the model if these are available. Depending on the available
data, the local independence assumption can sometimes be relaxed to a certain extent. Boeschoten
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et al. (2017) also discuss how to incorporate edit restrictions – e.g., that certain values for X are
impossible given a particular value for an auxiliary variable – into the MILC method so that these
are automatically satisfied by the imputed values.

So far, we have assumed that all variables are categorical and refer to the same point in time. A
particular type of latent class model can be applied when multiple measurements are available over
a period of time (e.g., each month or each quarter) and the latent variable can also change over time.
This is known as a Hidden Markov Model (HMM). See, e.g., Pavlopoulos and Vermunt (2015) for an
application of an HMM to model classification errors in linked data from two sources. Finally, when
the observed and latent variables are numerical, structural equation models can provide a similar
approach; see, e.g., Scholtus et al. (2015) and Oberski et al. (2017).

5.2.3 Statistical hypothesis testing

In statistical hypothesis testing, one uses observed data to determine the likelihood that a posited
hypothesis holds true. In order to do so, one must formulate a null hypothesis and the alternative
hypothesis, which says that the null hypothesis is not valid (in a particular way). One then computes
how likely the observed data are, assuming the null hypothesis. The likelihood that the observed
data were obtained as a realization of the null hypothesis is used as a measure for the validity of the
null hypothesis and its alternative.

Hypothesis testing can, for instance, be used to test whether and to which extent the quality of
revised estimates improves. In that case, the null hypothesis would be that there is no change in the
quality of the estimates. One would then attempt to reject this hypothesis in favour of the alternative
hypothesis that there is an improvement in the quality of the estimates. For instance, Fosen (2017)
describes a test applied to revised employment statistics that are derived from gradually completing
register data. As another example, suppose that a new estimation method has been proposed to
replace an existing method, but it is not clear a priori whether the new method is an improvement.
Here, the null hypothesis would again be that there is no difference in the quality of the estimates
between the two methods, but now the alternative hypothesis may be that the quality with the new
method either increases or decreases (i.e., a two-sided alternative).

5.2.4 Using estimated model parameters

Using estimated model parameters is a mix of descriptive summary statistics and statistical hypoth-
esis testing. When using estimated model parameters for assessing quality, one uses a statistical
model as in statistical hypothesis testing, but one does not use a posited statistical model to test a
hypothesis. Instead, one directly uses estimated model parameters and calculates some descriptive
summary statistics for them. For example, one can use a model to estimate the probability that a
target variable in a certain unit has an incorrect value. One can then, for instance, take the average
of these probabilities over all units in the dataset as an overall quality measure.

5.2.5 Small area estimation

Small area estimation is an umbrella term for several statistical techniques aiming to estimate pa-
rameters for small areas [see, e.g., Rao (2003) for an excellent introduction to small area estimation
and descriptions of many small area estimators]. The main problem in small area estimation is usu-
ally the lack of observations for such small areas, which prevents one from using more standard
estimation techniques, such as standard survey weighting [see, e.g., Särndal et al. (1992)].
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In general, the term “small area” refers to a small geographical area such as a municipality, but it
may also refer to other kinds of “small domains”, such as small groups of individuals in the popula-
tion.

6 Discussion

In this paper we have focused on the work with respect to the measurement of output quality that
has been carried out in the Komuso project. In the Komuso project, we examined a large number
of different basic data configurations, error types, and methods to assess output quality for some
important quality dimensions (accuracy, timeliness, coherence, and relevance). We hope that the
QMCMs that were produced in the Komuso project – of which we gave several examples in the
current paper – are directly useful for many practical cases the readers of this paper are confronted
with, and in other cases may form a source of inspiration to develop similar methods.

In the introduction to this paper, we mentioned that constructing quality measures for multi-
source statistics and calculating them is still more of an art than of a technical recipe. An illustration
of this point is that, even with all the QMCMs and corresponding hands-on examples that have been
developed in the Komuso project, one still needs to use one’s instinct, or expert knowledge, to de-
cide on what the most important error sources could be in a given situation. For instance, in some
cases, measurement error may affect data quality the most, whereas in other cases sampling error
or linkage error may affect data quality the most. Besides using one’s instinct or expert knowledge,
exploratory analyses and the use of scoring methods (see Section 3) may also provide some insight
in the most important error sources. Something similar holds for the interaction between different
kinds of errors. In many cases it may be reasonable to assume that the different kinds of errors are
more or less independent, whereas in other cases this is definitely not the case. Again, using one’s
instinct or expert knowledge is important in order to distinguish between these situations. Although
expert knowledge is not directly quantifiable, it can be valuable because it may capture years of
experience. This may be illustrated by an anecdote about Pablo Picasso. When Picasso was asked by
an admirer to scribble something on a napkin, Picasso complied and asked a large amount of money.
The admirer was astonished by the large sum: “But you did that in thirty seconds.” He replied: “No,
it has taken me forty years to do that.”

The QMCMs developed in the Komuso project provide quality measures and methods to calculate
them for separate steps, or building blocks, in the statistical production process. We hope that in
the, hopefully near, future, an all-encompassing theory or framework to base quality measures for
multisource statistics upon will be developed. Such an all-encompassing theory or framework should
be able to handle several different types of error sources at the same time and, preferably, use the
same statistical theory to treat these error sources. Possible examples of approaches that may able to
deal with several error sources simultaneously are, for instance, based on Bayesian techniques [see,
e.g., Bryant and Graham (2015)] and over-imputation (Blackwell et al., 2015a,b).

We see two potential paths towards the development of such an all-encompassing theory or
framework. The first potential path is the further development of Total Survey Error frameworks
[see, e.g., Amaya et al. (2020), Biemer (2010), Biemer et al. (2014), Reid et al. (2017), Rocci et al.
(2018), and Zhang (2012)], and the development of quality measures and methods to calculate them
for the separate steps in such a framework.

The second – fundamentally different – potential path we see is not to specify and examine all
the separate error sources, but develop a quality measure that covers several error sources at once.
A landmark paper for such an approach is Meng (2018) [see also Rao (2020)]. Meng (2018) focuses
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on the inclusion of units in the datasets under consideration, and hence on sampling error, inclusion
error, non-response error, et cetera; measurement error and related error types are not considered. In
the approach by Meng (2018) basically only three factors determine the quality of a certain estimated
target parameter. In Meng’s terminology these factors are referred to as “data quantity” (i.e., the
amount of data), “problem difficulty” (i.e., the variation in the target variable), and “data quality”
(i.e., the correlation between the target variable and possible inclusion in the data source).

Biemer and Amaya (2018) have extended the approach by Meng (2018) to include measurement
error. For multisource statistics, it may be useful to further extend the approach to include linkage
error.

A major challenge appears to be the application of Meng’s approach in practical situations. In
particular, the “data quality”, and to a lesser extent the “problem difficulty”, can be (very) hard to
estimate in a practical situation.

Personally, we feel that this latter approach proposed by Meng (2018) may be the most promising
path of the two paths towards an all-encompassing theory to base quality measures for multisource
statistics upon as it avoids having to consider all possible error sources and their interactions. As
noted above, despite the promising nature of Meng’s approach, quite some research needs to be done
before it can be applied in the day-to-day practice at, for instance, an NSI.

In any case for the next few years, we expect that measuring the output quality of multisource
statistics will remain a field in motion, and a field that still is more an art than a technique.
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