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Abstract: The problem of dealing with misreported data is very common in a wide range of contexts
and for different reasons. This has been and still is an important issue for data analysts and statisti-
cians as not accounting for it could led to biased estimates and conclusions, and in many cases that
would have implications in a posterior decision making process, as we all have seen in the current
worldwide Covid-19 pandemic. In the last few years, many approaches have been proposed in the
literature to accomodate data presenting this issue, especially in the fields of epidemiology and public
health but also in other areas as social science. In this work, a comprehensive review of the recently
proposed methods based on mixture models for longitudinal data (correlated and uncorrelated) is
presented and several examples of application are discussed, including several approaches to the
burden of Covid-19 infection cases in Spain and different approaches to deal with underreported
registries of human papillomavirus infections and genital warts in Catalunya.
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1 Introduction

Dealing with misreported data is a very common problem in many fields. The most usual issue
is facing data that is only partially registered or underreported, and this type of misreporting has
received some attention in the recent years, with alternative approaches being proposed in epidemi-
ology, social and biomedical research, among many other contexts (Bernard et al., 2014; Arendt et al.,
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2013; Rosenman et al., 2006; Alfonso et al., 2015; Winkelmann, 1996). The opposite phenomenon,
i. e. dealing with overreported data, occurs with less frequency although also arises in some cases
(see for instance Mehta (2018)), and has been less studied. The mechanisms leading to misreported
data are diverse, and so are the methods proposed in the literature to overcome this issue, ranging
from Markov chain Monte-Carlo (Winkelmann, 1996) approaches to time series analysis (Fernández-
Fontelo et al., 2016; Fernández-Fontelo et al., 2019) or spatio-temporal modelling (Stoner et al., 2019).
From the computational point of view, a new R (R Core Team, 2019) package useful to fit endemic-
epidemic models based on approximate maximum likelihood to underreported count data (Bracher,
2019) and the package MisRepARMA (Moriña et al., 2021), able to fit misreported time series and to
reconstruct the most likely actual series were recently introduced. Additionally a web application
allowing its users to fit misreported AutoRegressive Moving Average (ARMA) time series model has
been recently published and is accessible at https://dmorina.shinyapps.io/MisRepARMA/.

Misreported data might potentially lead to biased inference, as it may invalidate the assumptions
of standard models. For instance, Winkelmann (1996) explores a Markov chain Monte Carlo based
methodology to study worker absenteeism where two sources of underreporting are detected: an
insufficient surveillance mechanism (if the data are provided by the employer), and a lack of memory
if the time series is reconstructed retrospectively by the worker. Also in public health context, it is
well known that some diseases related to occupational or food exposures have been traditionally
underreported (Alfonso et al., 2015; Rosenman et al., 2006; Arendt et al., 2013). Of course in that
case there might be several sources of underreporting, including accuracy of public health registries,
political or economical interests, among others.

This review is focused on methods recently proposed to deal with permanent underreporting,
assuming that there are more cases in the population than the acknowledged ones. In many applica-
tions, however, underreporting occurs by a delay in reporting, but as time passes, the counts became
more and more complete, as studied in Höhle and an der Heiden (2014). This is also the case of
the public health information systems of many countries regarding the Covid-19 pandemic, as they
are being updated when the results of the tests are available, but we have seen that unfortunately,
waiting until the information is complete is often too late to make the optimal decisions to handle the
pandemic in a proper way.

From the methodological point of view, the first attempts to overcome this problem in the context
of longitudinal data were based on count time series, with a growing popularity due to the limited
performance of the classical continuous time series approach when the variable of interest consists of
low counts (Fernández-Fontelo et al., 2016; Fernández-Fontelo et al., 2019). Similar ideas were used
to analyze uncorrelated longitudinal data (Moriña et al., 2021). Another additional issue to deal with
inspired by the Covid-19 data is non-stationarity. This issue has been treated in Fernández-Fontelo
et al. (2020) by means of discrete time series.

2 Proposed models and examples

Some of the most recently proposed methodologies based on mixture models and able to deal with
misreported data are described in this Section, together with some examples of application.

2.1 Longitudinal uncorrelated data

In this context, the simplest case is when the longitudinal data we are dealing with present no tem-
poral correlation. This is the case covered in Moriña et al. (2021), where a model is proposed and
used to analyze the underreporting issue in genital warts (GW) record in Catalonia (northeastern
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Spain). In the particular case of sexually transmitted diseases, it is very important to have reliable
information due to their remarkable morbidity, and therefore, the importance of controlling trends
over time and priority setting (see McCormack and Koons (2019) for a comprehensive discussion
focused on developing countries).

Several models proposed in the literature able to deal with misreported longitudinal data are
based on more sophisticated versions of the following schema, replacing the usual product by other
operators in the discrete case (usually by the binomial thinning operator, see Section 2.2).

Consider Xt the series of real GW incidence, where t = 1, 2, . . . is the time, following a normal
distribution with mean µ and variance σ2. In this setting, the Xt process cannot be directly observed,
and all we can see is a part of it, expressed as

Yt =

{
Xt with probability 1− ωt
q ·Xt with probability ωt

(1)

The interpretation of the parameters in Eq. (1) is straightforward: q is the overall intensity of
misreporting (if 0 < q < 1 the observed process Yt would be underreported while if q > 1 the
observed process Yt would be overreported). The parameter ω can be interpreted as the overall
frequency of misreporting (proportion of misreported observations).

The series Yt represents the registered values corresponding to GW incidence. According to
Eq. (1), the registered observations series Yt is a mixture of two normally distributed random vari-
ables Yt = Y1t with probability (1 − ωt) and Yt = Y2t with probability ωt, where Y1t coincides with
the unobserved process Xt and Y2t is a normal random variable with mean q · µ and variance q2 · σ2.
The parameter ωt is modeled as logit(ωt) = α0 + α1 · t and can be interpreted as the frequency of
underreporting at a time t, while q can be interpreted as the intensity of such underreporting, both
taking values between 0 and 1. When q = 0 the observed incidence is Yt = 0 and when q = 1
there is no underreporting. A value of ωt equal to 0 indicates that the observed value at time t is
not underreported, and a value of ωt equal to 1 means that underreporting is for sure happening. In
order to detect potential differences in GW incidence depending on sex (men and women) and age
group (16-29 and 30-94), these covariates were included in the model, so the mean of the observed
process Y1t was modeled as µ1,t = β0 + β1 · t + β2 · a + β3 · s + β4 · a ∗ s (where a is the age, s is the
sex and a ∗ s is the interaction between age and sex). The average of the second component Y2t can
be recovered as µ2,t = q · (β0 + β1 · t+ β2 · a+ β3 · s+ β4 · a ∗ s).

In the particular case of these data, after diagnostic checks a seasonal cycle of 3 months was
observed. This behavior was included in the model through the following trigonometric funtion

f(t) = β5 · sin(2·π·t3 ) + β6 · cos(2·π·t3 ) on the terms µ1,t and µ2,t.
The loglikelihood function corresponding to the final model considered in this paper can be writ-

ten as

l(Y, θ) =

n∑
t=1

log

(
(1− ωt)

1√
2πσ

e
(yt−µ1,t)

2

2σ2 + ωt
1√

2πqσ
e

(yt−µ2,t)
2

2q2σ2

)
, (2)

where Y = y1, . . . , yn is the observed series, θ = (α0, α1, γ, β0, . . . , β6, σ), ωt = eα0+α1t

1+eα0+α1t
, q = eγ

1+eγ

and µ1,t and µ2,t are as defined before.
The estimates and associated standard errors can be obtained maximizing Eq. 2 in the usual way.
The results of this work show that in relative terms, the underreporting issue has a deeper impact

on people over 30 years old (where GW incidence is lower), especially among women. Nonetheless,
the relative difference between registered and estimated annual averages range between 13.3% and
24.9%. It is also remarkable that the quality of SIDIAP register regarding GW in Catalunya has been
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significantly improving during the study period, as the frequency of underreported observations has
been decreasing over time, from around 95% in 2009 to 21% in 2016.

2.2 Discrete stationary time series

As stated before, the underreporting structure defined in Eq. 1 has been adapted to the discrete
time series case in Fernández-Fontelo et al. (2016), by means of the binomial thinning operator. The
proposed model assumes, as before, that the actual values of the series Xt are not fully observed and
follow an integer-valued autoregressive model of order 1 (INAR(1)) (Jung and Tremayne, 2006):

Xt = α ◦Xt−1 +Wt(λ), (3)

where α ∈ (0, 1) and Wt is assumed to follow a Poisson distribution with a fixed mean λ. In addition,
Xt−1 and Wt are assumed to be independent at any time t. The ◦ operator in expression (3), called
binomial thinning, is defined as follows,

α ◦Xt−1 =

Xt−1∑
i=1

Yi, (4)

where Yi are iid Bernoulli random variables with a probability of success equal to α. Therefore, if
Xt−1 = xt−1, then α ◦ xt−1 is binomially distributed with the number of successes equal to xt−1.

The observed process Yt is then defined as

Yt =

{
Xt : with probability 1− ω
q ◦Xt : with probability ω

(5)

The interpretation of the parameters is very similar to that of the previous models (notice that in
this case the frequency of underreported observations ω is not time dependent), and two methods
for estimation are provided in Fernández-Fontelo et al. (2016). The first method is based on the fact
that the marginal distribution of Yt is a mixture of two Poisson distributions with parameters λ

1−α
and qλ

1−α , with probabilities 1 − ω and ω, so an estimation of λ
1−α , qλ

1−α and ω can be found by fitting
the whole observed series using a mixture of two Poisson distributions. The parameters α and λ can
be estimated using for instance the first autocorrelation coefficients, which are explicitly derived in
the paper.

The estimates obtained by using the previously described method could be used as initial values
to improve the speed of the maximum likelihood algorithm, based on an adapted version of the
forward algorithm (Zucchini and MacDonald, 2009).

One strength of this methodology is that it allows to recover the most likely hidden process Xt

using the Viterbi algorithm (Viterbi, 1967; Forney, D. G., 1973), which is implemented in several R
packages for situations with a finite number of states, and has to be adapted to cover the present case
also.

This model was used in Fernández-Fontelo et al. (2016) to analyze three examples in the field
of public health, illustrating the model performance in the case of a stationary series (weekly HPV
cases in Girona in the period 2010-2014) but also in the presence of trends (number of annual deaths
by mesothelioma in Great Bretain in the period 1968-2013 and number of annual cases of botulism
in Canada in the period 1970-2013). According to the reported results, it can be seen that although
only an average of 1.27 HPV cases per week were registered, the most likely reconstructed series
estimated an average of 3.36 cases per week. Regarding botulism in Canada, an average of 9 cases per
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year were registered although a proportion of ω̂ = 0.671 underreported observations was estimated
by the model. Mesothelioma is a disease related to asbestos exposure and is difficult to diagnose so
although an average of 14 annual deaths in Great Britain in the period 1968-2013 it is supposed to
be highly underreported. It is confirmed by an estimated proportion of ω̂ = 0.930 underreported
observations.

A more sophisticated underreporting structure was introduced in Fernández-Fontelo et al. (2019).
In this case, the hidden process Xt is again assumed to follow an INAR(1) structure but the observed
series Yt is defined by

Yt =

{
Xt : If It = 0,
q ◦Xt : If It = 1,

(6)

where ◦ is again the binomial thinning operator and It is a binary discrete time Markov chain
indicating whether the observation Yt is underreported or not. The difference with respect to the
previous case is that in this case the states of underreporting It are serially dependent. Two methods
of parameter estimation are provided in the model, one based on moments method and another
based on maximum likelihood, and the most likely hidden process can be recovered by a Viterbi-like
algorithm.

This model was used to analyze the underreporting issue on the gender-based violence reports
in several Galician districts, and it was shown that as expected, it is an important problem related
to these kind of data that should be accounted for, but also that the underreporting is severely non-
uniformly distributed across the considered districts, as the frequency of underreported observations
ranged from ω̂ = 0.078 (very few observations are underreported in this area) to ω̂ = 0.976 (almost
all observations are underreported).

2.3 Discrete non-stationary time series

The outbreak of the Covid-19 pandemic in 2020 has made very clear that models able to handle
non-stationary time series with potential underreporting issues were absolutely necessary to help
decision-makers. The previously discussed models for discrete stationary time series can be extended
in several ways to be able to deal with non-stationary discrete time series. A possible way is explored
in Fernández-Fontelo et al. (2020), where the authors consider that the true (unobserved) counts Xt

follow again an INAR(1) structure and the observed process Yt is, as before, defined by

Yt =

{
Xt with probability 1− ω
q ◦Xt with probability ω.

(7)

The difference with respect to the previous models for discrete time series is that the mean of the
innovations of the hidden process Xt and the underreporting parameter q are modelled as functions
of time and thus allowing for non-time-homogeneous processes, and that only maximum likelihood
estimation is suitable in the case of non-stationary time series. Both underreporting-related param-
eters ω and q could be considered time-dependent, but in this work, to avoid potential convergence
issues, only time-dependent q is considered. In particular, as a weekly seasonal behavior was ob-
served in the reported data and to ensure that the estimates are within the interval (0, 1), it was
adjusted by means of the logistic function

qt =
exp

(
γ0 + γ1t+ γ2sin

(
2πt
7

)
+ γ3cos

(
2πt
7

))
1 + exp

(
γ0 + γ1t+ γ2sin

(
2πt
7

)
+ γ3cos

(
2πt
7

)) , (8)
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where γ1 indicates whether q increases or decreases over time and γ2 and γ3 indicate whether the
series has a seasonal pattern with period p = 7 (weekly). Notice that if γ1 = γ2 = γ3 = 0, then
the previous logistic function becomes constant and thus qt = q, resulting in the model (9). Hence,
considering this function for the intensity of the underreporting, the underreporting process in this
model was defined by:

Yt =

{
Xt with probability 1− ω
qt ◦Xt with probability ω.

(9)

At this point, however, the model is not able to handle non-stationarity yet. In order to be able
to fit non-stationary discrete time series and answer the main question of researchers facing an epi-
demic, the innovations of the hidden INAR(1) process Xt are linked to a compartimental epidemio-
logical model. In this case, a Susceptible-Infected-Recovered (SIR) model was used with that purpose.
This model considers three compartments were individuals are included in at each time t: Those who
are healthy but susceptible to get the disease (S(t)), those who are infected and thus transmitters of
the disease (I(t)), and those individuals who have been removed from the system and will not get in-
fected again (R(t)) (Anderson and May, 1992; Vynnycky and White, 2010). The parameters of interest
are the infection rate β, the removal rate γ, and the total susceptible population N .

It can be seen that the number of individuals affected by the disease at time t can be represented
by:

A(t) =
M∗A(0)ekt

M∗ +A(0)(ekt − 1)
, (10)

where k = β − γ and M∗ = N(β−γ)
β−γ/2 .

The information on the spread of the disease can be included in the hidden process Xt by con-
sidering that the expectation of the innovations is not constant as in the previous models but time
varying as λt = new(t) = A(t)−A(t− 1), where new(t) are the new affected cases at time t.

Therefore, the unobserved process Xt becomes:

Xt = α ◦Xt−1 +Wt(λt), (11)

As in the previous models described, an appropriate version of the Viterbi algorithm could be
used to reconstruct the most likely hidden process, which is specially interesting in this case as it
provides a more realistic picture of the pandemic situation in a given moment of time.

Additionally, two forecasting methods are provided; one based on average point predictions
given the sample observations and another based on the conditional distribution of Yt+k given the
last value of the latent process Xt. Standard errors for the first forecasting method could be obtained
using a numerical mechanism as the Delta method. For the second method forecasts, prediction
regions of size 1 − α can be found through the values l (lower limit) and u (upper limit) satisfying∑l

j=1 P(Yt+k = j|Xt = xt) ≈ α
2 and

∑u
j=1 P(Yt+k = j|Xt = xt) ≈ 1− α

2 .
This model was used to analyze the Covid-19 data registered in several regions in Spain, and

the results reported in the paper confirm that the underreporting issue is indeed present in Covid-19
data from various regions conditioned to different management, policies, and climate conditions, and
that it also varies across geographic areas, with registered coverages ranging from 33.7 % in Ourense
(Galicia) to 71.8 % in Málaga (Andalucía) of the estimated cases.
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3 Discussion

Facing misreported information from public health registers is very common in many situations,
for instance data regarding potentially asymptomatic diseases like HPV infection or Covid-19, or
difficult to diagnose as mesothelioma.

One of the lessons that should certainly be learned from the current Covid-19 pandemic is that it
is crucial to provide researchers with reliable data under extremely complex circumstances, in order
to be able to assure public health decision makers are provided with the most reliable information at
any time. When this is by no ways possible, the issue should be at least taken into account by using
a model capable of accommodating underreported data like the one used in this study.

Although several efforts have been done in this direction in the last years, several challenges still
remain. From the methodological point of view, there are a few works dealing with underreported
discrete time series, but they are a bit limited for instance in the allowed structure for the hidden
process. These models could be extended in different ways, such as considering more complex cor-
relation structures in the underlying process (for instance INAR(p) or INARMA(p, q) structures), or
considering more general thinning operators for representing the observed process.

Also from the methodological point of view, the extension of the model introduced in Moriña
et al. (2021) to underreported continuous time series is not available yet, nor for stationary or non-
stationary processes. Additionally, the considered methods could certainly be useful in the develop-
ment of new, more general methodologies able to deal with overreporting as well, as this is another
issue that, although with minor frequency, appears in the practice of epidemiology and public health.

The availability of packages for commonly used software as R (R Core Team, 2019) would also
help to make these methods reach a wider public of potential users, and some efforts in this sense are
currently been done (Bracher (2019) for instance).

From the applied point of view, it would be very interesting to use these kind of models to ana-
lyze other issues that might be potentially underreported and to analyze more thoroughly the exam-
ples used to illustrate the performance of the discussed models. For instance, the differences across
geographic areas observed in Fernández-Fontelo et al. (2019) related to underregistered reports of
gender-based violence could be better explained if covariates (as rurality index, socioeconomic vari-
ables, spatial correlation...) were included in the model.
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