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Abstract: Closed-form expressions for moments of order statistics from the normal, log-normal,
gamma and beta distributions were provided in the statistics literature. In particular, the explicit
expressions involve the Lauricella function of type A, and the generalized Kampé de Fériet function.
We note that the expressions provided by the author do not appear correct, which implies that the
expressions cannot be recommended to users. An alternative closed-form expression for moments of
order statistics is then provided. We also consider numerical studies to show that the formulas we
provide deliver satisfactory results.
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1 Moments of order statistics

Let X1, X2, . . . , Xn be a random sample of size n from some random variable X with probability
density function (PDF) given by f , and cumulative distribution function (CDF) given by F . Let
X1:n < X2:n < · · · < Xn:n denote the corresponding order statistics. The PDF of Xr:n is given by (see,
for example, David and Nagaraja, 2003)

fr:n(x) =
n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

)
Fm+r−1(x)f(x), x ∈ R, (1)

where r = 1, 2, . . . , n. The moments of order statistics are

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

)∫ ∞
−∞

xkFm+r−1(x)f(x)dx,
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where k = 1, 2, . . . and r = 1, 2, . . . , n; that is,

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

)
I(k,m− r + 1),

where
I(k, s) =

∫ ∞
−∞

xkF s(x)f(x)dx, k, s ∈ N.

In general, the above integral has no closed-form analytical solution and, hence, the use of special
functions like Lauricella function of type A and (generalized) Kampé de Fériet function to express
I(k, s) in closed-form are welcome. However, one has to use these special functions with some
caution, mainly with respect to the convergence radius of these functions, otherwise, they will be
divergent and so the use of them becomes inviable.

The Lauricella function of type A Exton (1978) is defined as

F
(n)
A (a; b1, . . . , bn, c1, . . . , cn;x1, . . . , xn) =

∞∑
i1,...,in=0

(a)i1+···+in(b1)i1 · · · (bn)in
(c1)i1 · · · (cn)ini1! · · · in!

xi11 · · ·x
in
n , (2)

where (q)n is the (rising) Pochhammer symbol, i.e. (q)0 = 1, and (q)n = q(q + 1) · · · (q + n − 1) for
n ≥ 1. We have that the convergence radius of the Lauricella function of type A is

|x1|+ · · ·+ |xn| < 1.

Therefore, if the above condition is not satisfied, the Lauricella function of type A will divergent for
any values of a, b1, . . . , bn and c1, . . . , cn. For example, if the n arguments of the Lauricella function
in expression (2) are all equal to −1, we have |x1|+ · · ·+ |xn| = n ≥ 1 and, hence, we have that

F
(n)
A (a; b1, . . . , bn, c1, . . . , cn;−1,−1, . . . ,−1) = +∞.

2 Results from Nadarajah (2008)

In the following, some closed-form expressions for E(Xk
r:n) derived by Nadarajah (2008) are pre-

sented.

2.1 Moments of normal order statistics

Nadarajah (2008, eq. (12)) arrived at the following closed-form expression for E(Xk
r:n):

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
l=0

(
n− r
l

)(
−1

2

)l r+l−1∑
p=0

p+keven

(
r + l − 1

p

)

× (π)(1−p)/22pΓ

(
k + p+ 1

2

)
F

(p)
A

(
k + p+ 1

2
;
1

2
, . . . ,

1

2
;
3

2
, . . . ,

3

2
;−1, . . . ,−1

)
,

(3)

where Γ(·) is the complete gamma function. Note that the (p) arguments of the Lauricella function
in expression (3) are all equal to −1. From (3), it is evident that

F
(p)
A

(
k + p+ 1

2
;
1

2
, . . . ,

1

2
;
3

2
, . . . ,

3

2
;−1, . . . ,−1

)
= +∞,

which invalidates the formula (3) for E(Xk
r:n) obtained by Nadarajah (2008).
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2.2 Moments of lognormal order statistics

Nadarajah (2008, eq. (21)) arrived at the following closed-form expression for E(Xk
r:n):

E(Xk
r:n) =

n!21−r

(r − 1)!(n− r)!
exp

(
k2

2

) n−r∑
l=0

(
−1

2

)l (n− r
l

) r+l−1∑
p=0

(
r + l − 1

p

)(
− 2√

π

)p

× E

[(
N
√

2− k
2
√

2

)p
F

(p)
A

(
1

2
, . . . ,

1

2
;
3

2
, . . . ,

3

2
;−(N

√
2− k)2

8
, . . . ,−(N

√
2− k)2

8

)]
,

whereN is a standard normal random variable. The above expression for E(Xk
r:n) does not converge.

Note that the Lauricella function depends on random arguments, given by the quantity

(N
√

2− k)2

8
.

In this case, it is not possible to ensure that∣∣∣∣∣(N
√

2− k)2

8

∣∣∣∣∣+ · · ·+

∣∣∣∣∣(N
√

2− k)2

8

∣∣∣∣∣ < 1,

which is the convergence radius of the Lauricella function.

2.3 Moments of gamma order statistics

Nadarajah (2008, eq. (26)) arrived at the following closed-form expression for E(Xk
r:n):

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
l=0

(
n− r
l

)
Γ(α)−r−lα1−r−lΓ(k + α(r + l))

× F (r+l−1)
A (k + α(r + l);α, . . . , α, α+ 1, . . . , α+ 1;−1, . . . ,−1).

(4)

Note that the (r+ l− 1) arguments of the Lauricella function of type A in expression (4) are all equal
to −1, which implies that we can have |x1| + · · · + |xr+l−1| = r + l − 1 > 1 for r = 1, 2, . . . , n and
l = 0, 1, , . . . , n− r. In this case, the Lauricella function of type A is also divergent, which invalidates
expression (4) for E(Xk

r:n) derived by Nadarajah (2008).

2.4 Moments of beta order statistics

Nadarajah (2008, eq. (31)) arrived at the following closed-form expression for E(Xk
r:n):

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
l=0

(−1)l
(
n− r
l

)
a1−r−lB(a, b)−r−lB(b, k + a(r + l))

× F 1:2
1:1

(
(k + a(r + l)) : (1− b, a); · · · : (1− b, a);
(b+ k + a(r + l)) : (1 + a); · · · : (1 + a);

1, 1, . . . , 1

)
,

(5)

where B(·, ·) is the beta function, and F 1:2
1:1 (·) is the Kampé de Fériet function, which is a general-

ization of the generalized hypergeometric series, introduced by Joseph Kampé de Fériet; see, for
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example, Exton (1978, eq. (1.4.2)). The F 1:2
1:1 (·) function is of the form

FA:BC:D := F 1:2
1:1

(a) :

n︷ ︸︸ ︷
(b1, b2); · · · : (b1, b2);

(c) : (d); · · · : (d)︸ ︷︷ ︸
n

;
x1, x2, . . . , xn

 =

∞∑
i1=0

· · ·
∞∑
in=0

(a)i1+···+in
∏n
j=1(b1)ij

∏n
j=1(b2)ij

(c)i1+···+in
∏n
j=1(d)ij

xi11 · · ·xinn
i1! · · · in!

.

The convergence radius of the Kampé de Fériet function is as follows (see, for example, Exton, 1978,
p. 26): if A+B = C +D + 1 and A = C, the Kampé de Fériet function converges at the region

|x1| < 1, . . . , |xn| < 1.

However, we have that all arguments of the Kampé de Fériet function in expression (5) are all equal
to 1, which implies that

F 1:2
1:1

(
(k + a(r + l)) : (1− b, a); · · · : (1− b, a);
(b+ k + a(r + l)) : (1 + a); · · · : (1 + a);

1, 1, · · · , 1
)

= +∞.

Therefore, the expression (5) for E(Xk
r:n) derived by Nadarajah (2008) is not valid.

3 An alternative expression

Here, letX1, X2, . . . , Xn be a random sample of size n identically distributed sampled from a random
variable X , with CDF given by F . Let X1:n < X2:n < · · · < Xn:n denote the corresponding order
statistics. Let S be the suport of X . Assume that the CDF F can be evaluated using a convergent
power series expansion (with convergence radius ρ > 0) of the form

F (x) =
∞∑
j=0

bjx
j , x ∈ S and S ⊆ (−ρ, ρ),

where bj (j = 0, 1, . . .) are coefficients that can depend on the model parameters. For example, for
random variables with support S = (0,∞) (as the gamma distribution, for example), we have that
ρ = ∞. It is worth stressing that the result derived in this section cannot be applied without the
above assumptions. A simple example where the result derived in this section cannot be applied is
the Cauchy distribution. The Cauchy CDF is

F (x) =
1

π
arctan

(
x− µ
θ

)
+

1

2
, x ∈ (−∞,∞),

where−∞ < µ <∞ and θ > 0. The above CDF does not admit a convergent power series expansion,
and so our result cannot be applied.

Now, consider an equation for a power series raised to a positive integer s (see, for example
Gradshteyn and Ryzhik, 2007)  ∞∑

j=0

bjx
j

s

=

∞∑
j=0

b
(s)
j xj , x ∈ S,
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where

b
(s)
j =

j∑
k=0

b
(s−1)
k bj−k, b

(1)
j := bj , b

(0)
j =

{
1, j = 0,

0, j > 0.
(6)

We can express the PDF of Xr:n in (1) as

fr:n(x) =
n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

) ∞∑
j=0

b
(m+r−1)
j xjf(x), x ∈ S.

The moments of order statistics become

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

)
I(k,m− r + 1),

where

I(k, s) =

∞∑
j=0

b
(s)
j

∫
S
xk+jf(x)dx.

Note that ∫
S
xk+jf(x)dx = E(Xk+j),

and so it follows that

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

) ∞∑
j=0

b
(m+r−1)
j E(Xk+j). (7)

For example, from expression (7), the moments of the maximum value of the sample (Xn:n) take the
form

E(Xk
n:n) = n

∞∑
j=0

b
(n−1)
j E(Xj+k), k = 1, 2, . . . .

Also, for n = 1, the above expression reduces exactly to the moments of the random variable X ,
which is given by E(Xk), for k = 1, 2, . . ..

4 Examples

4.1 Gamma distribution

Here, we assume that X1, X2, . . . , Xn are n identically distributed gamma random variables, and
X1:n < X2:n < · · · < Xn:n are the corresponding order statistics. The lower incomplete gamma
function can be evaluated using the convergent power series expansion

γ(α, x) = exp(−x)xαΓ(α)
∞∑
j=0

xj

Γ(α+ j + 1)
, x > 0,

and, hence, the gamma CDF can be expressed as

F (x) =
γ(α, x)

Γ(α)
= exp(−x)xα

∞∑
j=0

xj

Γ(α+ j + 1)
, x > 0. (8)
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Let bj = [Γ(α+ j + 1)]−1, for j = 0, 1, . . .. We have that

Fm+r−1(x) = exp[−(m+ r − 1)x]x(m+r−1)α

 ∞∑
j=0

bjx
j

m+r−1

.

Note that b0 = [Γ(α+ 1)]−1 6= 0, and so (8) is convergent for all x > 0 and convergence radius ρ =∞.
Hence, we can express the PDF of Xr:n in (1) as

fr:n(x) =
n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

)
xα(m+r−1)e−(m+r−1)x

∞∑
j=0

b
(m+r−1)
j xjf(x),

where x > 0. The moments of gamma order statistics are

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

) ∞∑
j=0

b
(m+r−1)
j

Γ(α)

∫ ∞
0

xk+α(m+r)+j−1e−(m+r)xdx.

After some algebra, we arrive at the following closed-form expression:

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m

Γ(α)

(
n− r
m

) ∞∑
j=0

b
(m+r−1)
j

Γ(α(m+ r) + j + k)

(m+ r)α(m+r)+j+k
. (9)

For example, the moments of the maximum value of the sample take the form

E(Xk
n:n) =

1

Γ(α)

∞∑
j=0

b
(n−1)
j

Γ(αn+ j + k)

nnα+k+j−1
, k = 1, 2, . . . .

Also, for n = 1, the above expression reduces exactly to the moments of a single gamma random
variable, which is given by Γ(α+ k)/Γ(α), for k = 1, 2, . . ..

4.2 Beta distribution

Here, we assume that X1, X2, . . . , Xn are n identically distributed beta random variables, and X1:n <
X2:n < · · · < Xn:n are the corresponding order statistics. The beta CDF can be expressed as

F (x) =
xa

B(a, b)

∞∑
j=0

(1− b)j
(a+ j) j!

xj , 0 < x < 1, (10)

where B(a, b) =
∫ 1
0 u

a−1(1 − u)b−1 du is the beta function, and a > 0 and b > 0. Define (α)n =
(α)(α+ 1) · · · (α+ n− 1) for n ∈ N, α ∈ R, and (α)0 = 1. Let bj = (1− b)j/[(a+ j)j!], for j = 0, 1, . . ..
We have that

Fm+r−1(x) =
xa(m+r−1)

B(a, b)m+r−1

 ∞∑
j=0

bjx
j

m+r−1

.

Note that b0 = a−1 6= 0, and so (10) is convergent for all 0 < x < 1 and convergence radius ρ = 1.
Hence, we can express the PDF of Xr:n in (1) as

fr:n(x) =
n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

)
xα(m+r−1)

B(a, b)m+r−1

∞∑
j=0

b
(m+r−1)
j xjf(x),
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where 0 < x < 1.
The moments of beta order statistics are

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

) ∞∑
j=0

b
(m+r−1)
j

B(a, b)m+r

∫ 1

0
xk+a(m+r)+j−1(1− x)b−1dx.

After some algebra, we arrive at the following closed-form expression:

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
m=0

(−1)m
(
n− r
m

) ∞∑
j=0

b
(m+r−1)
j

B(k + a(m+ r) + j, b)

B(a, b)m+r
. (11)

For example, the moments of the maximum value of the sample take the form

E(Xk
n:n) = n

∞∑
j=0

b
(n−1)
j

B(k + an+ j, b)

B(a, b)n
, k = 1, 2, . . . .

Also, for n = 1, the above expression reduces exactly to the moments of a single beta random variable,
which is given by B(a+ k, b)/B(a, b), for k = 1, 2, . . ..

5 Numerical results

In this section, we provide numerical values for some moments of gamma order statistics. The scripts
were written in the R program (R Core Team, 2020). We use the proposed closed-form expansion (9)
to obtain numerical approximations for E(Xk

r:n). Table 1 lists the values of bj = [Γ(α + j + 1)]−1

and b(s)j (obtained using the recurrence relation (6)) for j = 0, 1, . . . , 6 and s = 0, 1, . . . , 6 of a gamma
distribution with α = 1. Table 2 lists numerical values of E(Xk

r:6) for k = 1 and 2 obtained by
computational implementation of expansion (9) for a gamma distribution with α = 6.401, which
is the same value used for numerical calculations in Nadarajah (2008). Table 3 presents numerical
values of E(Xr:10) for r = 1, 2, . . . , 10, sample size n = 10 and α = 6.401. In Tables 2 and 3, we
also compare the numerical moments obtained from (9) with those calculated from R code by using
direct numerical integration (last columns in Tables 2 and 3). Note that the numerical values are near,
mainly when jmax = 100.

Table 1: b(s)j coefficients for a gamma distribution with α = 1.
j bj b

(0)
j b

(1)
j b

(2)
j b

(3)
j b

(4)
j b

(5)
j b

(6)
j

0 1.000000 1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 0.500000 0 0.500000 1.000000 1.500000 2.000000 2.500000 3.000000
2 0.166667 0 0.166667 0.583333 1.250000 2.166667 3.333333 4.750000
3 0.041667 0 0.041667 0.250000 0.750000 1.666667 3.125000 5.250000
4 0.008333 0 0.008333 0.086111 0.358333 1.012500 2.298611 4.529167
5 0.001389 0 0.001389 0.025000 0.143750 0.513889 1.406250 3.237500
6 0.000198 0 0.000198 0.006300 0.050017 0.225562 0.741733 1.989616

This is a sample text in blue.
This is a sample text in blue.
This is a sample text in blue.
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Table 2: E(Xk
r:6) obtained by the proposed expansion with jmax terms for a gamma distribution with

α = 6.401. The last column shows the corresponding values by numerical integration.
k r jmax = 60 jmax = 100 E(Xk

r:6)
1 1 3.6038 3.5882 3.5878
1 2 4.5781 4.7153 4.7173
1 3 6.0764 5.6749 5.6708
1 4 6.1215 6.6589 6.6632
1 5 8.2274 7.8864 7.8841
1 6 9.8048 9.8884 9.8889
2 1 14.1859 14.0150 14.0062
2 2 21.3902 23.3735 23.4198
2 3 40.0213 33.5971 33.4992
2 4 36.8939 45.9763 46.0795
2 5 70.5991 64.6280 64.5737
2 6 101.2353 102.7357 102.7471

Table 3: E(Xr:10) obtained by the proposed expansion with jmax terms for a gamma distribution with
α = 6.401. The last column shows the corresponding values by numerical integration.

r jmax = 60 jmax = 100 E(Xr:10)
1 3.0374 3.1384 3.1301
2 4.6470 3.9578 3.9992
3 4.2703 4.6399 4.6560
4 2.7310 5.6396 5.2467
5 7.7786 5.1628 5.8255
6 11.7461 6.2690 6.4285
7 1.7441 8.6948 7.0954
8 3.5427 5.9839 7.8888
9 16.1067 9.9258 8.9495
10 8.4161 10.6081 10.8002

This is a sample text in blue.
This is a sample text in blue.

Table 4: E(Xk
r:6) for a beta distribution with parameters a = 2, b = 1.2, obtained by the correspondent

expansion with jmax terms. The last column shows the values by numerical integration.
k r jmax = 60 jmax = 100 E(Xk

r:6)
1 1 0.306093 0.306093 0.306093
1 2 0.465444 0.465444 0.465444
1 3 0.589541 0.589551 0.589552
1 4 0.697362 0.697439 0.697461
1 5 0.796690 0.796966 0.797120
1 6 0.894870 0.894507 0.894329
2 1 0.116362 0.116362 0.116362
2 2 0.238599 0.238599 0.238599
2 3 0.366921 0.366930 0.366931
2 4 0.502333 0.502409 0.502430
2 5 0.646928 0.647201 0.647354
2 6 0.807429 0.807071 0.806894
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This is a sample text in blue.

In a similar way, we use the proposed expansion for the moments of beta order statistics to obtain
some numerical values using the coefficients bj for j = 0, 1, . . . , jmax according to (11). Table 4 lists
the values of E(Xk

r:n) for some values of k, n and r for a beta distribution with parameters a = 2 and
b = 1.2. We compare the numerical results from (11) with those calculated by using direct numerical
integration. In this particular example, we can verify a faster convergence rate for the expression
(11).

This is a sample text in blue.
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