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José Manuel Pavı́a, Universidad de Valencia, Spain
David Salgado, Instituto Nacional de Estadı́stica and Universidad Complutense de Madrid, Spain
Alexandra Soberón, Universidad de Cantabria, Spain
Stefan Sperlich, University of Geneva, Switzerland
M. Dolores Ugarte, Universidad Pública de Navarra, Spain

c©INE Published by the Spanish National Statistical Institute



1 Editorials



SPANISH JOURNAL OF STATISTICS

VOLUME 4, NUMBER 1, 2022

Contents

Editorials                       2

Presentation of Volume 4, 1, 2022
J.M. Sarabia                5

Research papers                        7

A review on specification tests for models with functional data 9
W. González-Manteiga

Testing Benford’s law: from small to very large data sets 41
L. Campanelli

The gamma flexible Weibull distribution: Properties and Applications 55
A.A. Ferreira, G.M. Cordeiro

On moments and entropy of the gamma-Gompertz distribution 73
F. Castellares, A. J. Lemonte

Official statistics             80

A first interim assessment of the third round of peer review of the European statistical system 81
A. Cañada

Use of death statistics according to cause of death in health research 89
G. Barrio

The Statistics on Causes of Death: characteristics and improvements 99
M.G. Ferruelo, M.R. González

Mortality statistics 107
E. Regidor

Acknowledgement to Reviewers                      116



1 Editorials



SPANISH JOURNAL OF STATISTICS

Vol. 4 No. 1, 2022, Pages 5 – 7
doi: https://doi.org/10.37830/SJS.2022.1.01

EDITORIAL

2 Presentation of Volume 4, 1, 2022
J.M. Sarabia

Presentation of Volume 4, 1, 2022
José María Sarabia

Editor-in-Chief Spanish Journal of Statistics

Dear readers and dear members of the statistical community:

It is a great pleasure for me to present Volume 4, 1, corresponding to the year 2022. This volume
is made up of eight papers: one invited article, three articles within the general statistics section and
four articles in the section of official statistics.

The invited article has the title: “A review on specification tests for models with functional data",
whose author is Professor Wenceslao González-Manteiga, winner of the second National Statistics
Prize. Wenceslao is Professor of Statistics and Operations Research at the University of Santiago
de Compostela. The award jury highlighted the contribution of Prof. González-Manteiga to non-
parametric modeling of dynamics and dependencies in complex systems and to the development
of non-parametric statistics over the last 30 years. The winner has been teaching for 42 years,
during which he has participated in university management and scientific evaluation at all levels,
supervsing more than 30 doctoral theses. Thanks to his work, he has contributed knowledge to
society, both in the scientific field (Engineering, Chemistry, Biology, Economics or Medicine) as well
as in the industrial sector.

The article presents the most relevant specification tests for models with functional data. Due to
the progress in technological advances, massive amounts of data are currently generated and new
statistical methodology should be properly deployed to manage this information. The functional
data are an example of particular importance. The article reviews the most notable developments in
this context, providing some nice illustrations from real data sets.

The next three papers are presented in the general section. The first paper of this section is titled,
“Testing Benford’s Law: from small to very large data sets", and its author is Leonardo Campanelli.
The paper discuss some limitations of the use of generic tests, such as the Pearson’s χ2, for testing
Benford’s law. The article introduces a new statistic whose sample values are asymptotically
independent on the sample size making it a natural candidate for testing Benford’s law in very large
data sets.

The title of the second paper is, “The gamma flexible Weibull distribution: Properties and
Applications", whose authors are Alexsandro A. Ferreira and Gauss M. Cordeiro. The paper
proposes a new gamma flexible Weibull distribution, which presents a bathtub-shaped hazard
rate, and some of its properties are obtained, including estimation and simulation to examine
the consistency of the estimates. The utility of the proposed model is analysed using three real

c©INE Published by the Spanish National Statistical Institute



6 J.M. SARABIA

applications.

The last paper of this section is titled, “On moments and entropy of the gamma-Gompertz
Distribution", by Fredy Castellares and Artur J. Lemonte. The three-parameter gamma-Gompertz
family of distributions was introduced recently in the literature. The analytical expressions provided
for the ordinary moments and Shannon entropy are not correct and hence cannot be used for
computing such quantities. The authors derive two closed-form expressions for the mean and a
closed-form expression for the Shannon entropy in terms of the Whittaker function.

The third section is dedicated to the articles in the the Official Statistics section. We have four
interesting papers.

The title of the first paper is, “A first interim assessment of the third round of peer review of the
European statistical system", by Agustín Cañada. Peer Reviews are exercises to assess compliance
with the principles and indicators of the European Statistics Code of Practice by the members of the
European Statistical System: Eurostat and the national statistical systems. Peer Reviews are carried
out periodically (every 5/6 years), by agreement of the European Union. To date, three rounds
have been carried out: in 2006-2008, in 2013-2015, and a third round is underway between 2021 and
2023. Although the third round is still ongoing at the time of writing, based on the experience of
a representative group of the countries already reviewed, a first assessment can already be made
of the degree of achievement of the objectives pursued. The aim of this document is to provide a
first input for a future comprehensive “lessons learned exercise" and to contribute to the debate on
aspects to be taken into account in future peer reviews.

The remaining three articles are dedicated to the study of mortality statistics and causes of
death. The first of these articles is titled “Use of death statistics according to cause of death in
health research" by Gregorio Barrio. The article discusses several aspects related to the estimation
of total and cause-specific mortality rates. On the other hand, the link between socioeconomic
indicators and mortality, considered by the Spanish Statistical Office, which makes it possible to
study the relationship between socioeconomic factors and mortality and its variation over time is
also discussed.

The title of the second paper is, “The Statistics on Causes of Death: characteristics and improve-
ments" by Margarita García Ferruelo and María Rosario González García. This article describes the
complex process of the statistics, the advances achieved in recent years, such as the implementation
of an international automatic system for coding multiple causes of death and for the selection of
the underlying cause or the improvement in obtaining the external causes of death, as well as its
usefulness for the epidemiological studies and health research. It is also discussed some of the
lessons learned during the worst pandemic period. Finally, it is proposed to collect other variables
of interest for the analysis of the causes of death using available administrative sources.

The last paper of this section is titled, “Mortality statistics for assessing population health" by
Enrique Regidor. The article deals with several interesting aspects of mortality statistics. From the
health system perspective, the adoption of the International Classification of Diseases and Causes
of Death was a crucial milestone in population health statistics, shedding light on the diseases
responsible for most deaths and the trends in causes of death over time. Morbidity statistics and
public health surveillance systems have important objectives, but they do not allow adequate
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monitoring of the frequency of diseases and other health problems, nor can they quantify diseases’
impact on population health. On the other hand, statistics on cause of death do provide this
information thanks to the combination of two features: the exhaustiveness of the data they collect
and the objective nature of the phenomenon they quantify.

Finally, I would like to thank again all the authors of this volume for choosing our journal as
a means of disseminating their research. I appreciate the work of the editors and reviewers of the
papers, who contribute to maintaining a high standard of scientific quality.

3 Research papers
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Abstract: Nowadays, due to the progress in technological advances, massive amounts of data are
generated. As a result, new statistical methodology is needed to properly manage this information.
The functional data are an example of special importance. These are mainly obtained by means of
high-frequency measurements (spectrometric curves, stock prices recording, etc.). Since the begin-
ning of this century, this type of data has achieved great popularity. This fact has generated new
distribution or regression models, among others, appropriate to the functional context. In the last 10
years, novel specification tests are proposed for those models. These are generalizations of method-
ologies developed for the vectorial framework over the last century. Besides, innovative procedures
based on distance correlation ideas have been proposed as well. This article reviews the most notable
developments in this context, providing some illustrations from real data sets.

Keywords: distance correlation, functional data, goodness-of-fit, regression models

MSC: 62R10, 62G10

1 Introduction

The invention of computers meant a real change in statistical methodology in the last century. The
scientific developments, derived mainly from the first half of the 20th century, were headed to
understand existing real data sets information. These were of medium size, obtained wit a great
effort in many cases. Other developments in Statistics during the first part of the 20th century were
leaded to the design of algorithms for the estimation and testing of different models parameters. In
all of these, the computational burden was considerable for the available and quite limited calculus
capacity of that moment. Real parameters were estimated, but not curves due to poor graphics
resources. The behavior of the statistics distributions were analyzed, under some parametric hypoth-

c© INE Published by the Spanish National Statistical Institute



10 W. GONZÁLEZ-MANTEIGA

esis, because of the obvious impossibility of working with large sample sizes in a nonparametric way.

In the 80s, the versatility provided by advances in computer calculus generated new statistical
procedures. These are based on simulating artificial data, as is the case of “Bootstrap”. Never-
theless, it is not until the next decades, motivated by Internet use, new technologies information,
development of distributed as well as parallelized computing, and computational costs reduction
for storage and data processing, when the beginning of the “Big Data” age can be established. This
phenomenon has a great impact on the development of modern technology in Statistics as well as on
all its applications.

Currently, many companies already have continuous and real-time monitoring systems: stock
quotes can be measured as high-frequency data, information generated by web pages, social media
data or just the credit cards transactions are some examples of massive information generation
sources. Other example can be found in the electric market, where high-frequency measures about
energy consumption or demand are available as well. In all these cases it is quite relevant to be able
to correctly process and control the information.

It is, precisely, in this context of massive, high-frequency or related data, where functional data
arise. This kind of data gains an immense popularity with Ramsay and Silverman (2005), Ferraty
and Vieu (2006) or more recently with Horváth and Kokoszka (2012), Hsing and Eubank (2015) and
Kokoszka and Reimherr (2017), among others. Functional data allows to summary a great amount of
information through a curve, surface or, in general, using a “statistical object”. This last is typically
modeled in a functional space, such as Hilbert spaces.

The management of functional data guide us, naturally, to the consideration of models based
on these (distribution models, regression models, etc.), employed for prediction purposes, using
interpretation of the results in diverse applications. Thus, the necessity of mechanism for specifica-
tion testing devoted to models with functional data appears. In this article, the diverse procedures
that have emerged during this period are reviewed. These have been mainly developed in the last
10 years, generalizing classic procedures introduced in the first half of the 20th century, essentially
based on the empirical distribution, and the more recent advances in the last part of the 20th century
making use of nonparametric estimations of the density or regression function.

Although the Goodness-of-Fit (GoF) term is due to Pearson, at the beginning of the 20th century,
it is not until the 70s with Durbin (1973) and Bickel and Rosenblatt (1973) where modern specification
tests start. These are based on distances between nonparametric estimators of the distribution or
density function with respect to hypothetical estimations under the null hypothesis of the model.

In this way, formally, assume that {X1, . . . , Xn} is an identically and independent distributed
(iid) sample of a random variable X with (unknown) distribution F (or density f , if that is the
case). If the target function is the distribution F , then the GoF testing problem can be formulated
as testing H0 : F ∈ FΘ = {Fθ : θ ∈ Θ ⊂ Rq} vs. H1 : F /∈ FΘ, where FΘ stands for a parametric
family of distributions indexed in some finite-dimensional set Θ. A general test statistic for this
problem can be written as Tn = T (Fn, Fθ̂), with the functional T denoting, here and henceforth,
some kind of distance between a nonparametric estimate, given in this case by the mentioned
empirical cumulative distribution function Fn(x) = n−1

∑n
i=1 I(Xi ≤ x), and an estimate obtained

under the null hypothesis H0, Fθ̂ in this case. Similarly, for the case of a parametric density model,
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the testing problem is formulated as H0 : f ∈ fΘ = {fθ : θ ∈ Θ ⊂ Rq} vs. H1 : f /∈ fΘ and can be
approached with the general test statistic Tn = T (fnh, fθ̂). In this setting, fθ̂ is the density estimate
under H0 and fnh denotes a general nonparametric density estimate, as for example, the kernel
density estimator fnh(x) = n−1

∑n
i=1Kh(x−Xi) introduced by Parzen (1962) and Rosenblatt (1956)

where Kh(·) = K(·/h)/h, K is the kernel function
(
K(x) ≥ 0 and

∫
K(x)dx = 1

)
, and h is the

smoothing bandwidth.

More recent procedures were generalized to the context of regression models in the 1990s. Con-
sider a nonparametric, random design, regression model such that Y = m(X) + ε, with (X,Y ) ∈
Rp × R, m(x) = E[Y |X = x] and E[ε|X = x] = 0. Denote by {(Xi, Yi)}ni=1 an iid sample of (X,Y )
satisfying such a model. In this context, the GoF goal is to test H0 : m ∈MΘ = {mθ : θ ∈ Θ ⊂ Rq} vs.
H1 : m /∈ MΘ, whereMΘ represents a parametric family of regression functions indexed in Θ. Fol-
lowing Durbin (1973) and Bickel and Rosenblatt (1973) ideas, the seminal works of Stute (1997) and
Härdle and Mammen (1993), respectively, introduced two types of GoF tests for regression models:

a) Tests based on empirical regression processes, considering distances between estimates of the
integrated regression function I(x) =

∫ x
−∞m(t) dF (t) (F being the marginal distribution of

X under H0 and H1). Specifically, the test statistics are constructed as Tn = T (In, Iθ̂), with
In(x) = n−1

∑n
i=1 I(Xi ≤ x)Yi and Iθ̂(x) = n−1

∑n
i=1 I(Xi ≤ x)mθ̂(Xi).

b) Smoothing-based tests, using distances between estimated regression functions, Tn =
T (mnh,mθ̂), with mnh a smooth regression estimator. As a particular case, mnh(x) =∑n

i=1Wnh,i(x)Yi, with Wnh,i(x) some weights depending on a smoothing parameter h. Such
an estimator can be obtained, for example, with Nadaraya–Watson or local linear weights (see,
e.g., Wand and Jones (1995)).

A complete review of these methodologies, related to specification tests, can be consulted in
González-Manteiga and Crujeiras (2013). This is an invited article with discussion for the TEST
journal. In this reference, different contributions on this topic since 1990 are reviewed. Resulting
statistics for diverse specification tests as well as its distribution calibration, by means of asymptotic
techniques or resampling procedures like the Bootstrap, are studied. This review analyzes more
than 20 years of developments, being very scarce or almost non-existent the procedures designed
for functional data. Very recently, in a chapter of the book González-Manteiga et al. (2022), we
perform a review of the existing methodologies for specification tests in the functional data context.
These procedures are mainly based on extensions of the methodology introduced in the 90s for
specification tests in the vectorial framework to the functional case.

In this paper, an update of the chapter corresponding to the book González-Manteiga et al. (2022)
is provided in the next section. Later, in Section 3, the “fundamental case” of the manuscript is
presented. This is covered with a detailed review of specification tests based on “distance correlation”
ideas and their novel extension to the functional data context. In Section 4 some applications to real
data sets for specification testing in the functional framework, applying techniques introduced in
previous sections, are displayed. Finally, some conclusions arise in Section 5 and the document
finishes with an exhaustive revision of relevant references.

SJS, VOL. 4, NO. 1 (2022), PP. 9 - 40



12 W. GONZÁLEZ-MANTEIGA

2 Testing specification models for functional data using smoothing or
empirical processes

In this section we review the most notable results for specification tests in terms of the distribution
function or regression models in the functional data context. For the development of these proce-
dures it is necessary to include functional data in complex structures associated to general spaces
(metric or topological ones), as Hilbert spaces. These represent a natural and quite employed way
for adequate model description in the functional context.

2.1 GoF for distribution models for functional data

Let H denote a Hilbert space over R, the norm of which is given by its scalar product as
‖x‖ =

√
〈x, x〉. Consider {X1, . . . , Xn} iid copies of the random variable X : (Ω,A) → (H,B(H)),

with (Ω,A,P) the probability space where the random sample is defined and B(H) the
Borel σ-field on H. The general GoF problem for the distribution of X consists on testing
H0 : PX ∈ PΘ = {Pθ : θ ∈ Θ} vs. H0 : PX /∈ PΘ, where PΘ is a class of probability measures
on H indexed in a parameter set Θ, now possibly infinite-dimensional, and PX is the (unknown)
probability distribution of X induced overH.

When the goal is to test the simple null hypothesis H0 : PX ∈ {P0}, a general feasible approach
that enables the construction of different test statistics is based on projections π : H → R, in
such a way that the test statistics are defined from the projected sample {π(X1), . . . , π(Xn)}.
Such an approach can be taken on the projected distribution function: Tn,π = T (Fn,π, F0,π) with
Fn,π(x) = n−1

∑n
i=1 I(π(Xi) ≤ x) and F0,π(x) = PH0(π(X) ≤ x). Some specific examples are given by

the adaptation to this context of the Kolmogorov–Smirnov, Cramer–von Mises, or Anderson–Darling
type tests. As an alternative, based on smoothing techniques tests presented in Section 1, a test
statistic can also be built as Tn,π = T (fnh,π,EH0 [fnh,π]) with fnh,π(x) = n−1

∑n
i=1Kh(x − π(Xi)) the

density estimate of π(x). It should be also noted that, when embracing the projection approach, the
test statistic may take into account ‘all’ the projections within a certain space, e.g. by considering
Tn =

∫
Tn,π dW (π) for W a probability measure on the space of the different projections, or take just

Tn = Tn,π̂ with π̂ being a randomly-sampled projection from a certain non-degenerate probability
measure W .

Now, when the goal is to test the composite null hypothesis H0 : PX ∈ PΘ, the previous generic
approaches are still valid if replacing P0,π(x) with Pθ̂,π(x) = PPθ̂

(π(X) ≤ x). Cuesta-Albertos et al.
(2006) and Cuesta-Albertos et al. (2007) provide a characterization of the composite null hypothesis
by means of random projections, and provide a bootstrap procedure for calibration, see also Bugni
et al. (2009) and Ditzhaus and Gaigall (2018). In the space of real square-integrable functions
H = L2[0, 1], one may take πh(x) = 〈x, h〉, with h ∈ H. The previous references provide also some
approaches for the calibration of the tests under the null hypothesis of the rejection region {Tn > cα},
where P(Tn > cα) ≤ α.

A very relevant alternative to the procedures based on projections is the use of the so-called
"energy statistics" Székely and Rizzo (2017). Working with H a general Hilbert separable space (as it
can be seen in Lyons (2013)) if X ∼ PX and Y ∼ PY = P0 (P0 being the distribution under the null)
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then

E = E(X,Y ) = 2E[‖X − Y ‖]− E[‖X −X ′‖]− E[‖Y − Y ′‖] ≥ 0, (1)

with {X,X ′} and {Y, Y ′} iid copies of the variables with distributions PX and PY , respectively.
Importantly, (1) equals 0 if and only if PX = PY , a characterization that serves as basis for a GoF test.
See the nice review of Székely and Rizzo (2017), where a motivation is given for the duality between
the expression displayed in (1) and the well-known energy formula of Einstein.

The energy statistic in (1) can be empirically estimated from a sample {X1, . . . , Xn} as

Ê∗ =
2

n2

n∑
i=1

n∑
j=1

‖Xi − Y ∗j ‖ −
1

n2

n∑
i=1

n∑
j=1

‖Xi −Xj‖ −
1

n2

n∑
i=1

n∑
j=1

‖Y ∗i − Y ∗j ‖,

The distribution of Ê∗, P∗
{
Ê∗ ≤ x

}
can be approximated by simulation of the artificial variable

Y ∗ ∼ PY , resulting in
{
Y ∗b1 , . . . , Y ∗bn

}
with b = 1, . . . , B. The critic point for a given α level can be

obtained in a natural way from the quantiles of the sorted sample: Ê∗(1) ≤ · · · ≤ Ê∗(B) as a result of
the Monte Carlo replicates of the artificial samples.

The most studied case is the Gaussian one, where PY follows the distribution of a Gaussian
process. This is analyzed in recent literature as in Kellner and Celisse (2019), Kolkiewicz et al. (2021),
Górecki and Łukasz (2019), Henze and Jiménez-Gamero (2021) and Bongiorno et al. (2019). In these
works, diverse alternatives to the mentioned procedures are provided and reviewed to specification
of a functional model of Gaussian distribution or related.

Finally, in the context of tests for distributions, it is worth it to mention the related two-sample
problem, a common offspring of the simple-hypothesis one-sample GoF problem. This topic has
been extensively studied for scalar random data in the last decades. However, the situation involving
functional random data has attracted less attention until now. Three main related approaches have
been considered in this setting recently, namely,

a) Comparison of functional means using, e.g., principal component approaches (Horváth and
Rice (2015), Ghale-Joogh and E. Hosseini-Nasab (2018)) or adapting the ideas of the F-test
to the functional context (Cuevas et al. (2004), González-Rodrígez et al. (2012), Górecki and
Łukasz (2019), Lee et al. (2015), Zhang and Liang (2014), Qiu et al. (2021)).

b) Comparison of covariance structures (Boente et al. (2018), Fremdt et al. (2013), Guo et al. (2018),
Guo et al. (2019), Guo et al. (2019)).

c) Comparison of the distribution structure in various ways. Tests based on smoothing discrete
observed data in potential functional data are developed in Bárcenas et al. (2017) and, similarly,
in Estévez-Pérez and Vilar (2013) or Pomann et al. (2016). Empirical processes have been used
in Bárcenas et al. (2017). An L2-type criterion based on empirical distribution functions is used
in Jiang et al. (2019). Some Cramér-von Mises-type statistics adapted to the functional case are
employed in Bugni and Horowitz (2021).

SJS, VOL. 4, NO. 1 (2022), PP. 9 - 40
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2.2 GoF for regression models with functional data based on smoothing or empirical
processes

We assume in the following, for easier presentation of the different methods, that both the predictor
X and response Y are centered, so that the intercepts of the linear functional regression models are
null.

A particular case of a regression model with functional predictor and scalar response is the so-
called functional linear model. ForHX = L2[0, 1], this parametric model is given by

Y = mβ(X) + ε, mβ(x) = 〈x, β〉 =

∫ 1

0
x(t)β(t) dt, (2)

for some unknown β ∈ HX indexing the functional form of the model and E [ε|X ] = 0. This model is
the natural generalization of the classical and popular linear (Euclidean) regression models.

In general, there have been two approaches for the inference on (2): (i) testing the significance of
the trend within the linear model, i.e., testing H0 : m ∈ {mβ0} vs. H1 : m ∈ {mβ : β ∈ HX , β 6= β0},
usually with β0 = 0; (ii) testing the linearity of m, i.e., testing H0 : m ∈ L = {mβ : β ∈ HX} vs.
H1 : m 6∈ L.

For the GoF testing problem presented in (ii), given an iid sample {(Xi, Yi)}ni=1 and following
Härdle and Mammen (1993) ideas in the vectorial case, a test statistic structure can be given by
Tn = T (mnh,mβ̂), where β̂ is a suitable estimator for β and

mnh(x) =
n∑
i=1

Wni(x)Yi =
n∑
i=1

Kh(‖x−Xi‖)∑n
j=1Kh(‖x−Xj‖)

Yi (3)

is the Nadaraya–Watson estimator with a functional predictor. In Delsol et al. (2011), a L2 distance is
offered,

Tn =

∫ (
mnh(x)−mnh,β̂(x)

)2
ω(x) dPX(x),

where mnh,β̂ is a smoothed version of the parametric estimator that follows by replacing Yi with
mβ̂(Xi) in (3). A crucial problem is the computation of the critical region {Tn > cα}, which
depends on the selection of h when a class of estimators for β is used under the null. This class
of smoothed-based tests, or related, were deeply studied in the Euclidean setting (see González-
Manteiga and Crujeiras (2013)). Nevertheless, this is not the case in the functional context, except for
this mentioned contribution and others more recent by Maistre and Patilea (2020) and Patilea and
Sánchez-Sellero (2020).

As in the vectorial case, it is possible to avoid the bandwidth selection problem using tests based
on empirical regression processes. For this purpose, a key element is the empirical counterpart
of the integrated regression function In(x) = n−1

∑n
i=1 I(Xi ≤ x)Yi, where Xi ≤ x means that

Xi(t) ≤ x(t), for all t ∈ [0, 1]. In this scenario, the test statistic can be formulated as Tn(In, Iβ̂),

where Iβ̂(x) = n−1
∑n

i=1 I(Xi ≤ x)Ŷi, where Ŷi = 〈Xi, β̂〉. Deriving the theoretical behavior of an
empirical regression process indexed by x ∈ HX , namely Rn(x) =

√
n(In(x) − Iβ̂(x)) is, still today,

a challenging task. Yet, as previously presented, the useful projection approach over HX can be
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considered. The null hypothesis H0 : m ∈ L can be formulated by means of

H0 : E[(Y − 〈X,β〉)I(〈X, γ〉 ≤ u)] = 0, for a β ∈ HX and for all γ ∈ HX ,

which in turn is equivalent to replacing ‘for all γ ∈ HX ’ with ‘for all γ ∈ SHX ’ or ‘for all
γ ∈ Sp−1

HX ,{ψj}∞j=1
, for all p ≥ 1’, where

SHX = {ρ ∈ HX : ‖ρ‖ = 1}, Sp−1
HX ,{ψj}∞j=1

=

{
ρ =

p∑
j=1

rjψj : ‖ρ‖ = 1

}

are infinite- and finite-dimensional spheres on HX , {ψj}∞j=1 is an orthonormal basis for HX , and
{rj}pj=1 ⊂ R. As follows from García-Portugués et al. (2014) a general test statistic can be built
aggregating all the projections within a certain subspace: Tn =

∫
Tn,π dW (π) with Tn,π = T (In,π, Iβ̂,π)

based on

In,π(u) = n−1
n∑
i=1

I(π(Xi) ≤ u)Yi and Iβ̂,π(u) = n−1
n∑
i=1

I(π(Xi) ≤ u)Ŷi, (4)

for π(x) = 〈x, γ〉. In this case, W is a probability measure defined in SHX or Sp−1
HX ,{ψj}∞j=1

, for a
certain p ≥ 1. Alternatively, the test statistic can be based on only one random projection: Tn = Tn,π̂.
More generally, Tn may consider the aggregation of a finite number of random projections, as
advocated in the test statistic of Cuesta-Albertos et al. (2019). Both types of tests, all-projections and
finite-random-projections, may feature several distances for T , such as Kolmogorov–Smirnov or
Cramár–von Mises types.

In the last years, more general procedures for model (2) focus on model specification with scalar
response and functional covariate are defined. McLean et al. (2015) consider the functional general-
ized additive model

Y = mF + ε = η +

∫ 1

0
F(X(t), t)dt, (5)

being (2) a particular case of (5) takingF(x, t) = xβ(t) and η = 0, whereas Horváth and Reeder (2013)
take under consideration the functional quadratic regression model

Y =

∫ 1

0
β(t)X(t)dt+

∫ 1

0

∫ 1

0
γ(s, t)X(t)X(s)dtds+ ε (6)

where (2) corresponds with taking γ = 0 in (6).

Besides, we can highlight some recent alternatives: generalizing the well-known F-test for
specification testing or, more generally, the likelihood ratio test. See McLean et al. (2015) or Kong
et al. (2016). New ones which establish alternative tests with easy to calibrate distribution as Shi
et al. (2022) or devoted to speed computational tasks as in Zhao et al. (2022).

It is also worth mentioning literature comparing the above mentioned procedures. See Tekbudak
et al. (2019) for an extensive comparative between procedures based on smoothing techniques,
empirical processes and adapted statistics from the likelihood ratio test.
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When both the predictor and the response, X and Y , are functional random variables evaluated
in HX = L2[a, b] and HY = L2[c, d], the regression model Y = m(X) + ε is related with the operator
m : HX → HY . Perhaps the most popular operator specification is a (linear) Hilbert–Schmidt integral
operator, expressible as

mβ(x)(t) = 〈x, β(·, t)〉 =

∫ b

a
β(s, t)x(s) ds, t ∈ [c, d], (7)

for β ∈ HX⊗HY , which is simply referred to as the functional linear model with functional response.
The kernel β can be represented as β =

∑∞
j=1

∑∞
k=1 bjk(ψj ⊗ φk), with {ψj}∞j=1 and {φk}∞k=1 being

orthonormal bases ofHX andHY , respectively.

Similarly to the case with scalar response, performing inference on (7) have attracted the
analogous two mainstream approaches: (i) testing H0 : m ∈ {mβ0} vs. H1 : m ∈ {mβ : β ∈
HX ⊗ HY , β 6= β0}, usually with β0 = 0; (ii) testing H0 : m ∈ L = {mβ : β ∈ HX ⊗ HY } vs.
H1 : m 6∈ L. The GoF problem given in (ii) can be approached by considering a double-projection
mechanism based on πX : HX → R and πY : HY → R. Given an iid sample {(Xi, Yi)}ni=1, a general
test statistic follows (see García-Portugués et al. (2021)) as Tn =

∫
Tn,πX ,πY dW (πX × πY ) with

Tn,πX ,πY = T (In,πX ,πY , Iβ̂,πX ,πY ), where In,π1,π2 and Iβ̂,π1,π2 follows from (4) by replacing π with

πX , and Yi and Ŷi with πY (Yi) and πY (Ŷi), respectively. In this case, W is a probability measure is
defined in SHX × SHY or Sp−1

HX ,{ψj}∞j=1
× Sq−1

HY ,{φk}∞k=1
, for certain p, q ≥ 1. The projection approach

is immediately adaptable to the GoF of (7) with HX = R, and allows graphical tools for that can
help detecting the deviations from the null, see García-Portugués et al. (2020). An alternative route
considering projections just for X is presented by Chen et al. (2020).

The above generalization to the case of functional response is certainly more difficult for the class
of tests based on the likelihood ratios. Regarding the smoothing-based tests, Patilea et al. (2016)
introduced a kernel-based significance test consistent for nonlinear alternative. Moreover, Smaga
(2022) extends the F-test to the context of functional response making use of projections.

3 A new generation of procedures for testing in regression models based
on distance correlation

Since the article of Székely et al. (2007), with the first correlation distance methodology development,
there has been a huge variety of works using its ideas for independence tests. Some of them
focused on the specification testing field. Very recently, in the last five years, new procedures for
specification testing have been derived extending correlation distance ideas. These have resulted
in novel covariates selection or GoF approaches. In case of covariates selection, this translates in
testing if all considered X1, . . . , Xp covariates are relevant to explain a variable Y or some can
be excluded from the model. For this aim, the covariates selection problem is rewritten as an
independence test and distance correlation methodology is used to construct proper statistics. For
GoF the model is estimated under the null hypothesis assumptions and then, the independence
between the estimation of the model error and covariates is tested. As a result, specification tests
result in independence ones which can be performed using distance correlation ideas.

In this section, a first timeline review of classical methods for independence or significance test-
ing in regression models, being special cases of specification tests, is carried out in Section 3.1. We
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highlight the most notable procedures and expose their drawbacks. Then, the benefits of the distance
correlation based tests, specially in the high-dimensional context of p > n, are motivated. Next,
a review of the distance correlation and derivatives methodology is introduced in Sections 3.2, 3.3
and 3.4. The distance correlation, the martingale difference divergence and the conditional distance
correlation coefficients, as well as their associated independence tests, are described for the vecto-
rial framework in these sections, respectively. Eventually, specific advances for statistics based on
distances in the functional data context are detailed in Section 3.5.

3.1 Previous considerations of correlation measures based on distances

During the last decades, covariates selection procedures have received special attention. This study
has been specially focused on the big data context, in which the number of covariates (p) is high,
even larger than the sample size (n), p > n. As a result, several covariates selection techniques have
been developed for this framework.

From the beginning, one of the first and well-known dependence measures for random vectors
is the correlation coefficient. See, for example, Pearson (1920). This allows to perform covariates
selection taking under consideration only covariates with the greatest correlation value with the
response. However, this is only able to correctly detect linear relations. As a result, we can only select
covariates if we can assume a linear structure in the regression model. With the aim of identifying
other types of dependence, other coefficients measures based on ranks were proposed. These are the
Spearman’s coefficient (Wissler (1905)) or the Kendall’s τ (Kendall (1938)). These measures are robust
to outliers and detect any type of monotone dependence pattern. Nevertheless, it is not possible to
identify non-monotone structures, being unsuitable for some regression models. These techniques
only measure the grade of dependence for each covariate separately and do not pay attention to the
information provided by the rest of them in the process. Moreover, the computational cost increases
in terms of the p size.

If certain structure of the regression model can be assumed, this information can be employed
to perform significance tests for covariates selection. For example, under the linearity assumption
with Gaussian errors, we can resort to the well-known F-test. Nonetheless, these methodologies
are not available in the p > n case and other approaches are needed. In this framework, the
most important covariates selection methods are those based on regularizations. These have been
specifically proposed for the covariates selection problem in the big data context of p > n to face
the problem of the curse of dimensionality. In this way a sparse parameter vector associated with
a linear regression model is estimated and those covariates with negligible associated coefficient
are excluded. Some examples are the LASSO (Tibshirani (1996)), the SCAD (Fan and Li (2001)), the
adaptive LASSO (Zou (2006)) or the Dantzig selector (Candes and Tao (2007)) to name a few. See
the review of Freijeiro-González et al. (2022) for in-depth details. However, these procedures and
their extensions have some restrictions in practice: it is necessary to assume certain structure in the
regression model, which can not always be a reliable assumption, and their behavior is worse when
p increases faster than n. Furthermore, some of these techniques require of high computational time
and resources for a large number of covariates.

Motivated by these previous limitations, Székely et al. (2007) introduced the concept of distance
correlation (DC). This coefficient detects all types of possible dependence relations and, as a result,
solve the main drawbacks of the previous correlation coefficients. Besides, no structure assumption
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is needed in comparison with regularization techniques. Hence, a covariates selection approach
can be performed using the DC coefficient no matter the regression model structure. Consequently,
innovative techniques for covariates selection were proposed using DC ideas of Székely et al. (2007).
Some examples are the procedure of Székely et al. (2007), the DC-SIS (distance covariance sure
independence screening) procedure of Li et al. (2012), using the SIS (sure independence screening)
algorithm for linear models of Fan and Lv (2008), or the partial distance correlation methodology
introduced in Székely and Rizzo (2014). First and third approaches apply independence tests
considering an adequate statistic based on DC ideas. In contrast, the DC-SIS sorts out covariates
using the distance correlation values and then applies some cutoff or threshold to consider only the
most important ones in model explanation terms, which corresponds with the greatest DC values
between covariates and response.

In the last years, two new measures of dependence related with the DC were introduced. The
martingale difference divergence (MDD) of Shao and Zhang (2014) and the conditional distance
correlation (CDC) of Wang et al. (2015). The MDD is used to test the causality of a vector Y ∈ Rq
conditioned to a scalar random variable X ∈ R, whereas the CDC tests the conditional dependence
of two random vectors X ∈ Rp and Y ∈ Rq conditioned to a third one, Z ∈ Rr. Both coefficients can
be employed to derive specification tests and to implement covariates selection procedures. See, for
example, the work of Shao and Zhang (2014) and Zhang et al. (2018) for the MDD case and all the
details of the procedure proposed in Wang et al. (2015) for the CDC performance.

The necessity of covariates selection and specification testing procedures for the functional data
context has motivated the recently development of new procedures for this framework. Here, classic
methodologies are not available and thus, new ones are needed. Works as the one developed by
Gretton et al. (2005) or Febrero-Bande et al. (2019) in the machine learning context, are examples
of novel screening tools and bring out the complexity of the functional data case. In Section 3.5 a
review of novel specification tests using DC ideas for the functional context is introduced.

In the following, more details about DC, MDD and CDC are given for a deeper understanding of
these three kinds of dependence measures for random vectors in Sections 3.2, 3.3 and 3.4, respectively.
Next, recent advances in the functional data context using these ideas are described in Section 3.5.

3.2 Distance correlation

The DC is a measure of dependence which detects all types of relations between two random vectors
of different dimensions. This coefficient is introduced for the first time by Székely et al. (2007). The
main DC interest is to test if two random vectors, X ∈ Rp and Y ∈ Rq with p, q ≥ 1, are independent.
This results in testing

H0 : X ⊥ Y vs. H1 : X 6⊥ Y, (8)

where X ⊥ Y denotes independence between X and Y .

Two random vectors are said to be independent if they verify FX,Y = FXFY , being FX , FY the
distribution functions of X and Y , respectively, and FX,Y their joint distribution. This condition can
be rewritten in terms of the characteristic functions and the independence test can be formulated as

H0 : ϕX,Y = ϕXϕY vs. H1 : ϕX,Y 6= ϕXϕY (9)
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being ϕX,Y the joint characteristic function and ϕX , ϕY the marginal characteristic functions of X , Y .

So, for the testing of the null hypothesis (9) it is needed a statistic measuring if the difference
ϕX,Y − ϕXϕY is significant. This is the main motivation for the introduction of the DC coefficient
(Székely et al. (2007), Székely and Rizzo (2017)).

In order to measure the difference between ϕX,Y and ϕXϕY a weighted L2 norm (‖ · ‖2w) in the
Rp × Rq space of complex functions is applied. This is defined as

‖ϕX,Y (t, s)− ϕX(t)ϕY (s)‖2w =

∫
Rp×Rq

|ϕX,Y (t, s)− ϕX(t)ϕY (s)|2w(t, s) dt ds (10)

where w(·, ·) is a weight function properly selected to guarantee the existence of the above integral
and |f | = ff̄ for f(·), a complex value function with conjugate f̄(·).

Then, once the weight function w(·, ·) has been selected, we can take as a measure of dependence
V2(X,Y ;w) = ‖ϕX,Y (t, s)− ϕX(t)ϕY (s)‖2w satisfying that V2(X,Y ;w) = 0 if and only if X and Y are
independent. Particularly, dividing V2(X,Y ;w) by

√
V(X;w)V(Y ;w), where

V2(X;w) =

∫
R2p

|ϕX,X(t, s)− ϕX(t)ϕX(s)|2w(t, s) dt ds (11)

we obtain a type of unsigned correlationRw.

Following these guidelines, in Székely et al. (2007) it is taken

w(t, s) = (cpcq|t|1+p
p |t|1+q

q )−1dt ds for cp =
π(p+1)/2

Γ((p+ 1)/2)
and cq =

π(q+1)/2

Γ((q + 1)/2)
, (12)

denoting by ‖ · ‖p and ‖ · ‖q the euclidean norms in Rp and Rq and Γ(·) the gamma function.

For simplicity, we write ‖ · ‖2 henceforth, instead of ‖ · ‖2ω, as the L2 norm using this weight
function. Thus, for finiteness of ‖ϕX,Y (t, s) − ϕX(t)ϕY (s)‖2, it is sufficient that E[‖X‖p] < ∞ and
E[‖Y ‖q] <∞. With this notation, the DC between random vectors X and Y with finite first moments
is the nonnegative number V2(X,Y ) defined by expression (13)

V2(X,Y ) = ‖ϕX,Y (t, s)− ϕX(t)ϕY (s)‖2 =
1

cpcq

∫
Rp+q

|ϕX,Y (t, s)− ϕX(t)ϕY (s)|2
‖t‖p+1

p ‖s‖q+1
q

dt ds (13)

Similarly, distance variance is given as the square root of

V2(X) = V2(X,X) = ‖ϕX,X(t, s)− ϕX(t)ϕX(s)‖2. (14)

The DC coefficient between random vectorsX and Y with finite first moments is the nonnegative
numberR(X,Y ) defined by

R(X,Y ) =

{ V2(X,Y )√
V2(X)V2(Y )

, V2(X)V2(Y ) > 0,

0, V2(X)V2(Y ) = 0.
(15)

It is verified that 0 ≤ R(X,Y ) ≤ 1, andR(X,Y ) = 0 if and only if X and Y are independent.

SJS, VOL. 4, NO. 1 (2022), PP. 9 - 40
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Alternative expressions for (13) are

V2(X,Y ) =E
[
‖X ′ −X ′′‖p‖Y ′ − Y ′′‖q

]
+E

[
‖X ′ −X ′′‖p

]
E
[
‖Y ′ − Y ′′‖q

]
− 2E

[
‖X ′ −X ′′‖p‖Y ′ − Y ′′′‖q

] (16)

and

V2(X,Y ) =EX′Y ′
[
EX′′Y ′′

[
‖X ′ −X ′′‖p‖Y ′ − Y ′′‖q

]]
+EX′X′′

[
‖X ′ −X ′′‖p

]
EY ′Y ′′

[
‖Y ′ − Y ′′‖q

]
−2EX′Y ′

[
EX′′

[
‖X ′ −X ′′‖p

]
EY ′′

[
‖Y ′ − Y ′′‖q

]] (17)

being (X ′, Y ′), (X ′′, Y ′′) and (X ′′′, Y ′′′) iid copies of (X,Y ). See Székely et al. (2007) for more details.

Given (Xn,Yn) = {(Xi, Yi), i = 1, . . . , n} an iid sample from the joint distribution function of
(X,Y ) ∈ Rp×Rq, the empirical sample versions of the estimator of V2(·, ·) can be obtained as follows.
Defining Ail = ail − āi· − ā·l + ā·· by means of quantities

ail = ‖Xi −Xl‖p, āi· =
1

n

n∑
l=1

ail, ā·l =
1

n

n∑
i=1

ail and ā·· =
1

n2

n∑
i,l=1

ail, (18)

similarly Bil = bil− b̄i·− b̄·l + b̄·· with bil = ‖Yi−Yl‖q. The empirical distance covariance V2
n(Xn,Yn),

based on the empirical estimator of (13), is the nonnegative number given by

V2
n(Xn,Yn) =

1

n2

n∑
i,l=1

AilBil. (19)

Respectively, V2
n(Xn) is the nonnegative number defined by

V2
n(Xn) = V2

n(Xn,Xn) =
1

n2

n∑
i,l=1

A2
il. (20)

In summary, the estimation given in (19) is an easier way of obtaining an estimator of V2(X,Y )
just centering two times the data.

Furthermore, the empirical DC,Rn(Xn,Yn), is the square root of

Rn(Xn,Yn) =

{ V2
n(Xn,Yn)√
V2
n(Xn)V2

n(Yn)
, V2

n(Xn)V2
n(Yn) > 0,

0, V2
n(Xn)V2

n(Yn) = 0.
(21)

This coefficient takes values 0 ≤ Rn(Xn,Yn) ≤ 1, and verifies that, if Rn(Xn,Yn) = 1, then
there exist a vector a, a nonzero real number b and an orthogonal matrix C such that Yn = a+ bXnC.
Moreover, it is verified almost surely that limn→∞R2

n(Xn,Yn) = R2(X,Y ). For more properties
about V2

n(Xn,Yn), Vn(Xn) andRn(Xn,Yn) we refer to Székely et al. (2007).

Under the null hypothesis of independence, it is verified that nV2
n(Xn,Yn)/S2 converges in

distribution to a quadratic form Q=
∑∞

m=1 cmG
2
m, where S2 is a normalizing factor defined in

Székely et al. (2007), {Gm}∞m=1 are independent standard normal random variables and {cm}∞m=1
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nonnegative constants that depend on the distribution of (X,Y ). Moreover, when this hypothesis
is violated, nV2

n(Xn,Yn) → ∞ in probability as n → ∞. Thus, a test which rejects H0 for large
values of nV2

n(Xn,Yn) is consistent in an omnibus way against dependence alternatives. In practice,
the limiting distribution can be approximated by resampling techniques, as for example using
permutation tests.

DC can be also used to perform proper GoF tests. In Xu and He (2021) a procedure based on DC
is used to test the null hypothesis H0 : X ⊥ ε and m ∈ Mβ in the regression model Y = m(X) + ε
with m ∈ Mβ = {g(x)>β : β ∈ Rp} for a given known function g(·). In this context, Yn is built with
the residuals of the fitted model.

Despite all discussed desirable qualities of the empirical distance covariance coefficient, this is
a biased estimator of (13) and its bias increases with dimension of X and Y , i.e. when p, q → ∞.
Besides, the DC statistic introduced in (21), and based on these coefficients, exhibits some drawbacks
as well. As it is explained in Székely and Rizzo (2013), although distance correlation characterizes
independence, interpretation of the size of Rn(Xn,Yn) without a formal test is difficult in high
dimensions. An explanation for this is that R2

n(Xn,Yn) −→ 1 as p, q → ∞, even though X and Y
are independent. Székely and Rizzo (2013) proposed a new unbiased sample estimator for distance
covariance and a modified distance correlation statistic based on plug-in these unbiased version
in numerator and denominator of expression (21) and verifying that, under the null hypothesis of
independence, this converges to a Student t distribution. This new approach solves the inconsistency
problem in high dimensions.

An additional problem is the computational cost of the construction of the distance matrices.
Some recent works such as Huo and Székely (2016) or Chaudhuri and Hu (2019) propose alternatives
to reduce this. However, only the univariate random variables case is considered. New solutions
applying for the vectorial framework need to be considered in the future.

Finally, it is remarkable the natural relation between DC and the Hilbert-Schmidt Independence
Criterion (HSIC) of Gretton et al. (2005). The HSIC makes use of the cross-covariance operator be-
tween two reproducing kernel Hilbert spaces (RKHSs) to measure if there exists some type of de-
pendence between two random vectors defined in two different RKHSs with universal kernel. These
vectors will be independent when the HSIC operator will take the null value. The DC is a partic-
ular case of HSIC operator where general kernel distances are replaced by Euclidean versions. In
some sense, there was a parallel evolution between the HSIC criteria in the machine learning world,
related to RHKSs, and the DC ideas in literature. There are really interesting papers published in
the last decade giving a unifying framework that links both fields. See Sejdinovic et al. (2013), Hua
and Ghosh (2015), Zhu et al. (2020) or Edelmann and Goeman (2022) for examples of this connection
under different perspectives. As a result, the HSIC measure can be used to perform independence
tests, an example is the work of Song et al. (2012), as well as specification tests, see Sen and Sen (2014)
for simultaneous GoF and error-predictor independence tests in linear models.

3.3 Martingale difference divergence

The MDD is a new dependence coefficient introduced by Shao and Zhang (2014). This metric mea-
sures the departure from the conditional mean independence hypothesis. This is based on testing
if the conditional mean of Y ∈ R, given X ∈ Rp, is independent of X . The testing problem is now
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given by

H0 : E[Y |X ] = E[Y ] almost surely vs. H1 : E[Y |X ] 6= E[Y ] almost surely. (22)

Its name comes from the interpretation of martingale difference concept in probability. This
means that if H0 in (22) is verified, then Y − E[Y ] is a martingale difference with respect to X .

As a result, the MDD coefficient is designed to measure the difference between the conditional
mean and the unconditional one to perform (22). The MDD of Y given X is the nonnegative number
MDD2(Y |X) defined by

MDD2(Y |X) =
1

cp

∫
Rp

|ψY,X(t)− ψY ψX(t)|2
‖t‖p+1

p

dt (23)

where ψY,X(t) = E[Y ei<t,X>], ψY = E[Y ] and ψX(t) = ϕX(t).

The MDD coefficient defined in (23) verifies that MDD2(Y |X) ≥ 0 and takes the null value
if and only if the null hypothesis (22) holds. This is called divergence and not distance because
MDD2(Y |X) 6= MDD2(X|Y ).

Similar to DC, a scale invariant coefficient can be defined. This gives place to the martingale
difference correlation (MDC) given by the square root of

MDC2(Y |X) =

{
MDD2(Y |X)√
var2(Y )V2(X)

, var2(Y )V2(X) > 0,

0, var2(Y )V2(X) = 0.
(24)

where V2(X) is the distance variance of X defined in (14). It is verified that 0 ≤ MDC2(Y |X) ≤ 1.
Similar properties as DC for MDD2(Y |X) and MDC2(Y |X) are collected in Shao and Zhang (2014).

For a sample of i = 1, . . . , n iid observations (Xn,Yn) = {(Xi, Yi), i = 1, . . . , n} from the joint
distribution of (X,Y ) ∈ Rp × R, it is defined Ail as in (18) and Bil = bil − b̄i· − b̄·l + b̄··; being
now bil = |Yi − Yl|2/2, b̄i· = 1

n

∑n
l=1 bil, b̄·l = 1

n

∑n
i=1 bil and b̄·· = 1

n2

∑n
i,l=1 bil for i, l = 1, . . . , n.

The empirical estimation of MDD2(Y |X), i.e. the sample martingale difference divergence, can be
defined as the nonnegative number

MDD2
n(Yn|Xn) =

1

n2

n∑
i,l=1

AilBil (25)

and its associated sample martingale difference correlation coefficient is given by

MDC2
n(Yn|Xn) =

{
MDD2

n(Yn|Xn )√
var2n(Yn)V2

n(Xn)
, var2

n(Yn)V2
n(Xn) > 0,

0, var2
n(Yn)V2

n(Xn) = 0.
(26)

where varn(Yn) = 1
n

∑n
i=1(Yi − Ȳ )2, for Ȳ = 1

n

∑n
i=1 Yi, and V2

n(Xn) is defined in (20).

See the paper of Park et al. (2015) for a nice connection between MDD and DC coefficients.
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If E
[
‖X‖p + |Y |2

]
< ∞, both estimators, MDD2

n(Yn|Xn) and MDC2
n(Yn|Xn), converge to

their population versions displayed in (23) and (24) almost surely. A prove of this result can be
found in Shao and Zhang (2014). Moreover, under the null hypothesis of independence in mean,
it is guaranteed that nMDD2

n(Yn|Xn) −→ ‖Γ (t)‖2 in distribution when n → ∞, being Γ (·) a
Gaussian process. In addition, if E[Y 2|X ] = E[Y 2] is also guaranteed, nMDD2

n(Yn|Xn)/Sn −→ Q
in distribution when n → ∞, being Q a nonnegative quadratic form of centered Gaussian random
variable with E[Q] = 1 and Sn = 1

n2

∑
i

∑
l ‖Xi−Xl‖p 1

n

∑
i(Yi− Ȳn)2. Finally, if the null hypothesis is

not verified, we have that nMDD2
n(Yn|Xn)/Sn −→ ∞ in probability when n→∞. We refer to Shao

and Zhang (2014) for more details. Although the asymptotic distribution under both, H0 and H1

hypothesis is known, resampling procedures can be applied in practice to calibrate the distribution
of the test statistic, especially for small sample sizes.

Thus, using the estimators of the MDD or MDC, it is possible to perform covariates selection
in regression models, specifying which covariates are the relevant ones. Shao and Zhang (2014)
propose a screening procedure sorting out the covariates relevance in terms of the regressor function
explanation, i.e. based on E [Y |X ] explanation, and then they establish a proper threshold to detect
the important significance covariates. Authors make use of the MDC criteria to measure covariates
relevance. A different approach for covariates selection in terms of causality is introduced in
Zhang et al. (2018). They propose a statistic based on the MDD ideas to test the null hypothesis of
H0 : E

[
Y |Xj

]
= E[Y ] almost surely for all j = 1 . . . , p. A wild bootstrap scheme is proposed to

approximate the statistics distribution.

All these ideas can be transferred to GoF testing. An example is the work of Su and Zheng
(2017). They test the null hypothesis of H0 : P (E [Y |X ] = g(X,β)) = 1 for some β ∈ B, being B the
parameter space and assuming Y = g(X,β) + ε, with g(·) a known function. The MDD is applied
using the residuals calculated under the null hypothesis, and covariates. Calibration of the test is
again done by means of wild bootstrap. A similar, but broader approach, using HSIC is also provided
by Teran Hidalgo et al. (2018).

3.4 Conditional distance correlation

The CDC was introduced in Wang et al. (2015) to measure the dependence of two random vectors
X ∈ Rp and Y ∈ Rq conditioned to a third one, Z ∈ Rr. For this purpose, conditional characteristic
functions are employed and ideas of the distance correlation introduced in Section 3.1 are adapted to
the conditional framework. The problem to be tested now is

H0 : X ⊥|Z Y almost surely vs. H1 : P
(
X 6⊥|Z Y

)
> 0 (27)

where X ⊥|Z Y denotes independence of X and Y conditioned to Z.

Using similar DC arguments, it is possible to rewrite (27) in terms of characteristic functions. The
new test is given by

H0 : ϕX,Y |Z = ϕX|ZϕY |Z vs. H1 : ϕX,Y |Z 6= ϕX|ZϕY |Z (28)

where ϕX,Y |Z , ϕX|Z and ϕY |Z are the joint and marginal conditional characteristic functions.
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Then, the CDC with finite first moments given Z (E[|X|p + |Y |q|Z ] <∞), is defined as the square
root of

CDC2(X,Y |Z) =‖ϕX,Y |Z (t, s)− ϕX|Z (t)ϕY |Z (s)‖2

=
1

cpcq

∫
Rp+q

|ϕX,Y |Z (t, s)− ϕX|Z (t)ϕY |Z (s)|2

‖t‖p+1
p ‖s‖q+1

q

dt ds
(29)

where cp and cq are the ones defined in (12) and conditional distance variance is the square root of

CDC2(X|Z) = CDC2(X,X|Z) = ‖ϕX,X|Z (t, s)− ϕX|Z (t)ϕX|Z (s)‖2,

being ‖ · ‖ the weighted norm defined in Section 3.2.

The CDC coefficient defined in (29) has analogues properties to the unconditional version of
(13). Particularly, it is verified that CDC(X,Y |Z) ≥ 0 if and only if X and Y are conditionally
independent given Z.

The conditional distance correlation (CDCor) is the square root of

CDCor(X,Y |Z) =

{
CDC2(X,Y |Z)√

CDC2(X|Z)CDC2(Y |Z)
, CDC2(X|Z)CDC2(Y |Z) > 0,

0, CDC2(X|Z)CDC2(Y |Z) = 0.
(30)

and this verifies that 0 ≤ CDCor(X,Y |Z) ≤ 1 and CDCor(X,Y |Z) = 0 if and only if X and Y
are conditionally independent given Z.

To construct an estimator of CDC2(X,Y |Z) the empirical characteristic functions conditioned
to Z are plugged in (29). Note that, for the estimation of conditional characteristic functions, it is
needed to resort to some kind of smoothing techniques as for example kernel-type estimators. We
refer to Wang et al. (2015) for more details. Denote by Wi = (Xi, Yi, Zi), i = 1, . . . , n a sample iid
from a random vector W = (X,Y, Z) ∈ Rp × Rq × Rr, Xn = {X1, . . . , Xn}, Yn = {Y1, . . . , Yn},
Zn = {Z1, . . . , Zn}, and Wn = (Xn,Yn,Zn). As a result, the sample conditional distance covariance
CDCn(Xn,Yn|Zn) is the positive quantity defined by

C̃DC
2

n(Xn,Yn|Zn) = ‖ϕnX,Y |Z (t, s)− ϕnX|Z (t)ϕnY |Z (s)‖2. (31)

being ϕnX,Y |Z , ϕnX|Z and ϕnY |Z the corresponding empirical conditional characteristic functions.

Following Wang et al. (2015), letting dijkl =
(
aXij + aXkl − aXik − aXjl

)(
bYij + bYkl − bYik − bYjl

)
and

dSijkl = dijkl + dijlk + dilkj for i, j, k, l = 1, . . . , n, where aij and bij are defined in (18), and Z1, Z2,
Z3 and Z4 are iid copies of Z, it is verified that

CDC2(X,Y |Z=z) =
1

12
E[dS1234|Z1=z,Z2=z,Z3=z,Z4=z]

As a result, the conditional dependence measures can be estimated by applying kernel regres-
sion smoothing ideas to the above expectation estimation. This results in a V-process. The sample
conditional distance covariance is defined as the square root of

CDC2
n(Wn|Z) = CDC2

n(Xn,Yn,Zn|Z) =
1

n4

∑
ijkl

Ψn(Wi,Wj ,Wk,Wl;Z) (32)
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where Ψn is the symmetric random kernel of degree 4 defined in Schick (1997):

Ψn(Wi,Wj ,Wk,Wl;Z) =
n4Φi(Z)Φj(Z)Φk(Z)Φl(Z)

12Φ4(Z)
dSijkl

for Φi(Z) = KH(Z − Zi) and Φ(Z) =
∑n

i=1 Φi(Z), being K a kernel function and H a bandwidth
matrix r-dim.

Let WXn = (Xn,Xn,Zn) and WYn = (Yn,Yn,Zn). Analogously, the sample conditional dis-
tance correlation can be defined as the square root of

CDCorn(Wn|Z) =

{
CDC2

n(Wn|Z)√
CDC2

n(WXn |Z)CDC2
n(WYn |Z)

, CDC2
n(WXn |Z)CDC2

n(WYn |Z) > 0,

0, CDC2
n(WXn |Z)CDC2

n(WYn |Z) = 0.

It is verified that C̃DC
2

n(Wn|Z) = CDC2
n(Wn|Z) given Wn = {W1, . . . ,Wn} a sample from the

joint distribution of (X,Y, Z). Furthermore, if E [‖X‖p + ‖Y ‖q|Z ] < ∞ and Φ(Z)/n is a consistent
density function estimator of Z, then CDC2

n(Wn|Z) −→ CDC2(X,Y |Z) in probability for each value
of Z as n→∞. See Wang et al. (2015) for more details and properties of CDC2

n(Wn|Z). Analogously,
an unbiased version of (32) can be defined with similar properties. For this purpose, U-processes
theory is applied.

Wang et al. (2015) make use of these ideas to perform the conditional independence test displayed
in (27), applying conditioned covariates selection. In particular, they define a statistic based on the
CDC coefficient and implement a test calibrated by means of a local bootstrap. Other procedures
related with screening techniques in terms of conditional dependence are the recent works of Song
et al. (2020) and Lu and Lin (2020). The first one adapt the ideas of Liu et al. (2014) using the CDCor
to specify significant covariates for general varying-coefficient models in regression. Covariates are
sorting out based on their CDCor value and then a cutoff is applied. In contrast, Lu and Lin (2020)
select an initial set of covariates and measures the importance of remaining ones conditioned to
this subset. For this purpose, they use the CDCor, resulting in the CDC-SIS (conditional distance
correlation sure independence screening) algorithm.

3.5 A new generation of procedures for testing in regression models based on distance
correlation with functional data

In this Section, we assume that both, the explanatory covariate X as well as the output Y of the
regression model Y = m(X) + ε, are functions. Here, similar to Section 2, it is assumed that X ∈ HX
and Y ∈ HY , beingHX andHY Hilbert spaces. As it was mentioned in previous sections, results for
specification testing in regression models with functional data appear in the last 10 years. However,
it is not until very recently when the methodology of the DC is employed, extending procedures of
Section 2 to the functional framework.

A first paper is Lee et al. (2020), where it is tested the null hypothesis H0 : E [Y |X ] = E[Y ] as in
(22) but now for the functional case. Then, to carry out the test, an statistic based on a generalized
version of the MDD coefficient described in Section 3.3 is proposed.

In particular, the vectorial MDD term can be written as (see Shao and Zhang (2014))

MDD2 (Y |X) = −E
[
(Y − E[Y ])

(
Y ′ − E[Y ]

)
‖X −X ′‖HX

]
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and this idea is extended to the functional context considering

FMDD2 (Y |X) = −E
[
〈Y − E[Y ], Y ′ − E[Y ]〉HY ‖X −X ′‖HX

]
being, in both cases (vectorial and functional), (X ′, Y ′) iid copies of (X,Y ).

Hence, based on an iid sample (Xn,Yn) = {(Xi, Yi), i = 1, . . . , n} of (X,Y ), an unbiased estima-
tor of FMDD2 is obtained with the empirical version

FMDD2
n (Yn|Xn) =

1

n(n− 3)

∑
i 6=j

ÃijB̃ij (33)

where Ãij and B̃ij are now the corresponding U-centered versions of (18), being the (i, j)th elements
of the matrices defined as

Ãij =

{
aij − āi· − ā·j + ā··, i 6= j
0, i = j

B̃ij =

{
bij − b̄i· − b̄·j + b̄··, i 6= j
0, i = j

with aij = ‖Xi − Xj‖ =
√
〈Xi −Xj , Xi −Xj〉HX , āi· =

∑
l ail

(n−2) , ā·j =
∑
k akj

(n−2) , ā·· =
∑
akl

(n−1)(n−2) ,
bij = ‖Yi − Yj‖2HY /2 and b̄i·, b̄·j and b̄·· defined in a similar way.

That is, the modified and adapted empirical unbiased version of the estimation given in (25), but
now, for the functional context.

Nice results are obtained in Lee et al. (2020) under the assumptions of E
[
‖X‖2HX + ‖Y ‖2HY

]
<∞,

E
[
‖X − E[X]‖2HX + ‖Y − E[Y ]‖2HY

]
< ∞ and the null hypothesis is true: nFMDD2

n(Yn|Xn) −→∑∞
k=1 λk(G

2
k − 1) in distribution, being {λk}∞k=1 the eigenvalues corresponding to the eigenfunctions

{Ψk(·)}∞k=1 such that J(z, z′) =
∑∞

k=1 λkΨk(z)Ψk(z
′) with z = (x, y) and J(z, z′) = U(x, x′)V (y, y′),

where U(x, x′) = ‖x − x′‖HX + E [‖X −X ′‖HX ] − E [‖x−X ′‖HX ] − E [‖X − x′‖HX ] and
V (y, y′) = −〈y − E[Y ], y′ − E[Y ]〉HY . Here {Ψk} is an orthogonal sequence in the sense that
E [Ψj(z)Ψk(z)] = I(j = k) and {Gk}∞k=1 is a sequence of iid N(0, 1) random variables.

This represent the limit distribution of a degenerate U -statistic with kernel h(·), being

FMDD2
n (Yn|Xn) =

1(
n
4

) ∑
i<j<k<l

h(Zi, Zj , Zk, Zl)

with h(Zi, Zj , Zk, Zl) = 1
4!

∑(i,j,k,l)
(s,t,u,v)(astbuv + astbst − astbsu − astbtv) the sum over the 24 possible

permutations of the indexes (i, j, k, l).

In Lee et al. (2020) it is proposed to reject the null hypothesis of conditional mean independence
if and only if Tn = nFMDD2

n (Yn|Xn) > C, where C is a constant taken based on the α significance
level. The power of the test is studied and demonstrated to be consistent under both, local and fixed
alternatives, using a consistent wild bootstrap calibration.
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A second recent contribution is the paper of Lai et al. (2020), devoted to test a modified null
hypothesis: H̃0 : “X is independent of ε and m satisfies the linear model given by (7) in Section 2”.
Using the recent results related with the distance covariance (see Székely et al. (2007), Lyons (2013)
and Sejdinovic et al. (2013)). Consider now (X , ρ

X̃
) and (Y, ρ

Ỹ
) two semimetric spaces of negative

type, where ρ
X̃

and ρ
Ỹ

are the corresponding semimetrics. Denote by (X̃, Ỹ ) a random element
with joint distribution P

X̃Ỹ
and marginals P

X̃
and P

Ỹ
, respectively, and take (X̃ ′, Ỹ ′) an iid copy of

(X̃, Ỹ ). The generalized distance covariance (X̃, Ỹ ) is given by

θ(X̃, Ỹ ) = E
[
ρ
X̃

(X̃, X̃ ′)ρ
Ỹ

(Ỹ , Ỹ ′)
]

+ E
[
ρ
X̃

(X̃, X̃ ′)
]
E
[
ρ
Ỹ

(Ỹ , Ỹ ′)
]

− 2E
(X̃,Ỹ )

[
E
X̃′

[
ρ
X̃

(X̃, X̃ ′)
]
E
Ỹ ′

[
ρ
Ỹ

(Ỹ , Ỹ ′)
]]
.

This corresponds with expression (16) and (17) for the vectorial case.

As noted by Lai et al. (2020) the generalized distance covariance can be alternatively written as

θ(X̃, Ỹ ) =

∫
ρ
X̃

(x̃, x̃′)ρ
Ỹ

(ỹ, ỹ′) d[(P
X̃Ỹ
− P

X̃
P
Ỹ

)× (P
X̃Ỹ
− P

X̃
P
Ỹ

)].

where d[·] denotes the differential term of the integral.

Note that θ(X̃, Ỹ ) = 0 if and only if X̃ and Ỹ are independent. Given an iid sample {(X̃i, Ỹi)}ni=1

of (X̃, Ỹ ), an empirical estimator of θ is given by

θn(X̃, Ỹ ) =
1

n2

∑
i,j

kij`ij +
1

n4

∑
i,j,q,τ

kij`qτ −
2

n3

∑
i,j,q

kij`iq

with kij = ρ
X̃

(X̃i, X̃j) and `ij = ρ
Ỹ

(Ỹi, Ỹj). Taking X̃ = X and Ỹ = ε = Y − 〈X,β〉HX , ρ
Ỹ

is
the absolute value and ρ

X̃
is the distance associated to the Hilbert space HX . The test statistic is

Tn = θn(ε̂, X) and is based on {(Xi, Yi − 〈Xi, β̂〉HX )}ni=1.

In other recent papers Hu et al. (2020) and Zhao et al. (2022), the null hypothesis about the
linearity given in (7) is tested using related approximations based on the MDD adapted to the
functional context.

All the tests described in this section have challenging limit distributions and need to be
calibrated with resampling techniques.

The references mentioned above are for the extension of DC and MDD coefficients to specification
tests in the functional data context. Specification tests, in general, for independence testing between
two functional variables X and Y , conditioned to a third one Z, are a really though problem. Some
very relevant and recent papers in this topic are the ones of Shah and Peters (2020) or Lundborg et al.
(2022). A deep study of the CDC in the functional framework is still an open problem of interest for
future research.
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4 Applications

In this last section, we illustrate some of the recently developed new methodologies for specification
tests in the functional framework introduced along the document. Three real datasets examples with
functional nature are employed.

The first application is an illustration of the test of equality of distribution functions. This is
devoted to the Medflies data (Carey et al. (1998)). In this example, the Mediterranean fruit flies’
lifetime distributions are compared with respect to their fertility (number of eggs). The distinction is
done in terms of short-lived or long-lived individuals. As a result, a test of equality of distribution
for functional data is performed (Section 4.1).

Secondly, other well-known data set in the functional framework is employed. This is the
Tecator database (see Ferraty and Vieu (2006)). In this application, it is wanted to determine if the
spectrometric functional variable (absorbance), as well as its first and second derivatives, support
relevant information to explain the fat content in a regression model. For this purpose, significance
tests are applied over the considered functional covariates (Section 4.2).

Finally, a GoF test based on CD is applied to check if a Ornstein-Uhlenbeck diffusion process
explains the evolution of high-frequency financial data. In particular, Johnson & Johnson stock prices
from August 2018 to August 2019 are analyzed (Section 4.3).

4.1 Testing equality of distributions in the Medflies data set

Medflies is a functional dataset usually used for classification purposes. See Carey et al. (1998) for
more details. This is available in the ddalpha (Pokotylo et al. (2019)) package of R (R Core Team
(2022)). This contains the medflies trajectories for number of eggs laid differentiation between short
or long-lived individuals. The goal is to classify a group of Mediterranean flies as short-lived or
long-lived (alive after day 50), X and Y populations, respectively, given their fertility up to day
35. The dataset contains 278 trajectories of long-lived and 256 for the short-lived group. This is
considered a hard classification problem and the best overall ratio is around 60%. As a result, it
makes sense to wonder if it is possible to correctly discriminate between both groups. For this
purpose, a test for comparison of populations in the function context is applied.

First, data on flies that have not laid any egg are removed to avoid outliers. We found this type
of individuals for both classes: short-lived as well as long-lived flies. This results in a total of 266
long-lived trajectories and 246 of the short-lived ones for the new dataset. As the number of eggs
laid is a discrete variable we considered the raw data as well as a logaritmic transformation to avoid
heterogeneity problems. Next, functional data is smoothed using nonparametric kernel estimation.
This is done using the optim.np function of fda.usc library (Febrero-Bande and Oviedo de la
Fuente (2012)). We have employed a bandwidth parameter value of h = 1, other values could be
considered as well. However, we have appreciated a suitable smoothing taking this quantity. Results
for first 30th resulting samples are displayed in Figure 1 for both groups.

Thus, after smoothing both functional variables X and Y , corresponding to short-lived and
long-lived populations, we are interested in determining if there exits significance differences
between both groups in terms of their distributions. For this purpose, a test for comparison of the
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Figure 1: First 30th smoothed medflies trajectories for number of eggs laid (left) and log(number of
eggs laid +0.1) (right) for short-lived individuals (—) and long-lived ones (—).

distribution of the populations in the functional framework is needed. This results in testing the null
hypothesis of H0 : X ∼ Y .

We resort to random projections in functional data (Cuesta-Albertos et al. (2007)) to construct a
proper statistic for the test. Once our data is projected, scalar procedures for comparison of popu-
lations can be employed. In an illustrative way, we decided to use a total of 10 random projections
and then apply Kolmogorov-Smirnov (KS10) and Anderson-Darling (AD10) techniques. For this
aim, function XYRP.test of the fda.usc library (Febrero-Bande and Oviedo de la Fuente (2012)) is
applied. Obtained results are collected in Table 1.

KS10 AD10

smfl 1.3× 10−4 6.5× 10−4

log(smfl + 0.1) 0.00804 0.01547

Table 1: Resulting p-values for Kolmogorov-Smirnov (KS10) and Anderson-Darling (AD10) tests
using 10 random projections for smoothed medflies trajectories (sfml) and its logarithmic version
(log(smfl + 0.1)).

In view of the results, all p-values< 0.0155, we have evidences to reject the null hypothesis that
the number of eggs laid for fruit flies are equally distributed for short and long lived individuals.
Thus, we can conclude that there exists difference between the fertility of a fly with long life ex-
pectancy compared to one with a lower rate. Therefore, new classification methodologies for the
functional data context are needed to correctly discriminate between both groups.
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4.2 Significance tests with functional covariates for the Tecator database

The Tecator data set records the content of water, fat and protein percentages jointly with ab-
sorbances spectrometric curves, measured in a 100-channel spectrum, of a total of n = 215 meat
samples. This is available in the fda.usc (Febrero-Bande and Oviedo de la Fuente (2012)) package
of R (R Core Team (2022)). This database is a well-studied real data example in the functional
framework. Some examples where this data set is considered are the works of Ferraty and
Vieu (2006), García-Portugués et al. (2014), Lee et al. (2020) and Shi et al. (2022) among others.
Following previous studies guidelines, we are interested on model the percentage of fat (Y) using the
spectrometric curves information (X). In particular, we consider the absorbance (ab) and its first and
second derivatives (ab1 and ab2). Representation of the considered covariates is collected in Figure 2.
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Figure 2: Left: absorbance curves. Middle: first derivative of absorbance curves. Right: second
derivative of absorbance curves.

To verify if all considered covariates are relevant in the fat percentage explanation or if some do
not support enough information, we can resort to significance tests. In particular, we want to test

H0 : E [Y |X ] = E[Y ] almost surely vs. H1 : P (E [Y |X ] 6= E[Y ]) > 0,

whereX can be the absorbance information as well as its first or second derivative. This corresponds
with the test displayed in expression (22) of Section 3.3 for the vectorial case.

Following similar ideas to Lee et al. (2020) we can implement the test using the FMDD coeffi-
cient introduced previously in Section 3.5. Using a B = 1000 resampling wild bootstrap calibration
procedure, we obtain null p-values for raw absorbance (ab), first (ab1) and second derivative (ab2).
As a result, we have evidences to reject the null hypothesis of conditional mean independence and
to claim that these three covariates provide relevant information in the fat percentage explanation.
It is interesting to note that no model assumption or structure is needed, as all types of possible
dependence in mean are collected in the considered H0.

Moreover, we can go a step further to detect which covariates are the most and least relevant ones.
For this aim, we can define a scale invariant functional martingale difference correlation coefficient
(FMDC). This is an extension of the MDC2(Y |X) term introduced in (24) for the vectorial context
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ab ab1 ab2
DC 0.2 0.78 0.91

FMDC 0.45 0.88 0.94

Table 2: Results of distance correlation (DC) and functional martingale difference correlation (FMDC)
coefficients for Absorbances (ab), first Absorbances’ derivative (ab1) and second one (ab2).

just applying the considered metrics for the functional martingale calculation. Now, we build our
functional scale invariant coefficient using the unbiased FMDD2

n (Yn|Xn) estimator formula intro-
duced in (33). Results are displayed in Table 2. We see as the ab2 term is the one with the greatest
explanation capability, following for ab1 and ab. This highlights the fact that employing the sec-
ond derivative instead of ab increases the explanatory power of the regression model. Besides, we
calculate the DC coefficient and similar results are obtained.

4.3 GoF test for a high-frequency dynamic model example: Johnson & Johnson com-
pany stock prices

To illustrate a real-data application for dynamic models, we apply the ideas of DC to test a GoF of
the Ornstein-Uhlenbeck process as an autorregresive Hilbertian (ARH) process. We refer the reader
to Bosq (2000) for more details about ARH processes.

Let {Xt}t∈R+ be a continuous-time zero-mean stochastic process. Following the ideas in Álvarez-
Liébana et al. (2022), we split the path, corresponding to the observed domain of the t ∈ R+ term of
the stochastic process, as Xn(t) = Xnh+t, with t ∈ [0, h], and Xn ∈ H = L2 ([0, h]), for each n ∈ Z+,
constituting an infinite-dimensional discrete-time process. The zero-mean autoregressive Hilbertian
process of order one X = {Xn}n∈Z+ , denoted as ARH(1), satisfies the state equation

Xn(t) = Λ (Xn−1) (t) + En(t), n ∈ Z+, t ∈ [0, h],

with Xn, En ∈ H = L2([0, h]), Λ the linear autocorrelation operator, and {En}n∈Z an independent
sequence of Gaussian processes with null mean (strong-white noise) with iid components (see As-
sumptions considered in Álvarez-Liébana et al., 2022). The Ornstein-Uhlenbeck process,

Xt = X0e
−θt + µ

(
1− e−θt

)
+ σ

∫ t

0
e−θ(t−s) dWs, t, s ∈ R+,

with X0 the initial condition at t0 = 0, can be characterized as an ARH(1) process. Let H be a
separable Hilbert space given by H = L2

(
[0, h],B[0,h], λ+ δ(h)

)
, with B[0,h] the σ-algebra generated

by the subintervals [0, h], λ the Lebesgue measure and δ(h)(s) = δ(s − h) the Dirac measure at h.
Given a centered process {Xt}t∈R+ , the Ornstein-Uhlenbeck process can be characterized as a zero-
mean stationary ARH(1) model {Xn(t) := Xnh+t, t ∈ [0, h]}n∈Z+ , given by

Xn(t) = e−θtXn−1(h) + σ

∫ nh+t

nh
e−θ(nh+t−s) dWs = Λθ (Xn−1) (t) + En (t) ,

with n ∈ Z+ and where
{
En(t) := σ

∫ nh+t
nh e−θ(nh+t−s) dWs

}
n∈Z+ constitutes aH-valued strong white

noise and Γθ is a bounded linear operator, for each θ > 0.
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Figure 3: Johnson & Johnson stock prices recorded every minute from August 2018 to August 2019.
Observed path (left) and centered daily price curves (right).

The dataset considered consist on Johnson & Johnson stock prices from August 1, 2018 to August
7, 2019, recorded every minute. Figure 3 shows the price path (left) with 98 280 observations and
the daily curves {Xi(t)}ni=1 with n = 252 curves (right) discretized in 390 equispaced grid points,
that is, 1-minute data. The daily price curves are evaluated in H = L2

(
[0, 1],B[0,1], λ+ δ(1)

)
, where

the [0, 1] interval corresponds to a 1-day observation window. We test the parametric form of the
Ornstein-Uhlenbeck process, that is, that the daily curves {Xi(t)}ni=1 constitute an ARH(1) process
Xn(t) = Λ(Xn−1)(t) + En(t) with Λ(X )(t) := Λθ(X )(t) = e−θtX (h). As in López-Pérez, Febrero-
Bande, and González-Manteiga (López-Pérez et al.), to test the specification of the process using the
independence test, we have the test

H0 : En(t) ⊥ Xn(t) vs. H1 : En(t) 6⊥ Xn(t)

which is equivalent to test the Ornstein-Uhlenbeck specification. The p-value obtained is 0.0011,
therefore the null hypothesis is rejected, as significant evidence is found against the Ornstein-
Uhlenbeck as a ARH(1) process for sensible significance levels. Explaining the dynamic of the stock
price may require a more intricate model, or coupling the model with jumps, as there was a decline
in December due to allegations against the company.

5 Conclusions

In this article, existing procedures about specification tests in the presence of functional data are
reviewed. These can be fundamentally differentiated into two types:

a) Extensions of classic procedures developed for the vectorial framework. These are based on
distances between a nonparametric universally consistent pilot estimator and another one
estimated under the null hypothesis assumptions.
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b) Using correlation generalized coefficients. These are employed to measure independence, con-
ditional mean independence and conditional independence. These correspond with the ana-
lyzed DC, MDD and CDC coefficients, respectively.

The development of specification tests for the functional context is not an easy task. In fact,
most of the references date from the last decade. This field has attracted great interest, resulting in
a very fast evolution in the recent years. These novel procedures face some important limitations as
the curse of dimensionality in the big data context involving functional data. For this reason, it is
currently an interesting line of research for the big data processing.

All the manuscript review is performed for specification tests in static functional models.
Nevertheless, an example of specification testing for a functional continuous-time process is given
in Section 4.3 to illustrate their possible adaptations.

An open line for future research is the development of specification tests for functional time
series. Articles such as the ones of Edelmann et al. (2019), Davis et al. (2018), Dehling et al. (2020),
Lee and Shao (2018) or Meintanis et al. (2022) could be a good starting point for construction of new
specification tests in dynamic models.

There are several practical problems where functional data are of potential interest. Specially,
in the medical context, where a continuous monitoring of patients features can be desirable. An
example is the glucose monitoring in diabetes disease. The case of cure models, from the Survival
Analysis, is specially relevant. Works as the ones of Zhang et al. (2021) or Edelmann et al. (2022)
in the vectorial context based on DC ideas could bridge a gap for specification tests in cure models
with functional data.

Eventually, it is important to remark that all the exposition was developed for functional data in
Hilbert spaces. There are papers, like Castro-Prado and González-Manteiga (2020) or the excellent
review of Jansen (2021), which extend the results to broader spaces. In these last references, a unified
version of dependence measures in general metric spaces, being the Hilbertian ones a particular case,
is performed. Specification tests for not only the Hilbertian case, but also for general metric spaces,
is another open problem for future research.

Acknowledgments

This paper is a consequence of the invitation from Editor of this journal and the President of the
Instituto Nacional de Estadística (INE) to produce an article as the second recipient of the Premio
Nacional de Estadística. I am really grateful to both of them. The creation of the Spanish National
Prize in Statistics was an excellent initiative of professor Juan Manuel Rodríguez Poo (the before
mentioned president). This represents a fantastic link between the INE and the developments of
Statistics in Spain. This work would not have been possible without the collaboration of all my
co-authors: Rosa María Crujeiras Casais, Manuel Febrero Bande, Laura Freijeiro González, Eduardo
García Portugués y Alejandra María. López Pérez. My acknowledgment also extends to the rest
of my co-authors and all my past students in my academic life. I am an researcher interested in
Statistics as a consequence of all I have learned from them.

SJS, VOL. 4, NO. 1 (2022), PP. 9 - 40
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The rule of thumb proposed by Goodman for compliance checking to Benford’s law, instead, is shown
to be statistically unfounded. For very large sample sizes (N > 1000), all existing statistical tests are
inappropriate for testing Benford’s law due to its empirical nature. We propose a new statistic whose
sample values are asymptotically independent on the sample size making it a natural candidate for
testing Benford’s law in very large data sets.
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1 Introduction

Benford’s law (Benford, 1938) on the distribution of the first significant digit (FSD) of numerical data
is an empirical law that has been observed to emerge in disparate data sets, from finance (Nigrini,
1996; Cho and Gaines, 2007) and natural sciences (Sambridge et al., 2010) to COVID 19 data (Sam-
bridge and Jackson, 2020; Campanelli, 2022).

By analyzing the data coming from very different distributions, such as length of rivers, popu-
lations of cities, etc., Benford found that the probability of occurrence of the first significant digit d,
PB(d), followed the empirical law

∀ d ∈ {1, ..., 9} : PB(d) = log

(
1 +

1

d

)
. (1)

Although we know today that Benford’s law holds for some particular distributions (see Morrow
(2014) and references therein) and that specific principles lead to the emergence of such a law (Hill,
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42 L. CAMPANELLI

1995a,b,c), the exact fundamental bases upon which Benford’s law reposes are still unknown [for a
review of Benford’s law, see Miller (2015)].

The most common test in use for testing Benford’s law is the Pearson’s χ2. In our case the χ2

statistic can be written as

χ2 = N
9∑
d=1

[PB(d)− P (d)]2

PB(d)
, (2)

where P (d) is the observed relative frequency of the FSD d, and N is the sample size. However, such
a test is based on the null hypothesis of a continuous distribution, and is generally conservative for
testing discrete distributions as the Benford’s one (Noether, 1963). This problem has been recently
solved by Morrow (2014) who has computed asymptotically test values for this statistic under the
specific null hypothesis that Benford’s law holds.

Another estimator used for checking conformance to Benford’s law is the “normalized Euclidean
distance”, d∗, introduced by Cho and Gaines (2007) and defined by

d∗ =
1

D

√√√√ 9∑
d=1

[P (d)− PB(d)]2 , (3)

where D =
√∑8

d=1 P
2
B(d) + [P (9)− 1]2 is a normalization factor that assures that d∗ is bounded by 0

and 1. At the moment of its introduction, however, the properties of this new estimator were not well
understood and no test values were reported. These problems have been solved by Morrow (2014),
who has provided asymptotically test values for the “Euclidean distance”

d∗N =

√√√√N
9∑
d=1

[P (d)− PB(d)]2 , (4)

and by the author who, recently enough (Campanelli, 2023), has found an empirical expression of
its cumulative distribution function. A simple measure of fit to Benford’s law, instead, has been
proposed by Goodman (2016). His “rule of thumb” for conformance to Benford’s law is d∗ ≤ 0.25.

One of the goals of this paper is to show the statistical incorrectness of Goodman’s rule of thumb.
Also, we will show that the use of p values of the χ2 statistic for testing Benford’s law is only appro-
priate for “qualitative” analyses, while the use of the Euclidean distance test should be preferred in
“quantitative” analyses. Finally, we will discuss some limitations of existing statistical tests to assess
the goodness-of-fit to Benford’s law for very large number of data points (N ≤ 1000) and/or small
range of data, and we will propose a new statistic that overcome such limitations.

2 Euclidean distance statistic, χ2 test, and Goodman’s rule of thumb

The knowledge of the cumulative distribution function of the Euclidean distance statistic as a func-
tion of the sample size N , as derived in Campanelli (2023), makes possible the computation of p
values and then allow us to check for the conformance of a set of data to Benford’s law in a quanti-
tative way. It is interesting, for example, to reconsider the data that allowed Benford to discover the
law that now brings his name. In Table 1, we show the Euclidean distance d∗N and its corresponding
p value for the first-digit distribution of the twenty different groups of counts discussed by Ben-
ford in his original paper (Benford, 1938), while in Figure 1, we show the corresponding first-digit
frequencies superimposed to Benford’s law.
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Figure 1: Panels A to T. Observed first-digit frequencies for the samples originally considered by
Benford (1938) and shown in Table 1. Bottom panel. First-digit frequency of the values of the physical
constants tabulated in Lide (2002). The (blue) continuous lines represent Benford’s law.

SJS, VOL. 4, NO. 1 (2022), PP. 41 - 54



44 L. CAMPANELLI

Group Title N d∗ d∗N p χ2 p(χ2)

A Rivers, Area 335 0.0354 0.6705 0.78(9) 4.9617 0.7617
B Population 3259 0.0602 3.5625 0.000(0) 118.63 0.0000
C Constants 104 0.1581 1.6704 0.00(4) 24.441 0.0019
D Newspapers 100 0.0107 0.1107 0.999(9) 0.1602 1.0000
E Spec. Heat 1389 0.0949 3.6652 0.000(0) 111.21 0.0000
F Pressure 703 0.0122 0.3360 0.99(6) 1.2704 0.9959
G H.P. Lost 690 0.0188 0.5111 0.94(6) 3.4606 0.9022
H Mol. Wgt. 1800 0.0931 4.0924 0.000(0) 125.76 0.0000
I Drainage 159 0.0843 1.1018 0.17(8) 11.142 0.1938
J Atomic Wgt. 91 0.1893 1.8718 0.000(9) 17.246 0.0277
K n−1,

√
n,... 5000 0.0827 6.0631 0.000(0) 440.76 0.0000

L Design 560 0.0588 1.4430 0.02(4) 19.213 0.0138
M Digest 308 0.0403 0.7333 0.69(8) 3.2271 0.9193
N Cost Data 741 0.0443 1.2503 0.08(0) 15.601 0.0485
O X-Ray Volts 707 0.0313 0.8622 0.48(9) 5.4256 0.7113
P Am. League 1458 0.0315 1.2461 0.08(2) 14.595 0.0675
Q Black Body 1165 0.0264 0.9350 0.37(7) 9.5229 0.3001
R Addresses 342 0.0225 0.4314 0.98(0) 1.2966 0.9956
S n1,n2,... n! 900 0.0583 1.8140 0.00(1) 24.994 0.0016
T Death Rate 418 0.0480 1.0178 0.26(6) 7.5550 0.4781

Table 1: The Euclidean distance statistic d∗N and its corresponding p value for the first-digit distribu-
tion of twenty different groups of counts discussed by Benford in his original paper (Benford, 1938).
Also indicated are the total number of counts for each group, N , and the normalized Euclidean dis-
tance d∗. (Digits in parentheses at the third and fourth decimal places indicate an error on those digits
of ±1). The last two columns show the χ2 score and its corresponding p value, p(χ2).
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The data considered by Benford were collected from many different and disparate fields, from
random numbers appearing within the covers of the same magazine to the values of physical con-
stants [the rows K and S refer to an amalgamation of the observations of the first-digit frequencies
of reciprocal and roots (row K) and powers and factorial (row S) of positive natural numbers]. At a
first glance, the data suggest a certain regularity in the distribution of the first-digit, as it is evident
in Figure 1, and as it was evident to Benford himself to the point that he claimed that “as no definite
exceptions have ever been observed among true variables, the logarithmic law for large numbers ev-
idently goes deeper among the roots of primal causes than our number system unaided can explain”.

Surprisingly enough, however, half of the cases considered by Benford do not conform to Ben-
ford’s law at a significance level of 0.10. Moreover, 40% do not conform at a significance level of 0.05
and one quarter do not conform at a significance level of 0.001.

The reasons for a non-conformance to Benford’s law can be disparate. As stressed by Benford’s
himself (Benford, 1938), Benford’s law “applies particularly to those outlaw numbers that are without
known relationship rather than to those that individually follow an orderly course; and therefore the
logarithmic relation is essentially a Law of Anomalous Numbers”. Thus, groups E, H, J, and S do not
comply to Benford’s law probably because the underlying distributions of numbers do not satisfies
Benford’s requirement of “non-orderliness”.

Another possibility is that the range of data is not sufficiently large to ensure conformance to
Benford’s law, which holds in the limit of an infinite range of data (Benford, 1938). This is probably
the case of group C. In fact, if one considers the values of the physical constants as reported in Lide
(2002), whose values extend on more than about 68 decades, one finds full conformance to Benford’s
law (see the bottom panel of Figure 1). In this case, we have N = 207, d∗ = 0.0550, d∗207 = 0.8196, and
p = 0.55(8).

Groups B and K are the groups with the highest number of counts. A possible reason for the
non-conformance in the case could be the enormous power of statistical tests for large N , which
makes them too rigid to assess the goodness-of-fit well. This problem, and a possible solution, will
be discussed in Sec. III.

It is worth observing that the use of the Cho-Gaines’ normalized Euclidean distance d∗ together
with Goodman’s rule of thumb for compliance to Benford’ law, d∗ < 0.25, would give a compliance
to Benford’s law for all groups of data in Table 1. Such a compliance is highly questionable. For
example, consider group D and J. Both groups consist of a number of counts of about 100, but while
D “seems” to follow Benford’s law, J displays a big departure from it (see Figure 1).

Also, group B “seems” to display a high level of “Benfordness”, but the use of the Euclidean
distance statistic excludes the compliance to Benford’s law at a significance level of 0.001.

This sort of “visual Benfordness” is then not reliable. This can be also understood by using the
Pearson’s χ2 statistic. In the last two columns of Table 1, we show the value of the χ2 and its cor-
responding p value, p(χ2), for each group of count discussed by Benford (for the case of the values
of the physical constants discussed above, we have χ2 = 5.6983, and p(χ2) = 0.6810). As it is clear,
the p values of the χ2 statistic differ, sometimes substantially, from the ones of the Euclidean distance
statistic. This strongly indicates that the use of the χ2 statistic for checking the conformance of a set of
data to Benford’s law is not completely reliable and should be used only for “qualitative” analyses.
This is not surprising since, as it is well known, the χ2 test has been designed for testing continuous
distributions and is generally conservative for testing discrete ones, such as Benford’s law (Noether,
1963).

In order to better understand the above two issues, the incorrectness of Goodman’s rule of thumb
and visual Benfordness, we have prepared six first-digit mock distributions with different total num-
ber of counts N . These are presented in Table 2 and visualized in Figure 2.

SJS, VOL. 4, NO. 1 (2022), PP. 41 - 54
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Figure 2: Graphical representations of the first-digit (mock) distributions in Table 2. The (blue) con-
tinuous lines represent Benford’s law.

Group N f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) d∗ d∗N p χ2 p(χ2)

1 2500 0.280 0.200 0.136 0.088 0.074 0.070 0.068 0.044 0.040 0.0366 1.8949 0.000(7) 26.110 0.0010
2 500 0.360 0.200 0.100 0.060 0.080 0.040 0.040 0.060 0.060 0.0828 1.9190 0.000(6) 28.117 0.0005
3 100 0.150 0.090 0.250 0.050 0.110 0.180 0.080 0.008 0.010 0.2449 2.5375 0.000(0) 52.123 0.0000
4 40 0.450 0.350 0.100 0.050 0.000 0.000 0.025 0.025 0.000 0.2551 1.6718 0.00(4) 19.887 0.0108
5 20 0.300 0.400 0.150 0.150 0.000 0.000 0.000 0.000 0.000 0.2597 1.2034 0.10(2) 12.397 0.1343
6 10 0.100 0.300 0.200 0.100 0.100 0.200 0.000 0.000 0.000 0.2856 0.9361 [0.25, 0.50] 6.9145 0.5459

Table 2: The normalized Euclidean distance d∗, and the Euclidean distance statistic d∗N and its corre-
sponding p value, for six first-digit mock frequency distributions, f(d), with different total number
of counts N . (Digits in parentheses at the third and fourth decimal places indicate an error on those
digits of ±1). The last two columns show the χ2 score and its corresponding p value, p(χ2).
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A look at Figure 2 would indicate high Benfordness of group 1, a moderate Benfordness of group
2, a low-level Benfordness of group 4, and non-Benfordness of groups 3, 5, and 6. The Euclidean
distance statistic, on the contrary, shows that groups 1 and 2 do not conform to Benford’s law at a
significance level of 0.001 and group 4 at a significance level of 0.005. Moreover, groups 5 and 6 do
conform to Benford’s law at significance levels of 0.10 and> 0.25, respectively. Also, although groups
1, 2, and 3 do comply to Benford’s law according to Goodman’s rule, they do not at a significance
level of 0.001 according to the Euclidean distance statistic. Finally, while the Benfordness of groups 5
and 6 should be rejected by Goodman’s rule, the Euclidean distance statistic indicates a compliance
to Benford’s law at very high significance levels. Qualitatively, one can reach similar conclusions by
using the χ2 statistic (see the last two columns in Table 2).

Before considering group 4, it is worth noticing that Goodman’s rule of thumb was obtained by
the author by considering 40 empirical data sets displaying some visual “degree” of Benfordness
(such a degree of Benfordness was not quantified by Goodman). He found that 95% of data sets
had a d∗ smaller than 0.256. So, he concluded that a value d∗ > 0.25 is a strong indication of non-
compliance to Benford’s law, independently on the total number of counts N . We already showed
that Goodman’s rule generates wrong results when applied to data sets with counts larger or smaller
than N = 40. But also when considering N around 40, one finds that Goodman’s rule is not reliable.
Indeed, let’s now consider group 4 which contains exactly 40 counts. With a d∗ value of 0.2551 and a
d∗N = 1.6718, the null hypothesis of conformance to Benford’s law cannot be rejected at a significance
level of 0.05 according to Goodman results, while it is rejected at a significance level of 0.005 by the
Euclidean distance test. In this case, then, Goodman’s rule is very conservative in rejecting the null
hypothesis. This is probably due to the fact that the 40 empirical data sets used by Goodman had
different “levels” of Benfordness.

3 The problem with very large data sets: ε-Benford’s law

The Euclidean distance and the χ2 tests, and in general all other tests used for checking the com-
pliance of a data set to Benford’s law, are very sensitive to the sample size N . In particular, they
have enormous power for large N making them too rigid to assess the goodness-of-fit well: even a
tiny deviation of the first-digit counts from Benford’s distribution will be statistically significant. The
severity of the existing tests for testing Benford’s law for large N , can be traced back to the following
reasons:

i) Benford’s law does not represent a true law of numbers;
ii) Benford’s law emerges in the limit of infinite range of the underlying distribution.
The emergence of Benford’s law from a particular sample depends on the properties of the un-

derlying distribution. However, no general criteria has be found that fully explain when and why
Benford’s law holds for a generic set of data. So, one major problem when testing for Benford’s law
is that it is not always possible to know in advance if a set of data is expected to follow it or not. This
means that the rejection/acceptance of the null can be misleading when the underlying distribution
is “close” to but not exactly Benford’s, and this regardless of data quality. This problem is exacerbated
by the increase of power of statistical tests with the sample size and, for very large sample sizes, say
N � 1000, it makes any statistical test unreliable.

Also, Benford’s law, even when it is known to hold exactly Morrow (2014); Hill (1995a,b,c),
emerges from underlying distributions that extend on infinite ranges. In real applications, how-
ever, the set of data is restricted to a finite range and, typically, to just few decades. For finite ranges,

SJS, VOL. 4, NO. 1 (2022), PP. 41 - 54
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Year N d∗ d∗N χ2 p

1994 9632 0.052 5.3 350 > 0.10
1996 11108 0.081 8.9 510 < 0.001
1998 9694 0.061 6.2 420 (0.01, 0.05)
2000 10771 0.072 7.7 670 (0.001, 0.01)
2002 10348 0.097 10 1100 < 0.001
2004 8396 0.130 12 2200 < 0.001

Table 3: The normalized Euclidean distance d∗, the Euclidean distance statistic d∗N , and the χ2 score
for the first-digit distribution of in-kind contributions for six particular election cycles discussed by
Cho and Gaines (2007). Also indicated is the total number of counts for each group, N . The last
column shows the p values of the Euclidean distance statistic for a ε-Benford’s distribution with
ε = 0.20.

then, we expect a deviation from Benford’s law even if the underlying distribution is exactly Benford.
Moreover, we expect that such a deviation becomes statistically significant at large N .

In order to overcome the problem of the enormous power of existing statistical tests for large
N , Cho and Gaines (2007) introduced the normalized Euclidean distance statistic in the attempt to
quantify the deviation of a data set from Benford’s law. However, as pointed out by the authors, the
use of this statistic can only identify possible anomalies that deserve further inspection, but does not
represent a “quantitative” statistical tool for testing Benford’s law.

To better understand this point, let us consider the data analyzed by Cho and Gaines (2007) about
the first-digit frequencies of in-kind contributions for six particular election cycles. In Table 3, we
show the normalized Euclidean distance d∗, the Euclidean distance statistic d∗N , and the χ2 score
for such distributions. Due to the extremely large values of both d∗N and χ2, the null hypothesis of
conformance to Benford’s law is rejected at any conceivable significance level for all years. The very
large number of counts for each group, of order of 105, makes the Euclidean distance and χ2 tests too
powerful to properly assess the goodness-of-fit. However, the values of the normalized Euclidean
statistic d∗, as well as those of the Euclidean statistic d∗N , indicate that the last two elections exhibit a
somewhat worse fit than their earlier counterparts (Cho and Gaines, 2007).

In the rest of this Section, we will extend the work of Cho and Gaines by making the identification
of anomalies more “quantitative”.

We first give the following definition. A random variable X , whose first-digit probability distri-
bution function is Pε(d), follows a ε-Benford’s distribution iff

∀ d ∈ {1, ..., 9} :

∣∣∣∣Pε(d)− PB(d)

PB(d)

∣∣∣∣ ≤ ε. (5)

Here, the positive parameter ε × 100% quantifies the maximum percentage deviation of the values
of the first-digit distribution of X from Benford’s law. [Notice that if a random variable X follows
a ε-Benford distribution, it automatically ε-satisfies Benford’s law in the sense specified byMorrow
(2014).]

The first-digit frequencies of in-kind contributions discussed above fail to conform to Benford’s
law even if their deviations from the law are relatively small, as confirmed by the smallness of the
normalized Euclidean distance statistic. Indeed, the underlying random variable could be “intrinsi-
cally” ε-Benford, or it became so due to the limitedness of the range of data. Whatever is the case, we
may assess the goodness-of-fit of such frequencies to ε-Benford’s law after finding the appropriate
test values of the Euclidean distance statistic for a ε-Benford distribution.
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To this end we performed a Monte Carlo simulation consisting, for each sample sizeN , of n draws
from a Benford’s distribution PB(d), with each value of PB(d) being multiplied by a (pseudo-)random
number in the interval [1 − ε, 1 + ε], thus obtaining the ε-Benford distribution Pε(d). In particular,
we considered the cases ε = 0.05, 0.10, 0.15, 0.20, 0.25, and we took n = 105 for 50 ≤ N ≤ 10000 and
n = 104 for 10000 < N ≤ 100000. We started with N = 50 and N = 100, and then we proceeded up
to 1000 by steps of 100, up to 10000 by steps of 1000, and up to 100000 by steps of 10000. We then
evaluated the Euclidean distance statistic for the ε-Benford distribution, d (ε)

N , as

d
(ε)
N =

√√√√N
9∑
d=1

[Pε(d)− PB(d)]2 . (6)

The observed probability distribution function of the Euclidean distance statistic exhibits a regular
dependence of the sample sizeN . This is apparent in the upper panels of Figure 3, where we show its

mean d (ε)
N and its standard deviation s (ε)

N as a function of the sample size N . In the middle and lower
panels of Figure 3, instead, we show the test values d (ε)

N,1−α for α = 0.10, 0.05, 0.01, and 0.001 [the

test values d (ε)
N,1−α are defined as Cdf [d

(ε)
N,1−α] = 1 − α, where Cdf [d

(ε)
N ] is the (observed) cumulative

distribution function of d (ε)
N ]. The (blue) continuous lines represent fits of the observed quantities and

are divided in two intervals, 50 ≤ N ≤ 103 and 103 ≤ N ≤ 105. All nonlinear fits can be expressed as

θ
(ε)
N =

(
a+ bN−1/2 + cN−1

)√
N, (7)

where θ (ε)
N represents any of the variables d (ε)

N , s (ε)
N , and d (ε)

N,1−α. The fitting values a, b, and c, for both
50 ≤ N ≤ 103 and 103 ≤ N ≤ 105, are shown in Table 4.

The choice of the fitting function in Eq. (7) is suggested by the behaviour of the quantities
θ

(ε)
N /
√
N , which numerically are found to be slowly decreasing function of N approaching constant

limiting values (see Figure 3). Indeed, assuming that the parameters a, b, and c remain constant for
N > 105, it follows from Eq. (7) that all quantities θ (ε)

N /
√
N approach asymptotic constant values for

a given ε,

lim
N→∞

θ
(ε)
N√
N

= θ (ε). (8)

A linear fit of these values as a function of ε gives

d (ε) = −0.0011 + 0.1960 ε, (9)
s (ε) = −0.0004 + 0.0596 ε, (10)

and

d
(ε)
0.90 = −0.0017 + 0.2791 ε, (11)

d
(ε)
0.95 = −0.0020 + 0.3033 ε, (12)

d
(ε)
0.99 = −0.0024 + 0.3410 ε, (13)

d
(ε)
0.999 = −0.0029 + 0.3717 ε. (14)

We show the limiting values θ (ε) and their corresponding linear fits in Figure 4. It is worth notic-
ing that these fits cannot be extrapolated down to ε = 0. Indeed, from the discussion in Campanelli
(2023), we expect θ (ε) → 0 in the limit ε→ 0.
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Figure 3: The mean (upper left panel), standard deviation (upper right panel), and test values (middle
and lower panels) of the Euclidean distance statistic (6) as a function of the sample size N , together
with their nonlinear fits (blue continuous lines), Eq. (7), for different values of ε. From bottom to top:
ε = 0.05, 0.10, 0.15, 0.20, and 0.25.
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d
(ε)
N

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0024 0.8429 0.1592 0.0085 0.3686 9.329
0.10 0.0090 0.7536 0.5061 0.0187 0.1252 11.10
0.15 0.0180 0.6478 0.8886 0.0285 0.0568 9.570
0.20 0.0287 0.5274 1.3311 0.0382 0.0327 7.999
0.25 0.0393 0.4382 1.5933 0.0478 0.0189 6.811

s
(ε)
N

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0009 0.2425 0.0171 0.0025 0.1275 2.058
0.10 0.0031 0.2176 0.1027 0.0055 0.0648 2.637
0.15 0.0060 0.1875 0.2099 0.0085 0.0375 2.621
0.20 0.0091 0.1596 0.3028 0.0114 0.0259 2.231
0.25 0.0121 0.1423 0.3310 0.0145 0.0095 2.259

d
(ε)
N,0.90

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0034 1.1701 0.1253 0.0120 0.5272 12.18
0.10 0.0132 1.0400 0.6570 0.0264 0.1943 14.82
0.15 0.0264 0.8842 1.2222 0.0403 0.0922 13.05
0.20 0.0412 0.7373 1.7073 0.0542 0.0480 11.12
0.25 0.0564 0.6109 2.0842 0.0679 0.0331 9.398

d
(ε)
N,0.95

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0040 1.2794 0.1662 0.0130 0.6121 12.63
0.10 0.0151 1.1325 0.7568 0.0286 0.2607 15.38
0.15 0.0291 0.9790 1.2903 0.0437 0.1328 14.28
0.20 0.0452 0.8181 1.8199 0.0588 0.0742 12.41
0.25 0.0610 0.7041 2.1113 0.0737 0.0497 10.73

d
(ε)
N,0.99

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0048 1.5143 0.1805 0.0145 0.8291 12.52
0.10 0.0180 1.3483 0.7872 0.0319 0.4373 16.38
0.15 0.0335 1.1962 1.3040 0.0488 0.2810 15.84
0.20 0.0520 1.0014 2.0509 0.0657 0.2074 13.80
0.25 0.0688 0.9084 2.1364 0.0828 0.0978 14.68

d
(ε)
N,0.999

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0092 1.685 0.9586 0.0158 1.1156 12.73
0.10 0.0189 1.697 0.3014 0.0342 0.7717 14.63
0.15 0.0365 1.534 0.7803 0.0528 0.5464 16.07
0.20 0.0547 1.370 1.4935 0.0712 0.4710 13.99
0.25 0.0770 1.161 2.2538 0.0902 0.2273 18.90

Table 4: The values of the best-fitting parameters a, b, and c in Eq. (7) as a function of ε, for both
50 ≤ N ≤ 103 and 103 ≤ N ≤ 105.
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Figure 4: Left panel. The limiting values (8) of the mean (upper circles) and standard deviation (lower
circles) of the Euclidean distance statistic (6) as a function of ε, together with their corresponding
regression lines (blue continuous lines), Eqs. (9) and (10), respectively. Right panel. Limiting test-
values (8) for the Euclidean distance statistic (6) as a function of ε, together with their corresponding
regression lines (blue continuous lines), Eqs. (11)-(14). From bottom to top: α = 0.1, 0.05, 0.01 and
0.001.

The mean, standard deviation, and test values of d (ε)
N grow as

√
N for large N . Accordingly,

the statistic d (ε)
N /
√
N , whose sample values are by definition independent on N , is asymptotically

independent on the sample size making its use a reliable tool for testing Benford’s law in samples
with large size. This statistic, then, solves the problem of the enormous power for large N of existing
statistical tests.

Let us now re-consider the Cho and Gaines data discussed above. These data are divided in
“homogeneous” groups, in the sense that the underlying statistical process for each group is the
same, namely an in-kind contribution cataloged by the U.S.A. Federal Election Commission. As
already noticed, these data sets do not comply to Benford’s law (see Table 3). However, we can test
the hypothesis that the data comply to a ε-Benford’s distribution. We proceed as follows. We fix the
value of ε by finding a group conforming to ε-Benford to a large significance level, let’s say, bigger
than 0.1. This is the case of the first election cycle (1994) for which d∗N = 5.3 and d (0.2)

N = 5.5. In other
words, the data relative to the 1994 election conform to a 0.20-Benford’s distribution at a significance
level of 0.1. Accordingly, we can test the null (conformity to a 0.20-Benford’s distribution) for the
other cycles. The results are shown in the last column of Table 3. While the 1998 in-kind contribution
conforms to a significance level of 0.05 and the 2000 one cannot be rejected at a significance level
of 0.001, the years 1996, 2002, and 2004 present anomalies: the conformance of the data to a 0.20-
Benford’s distribution can be rejected at a significance level grater than 0.001. It is interesting to
observe that, based on the normalized Euclidean distance statistic, Cho and Gaines (2007) found
anomalies only for the years 2002 and 2004. The use of ε-Benford’s distribution can be then used not
only to identify but also to quantify possible anomalies in homogeneous sets of data.

The use of ε-Benford distributions can be also extended to the case of “non-homogeneous” data
sets when the number of counts is large and/or the range of the data is small. An interesting ap-
plication of Benford’s law to physical and mathematical data sets was discussed by Sambridge et al.
(2010). Their data are shown in Table 5. More than 50% of the data sets considered in their study has
large number counts. In particular, groups S1, S3, S4, S6, S7, S8, S9, and S11 have values of N larger
that 103 (groups S8 and S11 also have a small range of data, of order of 102). Not surprisingly, with
the exception of S7 which well conforms to Benford’s law, these large-number-count sets have huge
values of d∗N and χ2 making the goodness-of-fit unreliable. However, they all comply to ε-Benford’s



TESTING BENFORD’S LAW 53

Set Title N Range d∗ d∗N p χ2 p(χ2) ε

S1 Geomagnetic Field 36512 1010 0.015 2.936 0. 49.90 0. 0.10
S2 Geomagnetic reversals 93 103 0.056 0.562 0.91(1) 3.608 0.8907 —
S3 Seis. wavespeeds below SW-Pacific 423776 106 0.009 6.041 0. 363.7 0. 0.04
S4 Earth’s gravity 25917 109 0.035 5.829 0. 188.7 0. 0.15
S5 Exoplanet mass 401 105 0.056 1.163 0.13(0) 10.57 0.2274 —
S6 Pulsars rotation freq. 1861 104 0.060 2.699 0. 55.03 0. 0.25
S7 Fermi space tel. γ-ray source fluxes 1451 105 0.020 0.797 0.59(5) 12.56 0.1280 —
S8 Earthquake depths 248915 102 0.027 14.14 0. 1723 0. 0.11
S9 S-A seismogram 24000 105 0.030 4.840 0. 191.1 0. 0.15
S10 Green house gas em. by country 184 104 0.030 0.421 0.98(3) 2.049 0.9795 —
S11 Glob. Temp. anom. 1880-2008 1527 102 0.045 1.828 0.00(1) 34.61 0. 0.15
S12 Fund. Phys. constants 326 104 0.058 1.088 0.19(1) 9.615 0.2931 —
S13 Global Infectious disease cases 987 106 0.046 1.419 0.02(7) 15.00 0.0592 —
S14 Geometric series 1000 1021 0.007 0.229 0.999(7) 0.417 0.9999 —
S15 Fibbonacci sequence 1000 1014 0.003 0.091 1. 0.122 1. —

Table 5: The normalized Euclidean distance d∗, the Euclidean distance statistic d∗N with its corre-
sponding p value, the χ2 score with its corresponding p value, p(χ2), of the first-digit distribution
for various physical and mathematical data sets discussed by Sambridge et al. (2010). Also indicated
are the total number of counts for each group, N , and the dynamic range of the data (max/min).
The last column shows the value of ε such that the first-digit distribution of the counts conform to a
ε-Benford’s law at a significance level of α = 0.1.

law at a significance level of α = 0.1, with values of ε ranging from 0.04 to 0.25 (see the last column
in Table 5).

4 Conclusions

Benford’s law on the distribution of the first digits of numerical data sets has been observed to arise
in multifarious classes of data, from natural sciences to finance. Compliance to Benford’s law can
be tested by using standard test statistics, such as the Pearson χ2 statistic, the “Goodman’s rule of
thumb”, and/or the recently introduced Euclidean distance statistic.

The main results of our analysis are as follows.
(i) For small and/or large number of data points, N ≤ 1000, the use of p values of the χ2 statistic

for testing Benford’s law is not completely reliable. This is because the χ2 test, although being a
very powerful tool in assessing the goodness-of-fit to any continuous distribution, it is generally
conservative for testing discrete ones, like Benford’s law. The χ2 statistic should be then used only
for “qualitative” analyses. For quantitative analyses, the Euclidean distance should be used, since the
test based on this statistic has been explicitly constructed for testing Benford’s law. The Goodman’s
rule of thumb, instead, should be always avoided when checking for the compliance to Benford’s law.
Its statistical groundlessness generates results in disagreement with both the χ2 and the Euclidean
distance tests.

(ii) We have discussed some limitations of statistical tests in assessing the goodness-of-fit to Ben-
ford’s law for very large sample sizes (N > 1000) and/or very small ranges of data, and then pro-
posed a possible solution to overcome such limitations. The solution comes from the observation that
Benford’s law is not in general a limiting distribution nor a fundamental law of numbers and then

SJS, VOL. 4, NO. 1 (2022), PP. 41 - 54



54 L. CAMPANELLI

real distributions are often ε-Benford, in the sense that they deviate from Benford’s law at a relative
level of ε. Even a tiny deviation, however, may result in huge values of standard test statistics for
large N , making any attempt to quantify the goodness-of-fit unfeasible. We have then considered a
new statistic, the Euclidean distance statistic d (ε)

N for a ε-Benford distribution, and computed appro-
priate test values. The statistic d (ε)

N /
√
N , whose sample values are by definition independent on N ,

is asymptotically independent on the sample size, making it a natural candidate for testing Benford’s
law in samples with very large size.
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1 Introduction

Various phenomena that occur in the real world can be explained by statistical distributions. For
a long time, many of the common distributions (Weibull, gamma, Burr XII, Gumbel) were suffi-
cient for this purpose. However, with computer science development, more flexible distributions
have become mandatory. One way to generate new families of distribution is through techniques
to generalize existing ones. The main characteristic of these generalizations is the addition of more
parameters to their baseline distributions, thus increasing their flexibility.

The Weibull distribution is widely used in many fields, but it is not suitable for bathtub-shaped
or unimodal hazard rates. Thus, several models have been developed to extend this distribution and
increase the modeling ability, such as those in (Mudholkar and Srivastava, 1993), (Xie and Lai, 1996),
(Xie et al., 2002), (Lai et al., 2003), (Famoye et al., 2005), and (Cordeiro et al., 2010), among others.

Of the various modifications made to the Weibull distribution, the one of interest in this article
is the flexible Weibull (FW) distribution (Bebbington et al., 2007) with shape parameters α, β > 0,
cumulative distribution function (cdf)

G(x;α, β) = 1− exp
(
−eαx−

β
x

)
, x > 0,

c© INE Published by the Spanish National Statistical Institute
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and probability density function (pdf)

g(x;α, β) =

(
α+

β

x2

)
eαx−

β
x exp

(
−eαx−

β
x

)
.

For β = 0 and α = log(λ), the FW model reduces to the exponential, and then it can be regarded
as a generalization of the Weibull (Bebbington et al., 2007).

There are several extensions of the FW distribution such as those reported by (El-Gohary et al.,
2015), (El-Desouky et al., 2016), (Mustafa et al., 2016), (El-Damcese et al., 2016), (El-Desouky et al.,
2017), and (Ahmad and Iqbal, 2017).

Zografos and Balakrishnan (2009) and Ristić and Balakrishnan (2012) defined the cdf of the
gamma-G class for any parent cdf G(x) = G(x;θ) with parameter vector θ of dimension p, by (for
x ∈ IR)

F (x) = F (x; a,θ) =
γ(a,− log[1−G(x)])

Γ(a)
=

1

Γ(a)

∫ − log[1−G(x)]

0
ta−1e−tdt, (1)

where a > 0 is a shape parameter, and Γ(·) is the gamma function. For a = 1, Equation (1) reduces to
the parent G cdf.

Recently, the gamma-G family has received considerable attention in works by (Nadarajah et al.,
2015), (Alzaatreh et al., 2014), (Nadarajah et al., 2015), (Cordeiro et al., 2016), (Bourguignon and
Cordeiro, 2016), (Iriarte et al., 2017), (Guerra et al., 2017), and (David et al., 2021), among others.

The article unfolds as follows: Section 2 defines the gamma-flexible Weibull (GFW) distribution
and a linear representation for its density. The moments and generating function are reported in
Section 3. Section 4 estimates the parameters by the maximum likelihood method and conducts a
simulation study. Three real data sets are analyzed in Section 5 to show the utility of the new model.
Finally, we draw some conclusions in Section 6.

2 The GFW model and its linear representation

A random variable X follows the GFW distribution, say X ∼ GFW(a, α, β), if its cdf and pdf (omit-
ting parameters in the functions) are

F (x) =
γ
[
a, exp

(
αx− β

x

)]
Γ(a)

=
1

Γ(a)

∫ exp (αx−βx )

0
ta−1e−tdt, t > 0, (2)

and

f(x) =

(
α+ β

x2

)(
eαx−

β
x

)a
exp

(
−eαx−

β
x

)
Γ(a)

, (3)

respectively.
The FW distribution was introduced in engineering, but it can be used in several fields. So, the

GFW distribution can also be adopted in a similar manner.
The hazard rate function (hrf) of X follows from the last two expressions.
The GFW is identical to the FW distribution when a = 1. The calculations in all sections were

done using R software (R Core Team, 2020).
Figure 1 displays some plots of the density of X , which can be symmetric, right-symmetric, left-

symmetric, or bimodal. Plots of the hrf of X are reported in Figure 2, which has increasing, decreas-
ing, bathtub, and unimodal shapes.
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Figure 1: Plots of the density of X .
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Figure 2: Plots of the hrf of X .

A simple motivation for the GFW distribution follows from Zografos and Balakrishnan (2009),
where the GFW density can be approximated by the upper record value density from a sequence
of independent and identically distributed FW random variables. Further, we highlight the utility
of the proposed distribution in medical data analysis. In fact, the GFW distribution can be selected
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58 A.A. FERREIRA, G.M. CORDEIRO

as the best model, especially in modeling unimodal and bimodal data of COVID-19 and cancer as
illustrated in Section 5.

Following the concept of exponentiated distributions (Cordeiro et al., 2013), the exponentiated
FW (“expFW”) cdf with power parameter δ, say EFW(α, β, δ) (for x > 0), is

Hδ(x;α, β) =
[
1− exp

(
−eαx−

β
x

)]δ
and the corresponding pdf reduces to

hδ(x;α, β) = δ

(
α+

β

x2

)
eαx−

β
x exp

(
−eαx−

β
x

) [
1− exp

(
−eαx−

β
x

)]δ−1
.

From Proposition 2 of Castellares and Lemonte (2015), we can write

[− ln(1− v)]c = vc
∞∑
m=0

ρm(c) vm, (4)

where c ∈ IR, |v| < 1, ρ0(c) = 1, ρm(c) = c ψm−1(m + c − 1) for m ≥ 1, and ψm(·) are Stirling
polynomials, namely

ψn−1(w) =
(−1)n−1

(n+ 1)!

[
Tn−1
n − w + 2

n+ 2
Tn−2
n +

(w + 2)(w + 3)

(n+ 2)(n+ 3)
Tn−3
n − · · ·

+ (−1)n−1 (w + 2)(w + 3) · · · (w + n)

n+ 2)(n+ 3) · · · (2n)
T 0
n

]
, (5)

where Tmn+1 = (2n+ 1−m)Tmn + (n−m+ 1)Tm−1
n are positive integers, T 0

0 = 1, T 0
n+1 = 1× 3× 5×

· · · × (2n+ 1), and Tnn+1 = 1.
From Equation (4), we can rewrite Equation (3) as (Castellares and Lemonte, 2015)

f(x; a, α, β) =

∞∑
m=0

pm hm+a(x;α, β) , (6)

where ϕ0(a) = Γ(a)−1, pm = pm(a) = ϕm(a)/(m + a), ϕm(a) = Γ(a)−1ρm(a − 1) = (a −
1) Γ(a)−1ψm−1(m + a − 2) (for m ≥ 1) can be determined from (5), and hm+a(x;α, β) denotes the
EFW density with power parameter m+ a .

Equation (6) reveals that the GFW density is a linear combination of EFW densities. So, its prop-
erties can follow from those of the EFW distribution.

3 Moments and generating function

We calculate numerically in Table 1 the first four moments, standard deviation (SD), skewness (SK)
and kurtosis (KR) of X varying a and β, with α = 0.04. The moments increase and the skewness and
kurtosis decrease if β increases for a fixed. Note that the same happen when a increases for β fixed.

If Ym+a ∼ EFW(m+ a, α, β), we write from Equation (6)

µ′r = IE(Xr) =
∞∑
m=0

pm IE
(
Y r
m+a

)
. (7)
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a = 0.1, β = 0.5 a = 0.1, β = 1.0 a = 0.1, β = 1.5 a = 0.1, β = 2.0
µ′1 0.458 0.6135 0.758 0.897
µ′2 5.786 6.4989 7.263 8.0748
µ′3 132.535 143.993 156.166 169.053
µ′4 3639.751 3919.821 4215.782 4528.010
SD 2.361 2.474 2.586 2.696
SK 9.474 8.745 8.123 7.589
KR 109.462 95.521 84.187 74.898

a = 0.5, β = 0.5 a = 0.5, β = 1.0 a = 0.5, β = 1.5 a = 0.5, β = 2.0
µ′1 2.644 3.126 3.557 3.956
µ′2 44.857 49.078 53.432 57.899
µ′3 1108.423 1189.969 1275.122 1363.795
µ′4 32176.930 34366.120 36656.030 39047.790
SD 6.153 6.269 6.385 6.500
SK 3.889 3.209 3.052 2.914
KR 15.476 14.290 13.283 12.420

a = 1.5, β = 0.5 a = 1.5, β = 1.0 a = 1.5, β = 1.5 a = 1.5, β = 2.0
µ′1 10.936 11.709 12.994 13.561
µ′2 257.408 271.386 298.996 312.685
µ′3 7526.057 7908.050 8692.924 9095.371
µ′4 248547.900 261244.500 287697.100 301449.900
SD 11.738 11.588 11.408 11.347
SK 1.049 1.019 0.960 0.932
KR 3.218 3.200 3.143 3.113

Table 1: Numerical results for the GFW model.

Further, the rth moment of the EFW distribution is

IE(Y r
m+a) = (m+ a)

∫ ∞
0

xr
(
α+

β

x2

)
eαx−

β
x exp

(
−eαx−

β
x

) [
1− exp

(
−eαx−

β
x

)]m+a−1
,

where
[
1− exp

(
−eαx−

β
x

)]m+a−1
can be written as

[
1− exp

(
−eαx−

β
x

)]m+a−1
=
∞∑
j=0

(−1)j Γ(m+ a)

j! Γ(m+ a− j) exp
(
−jeαx−βx

)
,

and then

IE(Y r
m+a) =

∞∑
j=0

(−1)j Γ(m+ a+ 1)

j! Γ(m+ a− j)

∫ ∞
0

xr
(
α+

β

x2

)
eαx−

β
x

× exp
[
−(j + 1)eαx−

β
x

]
dx .
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By using power series for exp
[
−(j + 1)eαx−

β
x

]
and e2(k+1)αx gives

IE(Y r
m+a) =

∞∑
j,k,i=0

(−1)j+k (j + 1)k 2i (k + 1)i Γ(m+ a+ 1)αi

j! k! i! Γ(m+ a− j)

×
∫ ∞

0
xr+i

(
α+

β

x2

)
e−(k+1)αx− (k+1)β

x dx. (8)

Based on the result (3.471 9) in Gradshteyn and Ryzhik (2007), we obtain

IE(Y r
m+a) =

∞∑
j,k,i=0

(−1)j+k (j + 1)k 2i (k + 1)i Γ(m+ a+ 1)αi

j! k! i! Γ(m+ a− j)

×
[

2α

(
β

α

) ν+1
2

Kν+1

(
2(k + 1)

√
αβ
)

+ 2β

(
β

α

) ν−1
2

Kν−1

(
2(k + 1)

√
αβ
)]
, (9)

where

ν = r + i, Kν(z) =
πcsc(πν)

2
[I−ν(z)− Iν(z)] , and Iν(z) =

∞∑
`=0

1

Γ(`+ ν + 1)`!

(z
2

)2`+ν

are the modified Bessel functions of the second and first kind, respectively (for ν 6∈ Z).
Substituting (9) into (7) gives the rth moment of the GFW distribution.
In a similar manner, the rth incomplete moment of X , say mr(s) =

∫ s
0 x

r f(x) dx, follows as

mr(s) =
∞∑

m,j,k,i=0

(−1)j+k (j + 1)k 2i (k + 1)i pm Γ(m+ a+ 1)αi

j! k! i! Γ(m+ a− j)

×
∫ s

0
xr+i

(
α+

β

x2

)
e−(k+1)αx− (k+1)β

x dx .

From Theorem 2 of Chaudhry and Zubair (1994), we obtain (for r ≥ 1)

mr(s) =
∞∑

m,j,k,i=0

(−1)j+k (j + 1)k 2i pm Γ(m+ a+ 1)

j! k! i! (k + 1)r Γ(m+ a− j)αr

×
{
γ
[
(k + 1)αs; (r + i+ 1), (k + 1)2αβ

]
(k + 1)

+ (k + 1)γ
[
(k + 1)αs; (r + i− 1), (k + 1)2αβ

]
αβ

}
,

where γ(x; a, b) =
∫ x

0 t
a−1 e−t−b/tdt is the generalized lower incomplete gamma function.

The generating function (gf) of X can be written from (6) as

M(t) =

∞∑
m=0

pmMm+a(t) , (10)
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where Mm+a(t) is the gf of Ym+a. The gf of the EFW distribution is

Mm+a(t) = (m+ a)

∫ ∞
0

etx
(
α+

β

x2

)
eαx−

β
x exp

(
−eαx−

β
x

) [
1− exp

(
−eαx−

β
x

)]m+a−1
.

Following a similar algebra as for Equation (8) and again the result (3.471 9) (Gradshteyn and
Ryzhik, 2007), we obtain (for t < α)

Mm+a(t) =

∞∑
j,k,i=0

(−1)j+k (j + 1)k 2i (k + 1)i αi Γ(m+ a+ 1)

j! k! i! Γ(m+ a− j)

×
{

2α

[
(k + 1)β

(k + 1)α− t

] i+1
2

Ki+1

(
2
√

[(k + 1)α− t] (k + 1)β
)

+ 2β

[
(k + 1)β)

(k + 1)α− t

] i−1
2

Ki−1

(
2
√

[(k + 1)α− t](k + 1)β
)}

. (11)

Substituting Equation (11) into (10) gives the gf of the GFW distribution.

The quantile function (qf) of the FW distribution is given by (Bebbington et al., 2007)

QFW(u;α, β) =
1

2α

{
log [− log(1− u)] +

√
{log[− log(1− u)]}2 + 4αβ

}
.

By inverting (2) and using results in Nadarajah et al. (2015), the qf of X follows as (for 0 < u < 1)

QGFW(u; a, α, β) =
1

2α

{
log{Q−1[a, (1− u)]}+

√
{log[Q−1(a, 1− u)]}2 + 4αβ

}
, (12)

where Q−1(a, u) is the inverse function of Q(a, x) = 1− γ(a, x)/Γ(a).
Approximations for the skweness and kurtosis ofX can be based on quantile measures from (12).

Let QGFW(u) = QGFW(u; a, α, β). The Bowley’s skewness (Kenney and Keeping, 1962) is

B(a, α, β) =
QGFW(3/4) +QGFW(1/4)− 2QGFW(1/2)

QGFW(3/4)−QGFW(1/4)
,

whereas the Moors kurtosis (Moors, 1988) is

M(a, α, β) =
QGFW(7/8)−QGFW(5/8)−QGFW(3/8) +QGFW(1/8)

QGFW(6/8)−QGFW(2/8)
.

Plots of these quantities for some choices of α and β as functions of a are reported in Figure 3.
Note that the skewness increases when a goes to one and decreases from this value. The kurtosis
decreases rapidly for small values of a and stabilizes when a increases.

An application of (12) using the first incomplete moment m1(s) refers to the Bonferroni and
Lorenz curves defined by (for a given probability π)

B(π) =
m1(q)

πµ′1
and L(π) =

m1(q)

µ′1
,

respectively, where q = QGFW(π). Plots of these curves versus π for some choices of a (with α = 0.01
and β = 15) are displayed in Figure 4.
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Figure 3: Skewness (a) and kurtosis (b) of X versus a.
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Figure 4: Bonferroni and Lorenz curves of X .

4 Estimation and Simulations

The log-likelihood function for θ = (a, α, β)> given the data set x1, . . . , xn from X is

`(θ) =

n∑
i=1

log

(
α+

β

x2
i

)
+ a

n∑
i=1

(
αxi −

β

xi

)
+

n∑
i=1

(
−eαxi−

β
xi

)
− n log[Γ(a)]. (13)
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The maximum likelihood estimate (MLE) of θ, say θ̂, can be found by maximizing Equation (13)
numerically using scripts such as optim or nlm in R, MaxBFGS in Ox, and PROC NLMIXED in SAS.

We generate 1, 000 Monte Carlo replicates for the GFW model from Equation (12) with sample
sizes n = 50, 100, 300, and 500 under three scenarios: (a, α, β) = (0.9, 2, 1.2) for scenario I; (a, α, β) =
(0.5, 1.5, 3) for scenario II; and (a, α, β) = (1.5, 0.5, 0.8) for scenario III. We use the optim script of R
to maximize (13). The averages, biases and mean square errors (MSEs) of the estimates are listed in
Table 2. The averages tend to the true parameter values and the biases and MSEs converge to zero
when n increases, which reveal that the MLEs are consistent.

Scenario I Scenario II Scenario III

n parameter Average Bias MSE Average Bias MSE Average Bias MSE
50 a 0.806 -0.094 0.261 0.630 0.130 0.246 1.480 -0.020 0.290

α 2.815 0.815 4.787 2.099 0.599 2.782 0.514 0.014 0.004
β 2.312 1.112 8.537 4.623 1.623 26.617 1.044 0.244 0.574

100 a 0.809 -0.090 0.210 0.588 0.088 0.166 1.484 -0.015 0.189
α 2.430 0.430 0.815 1.826 0.326 0.836 0.509 0.009 0.002
β 1.840 0.640 1.960 3.894 0.894 9.191 0.962 0.162 0.385

300 a 0.868 -0.031 0.137 0.556 0.056 0.085 1.497 -0.003 0.063
α 2.156 0.156 0.117 1.583 0.083 0.084 0.502 0.002 0.001
β 1.450 0.250 0.436 3.203 0.203 1.380 0.840 0.040 0.078

500 a 0.903 0.003 0.110 0.542 0.042 0.049 1.499 -0.001 0.035
α 2.096 0.096 0.061 1.542 0.042 0.044 0.501 0.001 0.001
β 1.343 0.143 0.265 3.083 0.083 0.784 0.819 0.019 0.029

Table 2: Simulation results for the GFW model.

5 Applications

We present three applications of the new model and compare it to other distributions: exponenti-
ated Weibull (EW) (Mudholkar and Srivastava, 1993), modified Weibull (MW) (Lai et al., 2003), beta
Weibull (BW) (Famoye et al., 2005), FW, Kumaraswamy Weibull (KwW) (Cordeiro et al., 2010), and
Kumaraswamy Burr XII (KwBXII) (Paranaíba et al., 2013).

The best model is chosen based on Cramér-von Mises (W ∗), Anderson-Darling (A∗), Akaike in-
formation criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information cri-
terion (BIC), and Hannan-Quinn information criterion (HQIC). The MLEs, standard errors (SEs), and
the statistics are found using the AdequacyModel script (Marinho et al., 2019) of R software.

5.1 Failure times

The failure times of 50 components (per 1000h) are (Murthy et al., 2004): 0.036, 0.058, 0.061, 0.074,
0.078, 0.086, 0.102, 0.103, 0.114, 0.116, 0.148, 0.183, 0.192, 0.254, 0.262, 0.379, 0.381, 0.538, 0.570,
0.574,0.590, 0.618, 0.645, 0.961, 1.228, 1.600, 2.006, 2.054, 2.804, 3.058, 3.076, 3.147, 3.625, 3.704, 3.931,
4.073, 4.393, 4.534, 4.893, 6.274, 6.816,7.896, 7.904, 8.022, 9.337, 10.940, 11.020, 13.880, 14.730, 15.080.
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Table 3 gives some descriptive statistics. The mean is greater than the median, and then the data
are right-skewed and leptokurtic.

Mean Median SD Variance Skewness Kurtosis Min. Max.
3.3430 1.4140 4.1395 17.1350 1.4167 4.0846 0.0360 15.0800

Table 3: Descriptive statistics for failure times.

Table 4 reports the MLEs and their SEs (in parentheses). The MW, EW, KwW, and BW models
have higher SEs related to their estimates, whereas the GFW, FW, and KwBXII models have accurate
estimates.

Table 5 indicates that the GFW model gives the best fit to the data since it has the lowest statistics
among all models. The generalized likelihood ratio (GLR) test (Vuong, 1989) is used to compare
the GFW model against the FW (GLR = 3.911), MW (GLR = 3.503), EW (GLR = 3.455), KwW
(GLR = 3.372), KwBXII (GLR = 3.452), and BW (GLR = 3.450) models for a significance level of
5%. These results show that the GFW distribution provides the best fit to the current data.

The plots of the estimated densities and estimated survival functions for the most competitive
models are shown in Figure 5. The GFW distribution provides the closest approximations to the
histogram and empirical survival function, which shows its utility for real-life applications.

Model MLEs (SEs)

GFW (a, α, β) 1.362 0.109 0.126
(0.190) (0.013) (0.033)

FW (α, β) 0.099 0.183
(0.012) (0.034)

MW (α, λ, β) 0.496 0.034 0.562
(0.099) (0.025) (0.098)

EW (α, λ, β) 0.290 0.770 0.785
(0.681) (0.990) (1.546)

KwW (a, b, α, β) 0.118 2.368 4.551 0.046
(0.024) (1.555) (0.099) (0.025)

KwBXII (a, b, c, k, s) 0.121 2.199 4.381 1.193 21.015
(0.019) (0.477) (0.147) (0.217) (0.125)

BW (a, b, α, β) 0.708 0.703 0.412 0.819
(1.392) (1.460) (1.575) (1.057)

Table 4: Findings from the fitted models to failure times.

5.2 COVID-19

The numbers of deaths from COVID-19 in 83 Illinois counties in the United States through De-
cember 2021 are: 169, 13, 28, 91, 13, 107, 4, 41, 31, 89, 46, 57, 108, 146, 35, 30, 32, 156, 38, 52, 21, 113, 73,
59, 130, 93, 10, 40, 101, 25, 36, 16, 15, 95, 90, 101, 21, 150, 57, 32, 34, 127, 184, 38, 69, 115, 78, 121, 165, 24,
53, 58, 72, 15, 38, 108, 85, 104, 39, 110, 82, 16, 58, 7, 15, 7, 107, 67, 74, 14, 8, 56, 29, 124, 52, 19, 72, 30, 66,
34, 196, 201, 98. See https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker.
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Model W ∗ A∗ AIC CAIC BIC HQIC

GFW 0.042 0.257 193.850 194.372 199.586 196.035
FW 0.079 0.414 195.846 196.101 199.670 197.302
MW 0.130 0.850 208.727 209.249 214.463 210.912
EW 0.150 0.946 210.713 211.234 216.449 212.897
KwW 0.131 0.861 210.706 211.595 218.355 213.619
BW 0.149 0.942 212.696 213.585 220.344 215.608
KwBXII 1.132 0.870 213.086 214.450 222.646 216.726

Table 5: Adequacy measures for the models fitted to failure times.
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Figure 5: (a) Estimated densities of three models; (b) empirical and estimated survival functions of
the models.

Table 6 shows some descriptive statistics for these data. The skewness is positive, and the kurtosis
indicates mesokurtic distribution. The MLEs and their SEs (in parentheses) reported in Table 7 reveal

Mean Median SD Variance Skewness Kurtosis Min. Max.
67.8670 57.0000 48.3850 2341.1 0.8198 2.9783 4 201

Table 6: Descriptive statistics for COVID-19 data.

that the GFW, FW, and KwW distributions have accurate estimates, and the other ones have high SEs
relative to their estimates. The results in Table 8 indicate that the GFW model has the lowest values
of the criteria, so it can be chosen as the best model. Additionally, the GLR test also reveals that the
GFW model is better than the FW (GLR = 3.383), MW (GLR = 3.961), EW (GLR = 2.925), KwW

SJS, VOL. 4, NO. 1 (2022), PP. 55 - 71
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(GLR = 2.473), KwBXII (GLR = 3.502), and BW (GLR = 4.698) models for a significance level of
5%.

Figure 6 reports plots of the estimated densities and estimated cumulative functions for the most
adequate models. The fit of the new distribution is closer to the histogram and empirical cumulative
function than those of the other distributions. So, these results support that the GFW distribution is
better suited to the current data.

Model MLEs (SEs)

GFW (a, α, β) 1.702 0.010 14.005
(0.253) (0.001) (4.458)

FW (α, β) 0.008 32.812
(0.001) (4.290)

MW (α, β, λ) 0.005 0.003 1.161
(0.002) (0.002) (0.116)

EW (α, β, λ) 0.013 1.418 0.986
(0.005) (0.503) (0.574)

KwW (a, b, α, β) 1.333 0.117 1.336 0.069
(0.083) (0.055) (0.039) (0.019)

KwBXII (a, b, c, k, s) 10.526 72.271 0.327 1.393 40.836
(25.224) (95.623) (0.401) (2.142) (122.510)

BW (a, b, α, β) 3.697 3.665 0.011 0.615
(1.303) (1.943) (0.006) (0.120)

Table 7: Findings from the fitted models to COVID-19 data.

Model W ∗ A∗ AIC CAIC BIC HQIC

GFW 0.034 0.241 855.333 855.637 862.590 858.248
FW 0.095 0.596 859.516 859.666 864.353 861.459
MW 0.057 0.348 858.767 859.071 866.024 861.682
EW 0.059 0.351 858.690 858.994 865.946 861.605
KwW 0.056 0.335 860.250 860.763 869.925 864.137
BW 0.088 0.544 863.876 864.389 873.551 867.763
KwBXII 0.083 0.508 864.870 865.649 876.964 869.728

Table 8: Adequacy measures for the models fitted to COVID-19 data.

5.3 Laryngeal cancer

The data set corresponds to the lifetime (in months) of 90 male patients with laryngeal cancer. The
data are (Colosimo and Giolo, 2006): 0.6, 1.3, 2.4, 3.2, 3.3, 3.5, 3.5, 4.0, 4.0, 4.3, 5.3, 6.0, 6.4, 6.5, 7.4, 2.5,
3.2, 3.3, 4.5, 4.5, 5.5, 5.9, 5.9, 6.1, 6.2, 6.5, 6.7, 7.0, 7.4, 8.1, 8.1, 9.6, 10.7, 0.2, 1.8, 2.0, 3.6, 4.0, 6.2, 7.0, 2.2,
2.6, 3.3, 3.6, 4.3, 4.3, 5.0, 7.5, 7.6, 9.3, 0.3, 0.3, 0.5, 0.7, 0.8, 1.0, 1.3, 1.6, 1.8, 1.9, 1.9, 3.2, 3.5, 5.0, 6.3, 6.4,
7.8, 3.7, 4.5, 4.8, 4.8, 5.0, 5.1, 6.5, 8.0, 9.3, 10.1, 0.1, 0.3, 0.4, 0.8, 0.8, 1.0, 1.5, 2.0, 2.3, 3.6, 3.8, 2.9, 4.3.

Some descriptive statistics in Table 9 reveal that the data are right-skewed and platykurtic. For
these data, we compare the GFW distribution with other models that also have the bimodal shape,
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Figure 6: (a) Estimated densities of three models; (b) empirical and estimated cumulative functions
of the models.

namely, the Odd log-logistic flexible Weibull (OLLFW) (Prataviera et al., 2018), extended Weibull log-
logistic (EWLL) (Abouelmagd et al., 2019), Marshall-Olkin flexible Weibull (MOFW) (Mustafa et al.,
2016), and FW.

Mean Median SD Variance Skewness Kurtosis Min. Max.
4.197 4 2.612 6.901 0.343 2.367 0.1 10.700

Table 9: Descriptive statistics for laryngeal cancer data.

The MLEs and their corresponding SEs (in parentheses) in Table (10) show that the GFW, OLLFW,
MOFW, and FW distributions have accurate estimates. The GFW distribution has the lowest values
of the adequacy measures in Table (11) and can provide a better fit than the other distributions. The
GLR test confirms that the GFW distribution fits the current data better than the OLLFW (GLR =
4.657), EWLL (GLR = 3.741), MOFW (GLR = 11.556), and FW (GLR = 3.603) distributions for a
significance level of 5%. The plots in Figure 7 also support our claim.

6 Conclusions

We introduced a new versatile distribution called the gamma flexible Weibull and provided some
of its properties. A simulation study demonstrated that the maximum likelihood estimates of the
parameters are consistent. Three real applications showed that the new distribution is extremely
competitive to other lifetime models for unimodal and bimodal medical data.
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Model MLEs (SEs)

GFW (a, α, β) 2.527 0.201 0.197
(0.223) (0.012) (0.070)

OLLFW (a, α, β) 0.359 0.288 2.869
(0.053) (0.023) (0.106)

EWLL (λ, α, β) 0.072 0.925 21.689
(0.459) (0.457) (135.256)

MOFW (a, α, β) 6.118 0.188 0.453
(1.528) (0.011) (0.142)

FW (α, β) 0.142 1.286
(0.012) (0.198)

Table 10: Findings from the fitted models to laryngeal cancer data.

Model W ∗ A∗ AIC CAIC BIC HQIC

GFW 0.035 0.211 414.251 414.530 421.751 417.275
OLLFW 0.310 1.744 440.411 440.690 447.910 443.435
EWLL 0.148 0.913 425.014 425.293 432.514 428.038
MOFW 0.048 0.278 415.136 415.415 422.635 418.160
FW 0.564 3.218 462.138 462.275 467.137 464.154

Table 11: Adequacy measures for the models fitted to laryngeal cancer data.
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Figure 7: (a) Estimated densities of three models; (b) empirical and estimated survival functions of
the models.
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1 Gamma-Gompertz distribution

The gamma-Gompertz (“GGo” for short) family of distributions was defined by Shama et al. (2022),
and its cumulative distribution function (CDF) and probability density function (PDF) are given,
respectively, by (Shama et al., 2022, Definition 1)

G(x) =
γ (θ, λ(eαx − 1)/α)

Γ(θ)
, x > 0,

g(x) =
λ

Γ(θ)
exp

{
αx− λ

α
(eαx − 1)

}[
λ

α
(eαx − 1)

]θ−1

, x > 0,

where λ > 0, θ > 0, α > 0, Γ(·) is the complete gamma function, and γ(a, z) =
∫ z

0 t
a−1 e−t dt is the

lower incomplete gamma function for a > 0 and z > 0. We can also express the PDF of the GGo
distribution in the form

g(x) =
λθ eλ/α

αθ−1 Γ(θ)
exp

(
α θ x− λ

α
eαx
)

(1− e−αx)θ−1, x > 0. (1)

c© INE Published by the Spanish National Statistical Institute
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The GGo distribution reduces to the Gompertz distribution (see, for example,c Garg et al. (1970))
when θ = 1.

It is worth stressing that the failure rate (FR) function plays a substantial role in the lifetime data
analysis, mainly in survival and reliability studies. Indeed, the mathematical characterization of a
lifetime distribution for a certain life phenomena can be made on the basis of its failure rate pattern.
In particular, many real-life data, particularly in reliability engineering, exhibit bathtub-shaped FR,
which contains the three main regions: early FR region followed by constant FR region and, then, the
wear-out region when the FR growths significantly. However, the assumption that the FR increases
rapidly with time is not always true. In particular, Bartley (2003) provides an example from electric
power industry where some high voltage transformers that survive before the mean life tend to have
extremely long lives and the FR is eventually constant. Many distributions have bathtub-shaped FR,
but the vast majority are V-shaped, and so these distributions may not fit appropriately bathtub-
shaped data with a flat region. However, this region may be very important in real applications
and, hence, the correct modeling of a flat region becomes very important. From Shama et al. (2022,
Eq. (10)), we have that the FR function of the GGo distribution has the form

h(x) =
λ exp{αx− λ(eαx − 1)/α}

Γ(θ, λ(eαx−1 − 1)/α)

[
λ

α
(eαx−1 − 1))

]θ−1

, x > 0,

where Γ(·, ·) is the upper incomplete gamma function defined by

Γ(a, z) =

∫ ∞
z

ta−1e−t dt, a ∈ C, z ∈ C.

A closer look at Figure 2 in Shama et al. (2022, p. 694) reveals that the FR function of the GGo dis-
tribution can present bathtub-shaped FR with a flat region, and so this distribution can be useful in
practice to fit real data with a long flat region.

Shama et al. (2022) have derived various distributional properties of the GGo distribution, and
have provided an extensive Monte Carlo simulation study to assess the effectiveness of some classi-
cal estimation approaches to estimate the GGo distribution parameters. They have also considered
a re-parametrized log-GGo distribution and, based on this re-parametrized distribution, a log-GGo
regression model was introduced. However, we note that closed-form expressions of some mathe-
matical properties provided by these authors do not appear correct, and so cannot be recommended
to users.

2 Moments and entropy

It is well-known that some important statistical measures as, for example, variance, skewness and
kurtosis can be obtained in terms of moments. Thus, it is quite important to have a valid expression
for the moments in order to compute such quantities. Unfortunately, the analytical expression for
the rth ordinary moment of the GGo distribution provided by Shama et al. (2022) does not appear
correct. Shama et al. (2022, Theorem 5) have derived a closed-form expression for the moments of
the GGo distribution, which is given by

µ′r = λ

(
λ

α

)θ−1

eλ/α
∞∑
i=0

∞∑
j=0

(−1)i+j+r+1 (θ + j − i)−r−1 λj

Γ(i+ 1) Γ(θ − i) Γ(j + 1)αj+r+1
Γ(r + 1). (2)

From (2), note that the quantity (θ + j − i)−r−1 may be undefined, and so is impossible to compute
the moments from the above expression. For example, let θ = 1, j = 1 and i = 2. In this case, it
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follows that
(θ + j − i)−r−1 =

1

(1 + 1− 2)r+1
=

1

0r+1
,

which is obviously undefined for all r. In addition, a closer look at the proof of Theorem 5 in Shama
et al. (2022, p. 695) reveals that closed-form expression (2) comes from an integral which is not con-
vergent; that is, after a change of variable, Shama et al. (2022, p. 695) have provided an analytical
expression for the following integral ∫ ∞

0
xreα(θ+j−i)x dx.

However, if there exists at least a pair (i, j) such that j−i > 0, then it is evident that the above integral
diverges, since α > 0 and θ > 0. In short, the above integral diverges for infinite pairs (i, j), and so
the moments from expression (2) do not exist.

The entropy of a random variable is a measure of variation of the uncertainty. Entropy has been
used in various situations in science and engineering, and numerous measures of entropy have been
studied and compared in the literature. Let N be a random variable with PDF v. The Shannon
entropy of N is defined by E[− log(v(N))]. Shama et al. (2022, Theorem 7) have derived a closed-
form expression for the Shannon entropy of the GGo distribution, which is given by

H(g) = −τ − ln(λ) + θ + ln(Γ(θ)) + (1− θ)Ψ(θ), (3)

where Ψ(·) denotes the digamma function, and

τ =

(
λ

α

)θ
eλ/α

∞∑
i=0

∞∑
j=0

(−1)i+j(λ/α)j (θ + j − i)−2

Γ(i+ 1) Γ(θ − i) Γ(j + 1)αj+r+1
.

From (3) (i.e., specifically from τ ), the quantity (θ+ j − i)−2 may be undefined, and so is not possible
to compute the Shannon entropy from the analytical expression H(g). For example, let θ = 1, j = 1
and i = 2. Hence, it follows that (θ + j − i)−2 = (1 + 1 − 2)−2 = 0−2, which is obviously unde-
fined. Therefore, the closed-form expression for the Shannon entropy obtained in Shama et al. (2022,
Theorem 7) is not a valid analytical expression and, consequently, cannot be recommended to users.

3 Statistical properties

In the following, we provide explicit closed-form expressions of some statistical properties of the
GGo distribution.

3.1 Moment generation function

From Gradshteyn and Ryzhik (2015, p. 340), we have that∫ ∞
0

(1− e−z)ν−1 exp (−µz − βez) dz = Γ(ν)β
µ−1
2 e−β/2W

(
1− µ− 2ν

2
,
−µ
2

;β

)
, (4)

where µ ∈ C, β ∈ C such that the real part of β is positive, ν ∈ C such that the real part of ν is positive,
and W (a, b; v) denotes the Whittaker function with a ∈ C, b ∈ C and v ∈ C (Whittaker, 1903). We
have the following proposition.
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Proposition 1. The moment generation function of the GGo distribution is given by

M(t) = eλ/2α
(
λ

α

)θ/2−1/2−t/2α
W

(
1

2
+

t

2α
− θ

2
,
θ

2
+

t

2α
;
λ

α

)
. (5)

Proof. We have that M(t) =
∫∞

0 etxg(x)dx, for t ∈ R. Hence, from the PDF in (1), we have that

M(t) =
λθ eλ/α

αθ−1 Γ(θ)

∫ ∞
0

etx exp

{
α θ x− λ

α
eαx
}

(1− e−αx)θ−1 dx.

Let z = αx, and so

M(t) =
λθ eλ/α

αθ Γ(θ)

∫ ∞
0

exp

{
(t/α+ θ) z − λ

α
ez
}

(1− e−z)θ−1 dz.

From (4), the result follows.

Corollary 1. If θ = 1, the moment generating function of the GGo distribution reduces to moment generating
function of the Gompertz distribution given by

M(t) = eλ/α
(
λ

α

)−t/α
Γ

(
1 +

t

α
,
λ

α

)
, t ∈ R.

Proof. From (5) and when θ = 1, we have that

M(t) = eλ/2α
(
λ

α

)−t/2α
W

(
t

2α
,
1

2
+

t

2α
;
λ

α

)
.

From Olver et al. (2010, p. 177), we have that Γ(ξ+ 1; v) = e−v/2 vξ/2W (ξ/2, (ξ+ 1)/2; v), where ξ > 0
and v > 0. The result follows by considering ξ = t/α and v = λ/α in Γ(ξ + 1; v).

Proposition 2. The characteristic function of the GGo distribution is given by ϕ(s) = M(is), where s ∈ R,
and i =

√
−1 is the imaginary unit.

3.2 Moments

We have the following proposition.

Proposition 3. The rth ordinary moment of the GGo distribution is given by

µ′r =
dr

dtr
M(t)

∣∣∣∣
t=0

.

Remark 1. proposition 3 relies on the fact that the moments of a distribution can be obtained from the moment
generating function.

Remark 2. It is worth stressing that the computation of the ordinary moments of the GGo distribution from
proposition 3 is not a trivial problem, since the analytical derivatives of the Whittaker function are not easy to
obtain.

The next propositions present the mean of the GGo distribution.
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Proposition 4. If θ = n ∈ N, the first moment (mean) of the GGo distribution reduces to

E[X] =
eλ/2α

α

n∑
k=0

(
λ

α

)(k−1)/2

W

(−k − 1

2
,
k

2
;
λ

α

)
. (6)

Proof. The survival function of the GGo distribution when θ = n ∈ N can be expressed as

Ḡ(x) = eλ/α
n∑
k=0

(λ/α)k

k!
(1− e−αx)k exp

{
αk x− λ

α
eαx
}
, x > 0.

We have that E[X] =
∫∞

0 Ḡ(x)dx, and so

E[X] = eλ/α
n∑
k=0

(λ/α)k

k!

∫ ∞
0

(1− e−αx)k exp

{
αk x− λ

α
eαx
}
dx.

Let z = αx. We have that

E[X] =
eλ/α

α

n∑
k=0

(λ/α)k

k!

∫ ∞
0

(1− e−z)k exp

{
k z − λ

α
ez
}
dz.

From (4) with ν = k + 1, µ = −k and β = λ/α, the result follows.

Proposition 5. If θ > 0, the first moment (mean) of the GGo distribution reduces to

E[X] =
eλ/α

αΓ(θ)

∞∑
m=0

(λ/α)m (1− θ)m
m!

[Ψ(θ −m)− log(λ/α)] Γ(θ −m)

+
eλ/α(λ/α)θ

αΓ(θ)

∞∑
m=0

(1− θ)m
m!(θ −m)2 2F2(θ −m, θ −m; θ −m+ 1, θ −m+ 1;−λ/α),

where (a)n := a(a + 1) · · · (a + n − 1) is the rising factorial with a ∈ R, (a)0 := 1 and n ≥ 1, and
2F2(a, b; c, d; z) is the generalized hypergeometric function defined by

2F2(a, b; c, d; z) = 1 +

∞∑
n=1

(a)n (b)n
(c)n (d)n

zn

n!
, z ∈ R,

and Ψ(·) is the digamma function defined by

Ψ(z) =
d

dz
log(Γ(z)).

Proof. We have that 0 < e−αx < 1 for all x > 0, and so (1 − e−αx)θ−1 =
∑∞

m=0
(1−θ)m
m! e−mαx. Hence,

we can express the PDF in (1) of the form

g(x) =
α(λ/α)θ eλ/α

Γ(θ)

∞∑
m=0

(1− θ)m
m!

exp

{
(θ −m)αx− λ

α
eαx
}
, x > 0.

Using the above PDF, it follows that

M(t) =
α(λ/α)θ eλ/α

Γ(θ)

∞∑
m=0

(1− θ)m
m!

∫ ∞
0

exp

{
(θ −m+ t/α)αx− λ

α
eαx
}
dx.
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Let z = αx, and so

M(t) =
(λ/α)θ eλ/α

Γ(θ)

∞∑
m=0

(1− θ)m
m!

∫ ∞
0

exp

{
(θ −m+ t/α)z − λ

α
ez
}
dz.

From Gradshteyn and Ryzhik (2015, p. 340), we have that
∫∞

0 exp (−pz − qez) dz = qp Γ(−p, q), where
p ∈ C, and q ∈ C such that the real part of q is positive. Hence,

M(t) =
eλ/α

Γ(θ)

∞∑
m=0

(λ/α)m (1− θ)m
m!

(α
λ

)t/α
Γ

(
t/α+ θ −m, λ

α

)
.

From Brychkov (2008, p. 22), we have that

d

da
Γ(a, z) = [ψ(a)− log(z)]Γ(a) + Γ(a, z) log(z) +

za

a2 2F2(a, a; a+ 1, a+ 1;−z).

Now, using the above derivative and that E[X] = (d/dt)M(t)|t=0, the result follows.

Remark 3. The algebraic developments considered in this section reveal that is not easy to obtain a general
closed-form expression for the ordinary moments of the GGo distribution. This is still an open problem regard-
ing the three-parameter GGo family of distributions introduced by Shama et al. (2022).

3.3 Entropy

We have the following proposition

Proposition 6. The Shannon entropy of the GGo distribution is given by

H(g) = − log

[
λθ eλ/α

αθ−1 Γ(θ)

]
− α θE[X] +

λM(α)

α
+ (θ − 1)

∞∑
n=1

M(−αn)

n
, (7)

where E[X] is the mean of the GGo distribution provided in proposition 5, and M(·) is the moment generating
function of the GGo distribution provided in proposition 1.

Proof. The Shannon entropy of the GGo distribution is given by H(g) = −E[log g(X)], where g(x) is
the PDF of the GGo distribution. Note that

ln(g(x)) = ln

[
λθ eλ/α

αθ−1 Γ(θ)

]
+ α θ x− λ

α
eαx + (θ − 1) ln(1− e−αx), x > 0.

Using the expansion − ln(1 − z) =
∑∞

n=1
zn

n , for |z| < 1, and taking the expected value, the result
follows.

4 Numerical study

In what follows, we provide some numerical values for the mean and Shannon entropy of the GGo
distribution. We use the proposed closed-form expression in proposition 5 to obtain numerical values
for E[X], and the proposed closed-form expression in (7) to obtain numerical values for the entropy.
Table 1 lists the values of E[X] and H(g) for λ = 0.8, α = 1.0, and different values of θ. In this table,
nmax means the number of terms considered in the expansion for H(g) in (7) , while the last column
shows the corresponding values of the entropy by numerical integration. Note that the numerical
values delivered by the expression (7) and numerical integration for the entropy are near, mainly
when nmax = 1000.
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H(g)
θ E[X] nmax = 10 nmax = 60 nmax = 150 nmax = 1000 numerical integration

0.6 0.454810 0.292393 0.200059 0.179110 0.159559 0.150320
0.7 0.518039 0.370634 0.320716 0.310929 0.302876 0.299965
0.8 0.578384 0.435732 0.411674 0.407606 0.404650 0.403818
0.9 0.636056 0.488960 0.480238 0.478969 0.478153 0.477971
1.0 0.691245 0.531898 0.531898 0.531898 0.531898 0.531898
1.1 0.744126 0.566114 0.570739 0.571234 0.571485 0.571521
1.2 0.794856 0.593027 0.599791 0.600410 0.600690 0.600721
1.3 0.843579 0.613869 0.621310 0.621891 0.622125 0.622147
1.4 0.890428 0.629689 0.636984 0.637469 0.637644 0.637657
1.5 0.935522 0.641361 0.648084 0.648465 0.648589 0.648594
1.6 0.978973 0.649613 0.655578 0.655864 0.655950 0.655951
1.7 1.020881 0.655048 0.660206 0.660416 0.660472 0.660472
1.8 1.061341 0.658159 0.662540 0.662690 0.662726 0.662726
1.9 1.100437 0.659356 0.663028 0.663134 0.663157 0.663157
2.0 1.138249 0.658975 0.662021 0.662096 0.662110 0.662110

Table 1: Mean and entropy.
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2022), based on the experience of a representative group (14) of the countries already reviewed, a
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1 Introduction

Peer reviews (PR) are exercises to assess compliance with the principles and indicators of the Euro-
pean Statistics Code of Practices (CoP) by members of the European Statistical System: Eurostat and
national statistical systems (NSI, other institutions...). The ultimate objective of these assessments is
to strengthen the statistical systems at national and European level, thus increasing the reliability and
credibility of users and other stakeholders in European official statistics (Cañada, 2019).
The PR are carried out periodically (every 5/6 years), by agreement of the European Union: There
have been three exercises ("rounds"): The first "round" of PR took place between 2006 and 2008; the
second, more far-reaching one, was conducted between 2013-2015 and a third round is underway
between 2021 and 2023.
At the time of drafting this report (November 2022), the halfway point of the third round of peer
reviews has been reached, both in terms of time and number of countries evaluated, with 19 of the 31
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planned evaluation visits having been completed. Of these, Eurostat has published 14 final reports
on its website. In the case of Spain, the experts’ visit to INE took place from May 31 to June 3, 2022,
and the final report is not yet available. However, based on published reports and Spain’s experience,
it is possible to make an initial assessment of the degree of achievement of the objectives pursued.
The purpose of this document is to provide decision-makers with a first input for a future and more
complete "lessons learned exercise" and to contribute to the debate by the countries on the aspects to
be considered in future peer reviews.

2 Peer review of the European Statistical System: An overview

Table 1 summarizes the key features of the PR, highlighting the differences between the three rounds
conducted to date.

The first "round" of reviews focused only on some CoP principles and was conducted under a
proper peer review approach: statistical institutes in each EU country were assessed by experts from
statistical institutes of other countries.

The second round, carried out between 2013-2015, was broader in scope: all the principles of
the Code of Practice were assessed; (a sample of) other institutions producing European statistics
in each country - the so-called Other National (Statistical) Authorities ONA) (ministries, agencies,
etc. )- was brought in; the process was applied not only to the EU countries, but also to the four
"European Free Trade Association" (EFTA) countries; an attempt was made to move closer to an
audit approach, using teams of expert reviewers from outside the NSIs, to avoid the impression of
less independence and objectivity linked to the internal reviewers as in the first round.
From the point of view of its audit approach, conventional audit principles are followed: information
on the national statistical system is prepared by the NSI, based on a self-assessment questionnaire
(SAQ), supporting the answers with documents that serve as evidence; the team of reviewers
analyses this information in depth; there is an "audit" visit to each NSI in which the reviewers
complete their on-site knowledge of the system assessed; the last stage is the preparation by the
reviewers of a report on the degree of compliance with the CoP by the NSI (countries) that includes
"recommendations" on areas for improvement; and then, in response to these recommendations, the
NSI would prepare a multi-year action plan for improvement. Implementation will be monitored
annually by the European authorities.
The third round, which runs from 2021 to 2023, shares common features with the second round, as it
covers the same scope of countries (all EU countries plus the four EFTA countries), the same content,
as it covers all CoP principles, and the same reviewed institutions, Eurostat, the NSIs and the ONA.
However, it presents differences that seek to improve or correct more controversial aspects of the
second round, which can be grouped into six fundamental ones (Cañada and Muñoz, 2016):

1) Methodological approach. Although like the 2013 PR, the new phase is still close to the audit
methods, it is nevertheless intended to be a combination of audit and PR approaches. This is perfectly
illustrated by the change in the composition of the teams explained below.
There are also changes in some of the tools used: in particular, the NSI self-assessment question-
naire has been simplified so that, without losing its global character (it covers all the principles of
the Code), it allows for greater agility and speed in the review process. The questionnaire is much
simpler than that of the 2nd round: the questions are adapted to the 84 CoP indicators, which in fact
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Topic 2006-2008 2013-2015 2021-2023

1. Territorial scope EU countries 28 EU + 4 EFTA countries 27 EU + 4 EFTA countries
2. Conceptual scope Principles: 1 to 6 and 15 - All CoP principles - All CoP principles

of CoP (2005). (2011) + coordination + (2017). Emphasis on
EU cooperation certain principles

3. Institutional Scope NSI NSI + ONA + Eurostat NSI + ONA + Eurostat
4. Methodology Peer review approach Quasi-audit Combination PR + audit
4.1. Reviewers Internal to the ESS: NSIs Experts from outside Internal + External +

active staff the system Eurostat Member +
(+ Eurostat observer) Eurostat Harmonization

Observer (in some PR)
4.2. Procedure PR approach: self- "Audit-type" approach. "Audit-type" approach.

assessment; review; NSI self-assessment; review;
visit; reporting NSI visit; report

4.3. Self-assessment CoP indicators only for a) NSI: 3 SAQ: a) NSI (only one SAQ)
questionnaire(s) the selected principles - CoP SAQ: defined by - 84 questions on each

principles/ indicators indicator of the CoP.
(broken down at QAF - 60 SWOT questions.
detail) - 9 questions by area of
- 2 Ancillary SAQ on: the CoP.
Coordination and - 29 additional
Cooperation. questions (innovations,
[Total number of COVID-19 pandemic)
questions: 400] [Total number of

questions: 182]
(b) ONA: simplified (b) ONA: simplified
questionnaire questionnaire

4.4. Evaluation report Country-specific Country-specific report, a) Specific report for
reports: NSIs focusing on NSIs (with each country, covering

some reference to ONA) both the NSI and the
ONA.
b) Recommendations
differentiated between
Compliance-relevant
and improvement-
related

5. Others Eurostat + countries
communication
campaign

Table 1: Peer review of the ESS: key features of the three rounds

reveal compliance with the 16 principles of the Code; some other questions are included (see Table
1) to reach a total of 182 questions. We can remain that in the 2nd round, the SAQ was structured
according to QAF (quality assurance framework, Eurostat (2019)) methods linked to the CoP indica-
tors, which involved completing a questionnaire with more than 400 questions.
2) Seek greater harmonization of reviews across countries. In the 2013 round, there was great hetero-
geneity and lack of harmonization in the country reviews and in the PR reports: there were no well-
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established general criteria on what the most relevant and accessory points could be when assessing
countries; the heterogeneity of the reports and of the recommendations to the countries also trans-
lated into heterogeneity of the improvement action plans.... This heterogeneity greatly conditioned
one of the objectives of the PR, which is to contribute to the improvement of the European statistical
system, by developing actions that would have led the countries to advance along common lines.
Therefore, more "harmonization of the review along the different countries" is a Priority goal of the
current 3rd round. Several elements are used to achieve this harmonisation (Eurostat, 2021a):
- On the one hand, an effort towards greater standardisation of the methodologies applied by the
different teams: Although the report and the recommendations will obviously depend on the out-
come of the evaluation, and the review teams have autonomy of decision, priority themes have been
recommended for the review (according to European agreements). A guide of suggested types and
categories of recommendations, has ben published in one of the annexes of the methodology (Euro-
stat, 2020a).
- Furthermore, a differentiation into two types of recommendations was introduced: (...) "The rec-
ommendations issued by the peer review team should be split into "Compliance-relevant" - recom-
mendations fundamental/important to ensure compliance/alignment with the ES CoP - (...), and
"Improvement-related" - less critical/technical supporting improvements recommendations-.
- An additional element is the role of Eurostat technicians in the process, which is discussed in a later
section.
3) Composition of the review teams. In the third round, the composition of the teams of reviewers
uses a mixed formula from previous experiences: each team of reviewers includes both "internal"
evaluators from the statistical system (-PR approach-) and experts external to official statistics (-audit
approach-). This is an attempt to solve a problem detected in the second round: having reviewers
external to the system guarantees greater objectivity but has the counterpart that they may not have
a sufficiently updated knowledge of the situation and trends of the statistical system.
For this reason, the third round has opted for this compromise between the two previous ones, com-
bining the independent and objective vision provided by the external reviewers with the updated
knowledge of the practices and criteria of European official statistics that can be provided by the NSI
and Eurostat staff.
Finally, the teams of reviewers are made up of four members: a serving member of an NSI ("internal",
"peer review" approach); an expert external to the ESS ("audit" approach); an expert from Eurostat
(participating as a reviewer); and, as Chairman of each team of experts, a senior statistician, with
experience in NSI management.
The first group, people who are currently working in the NSIs, is proposed by the countries. Within
this group, some coordinators of the PR Process (and/or responsible of the Quality management) in
their own countries, are simultaneously reviewers for other countries, which reveals the difficulty
in finding people specialised in quality topics. An implicit issue is whether this direct involment of
quality managers as reviewers may give an impression of less objectivity of the process, as already
raised in the first round of the PR.
4) Role of Eurostat. One of the aspects of the previous round questioned by the countries was the lack
of active participation of Eurostat in the reviews (only a Eurostat technician participated as a "mere
observer" in the country visits). In response to this criticism, Eurostat has taken a more active role in
the 3rd round:
- On the one hand, a Eurostat technician participates as a member of the expert team. This active
role, besides serving to improve the quality of the process, is guided by the objective of improving
harmonization in the assessment and reporting of countries.
- Moreover, in pursuit of this harmonization objective, Eurostat proposed to incorporate as an ad-
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ditional "observer" to the process an expert, specialized in quality issues, who would support the
expert team during the country visit and in the drafting of the report and, especially, of the recom-
mendations to the countries. "The role of Eurostat observers would be to support the expert team in
formulating more harmonized recommendations, especially in terms of scope and magnitude, dur-
ing the PR visit and, in particular, on the last day of the visit." (Eurostat 2020b). However, due to
lack of resources, Eurostat observers are only involved in some of the reviews. It is Eurostat itself
that chooses the visits in which it wishes to participate, with the prior approval of the country under
review.
5) Strengthening the role of ONA. This round of the PR aims to strengthen the participation and role
of the ONA. Although they had already been included in the previous round, their role in the process
and in the reports was considered very marginal. Therefore, the new round aims to give a greater
role to the ONA and, in short, to have a more complete view of the situation of the National Statistical
Systems as a whole. To this end, a specific procedure and objective criteria agreed upon by Eurostat
and the NSIs have been established for greater participation of the ONA in the process.
6) Improved communication on the PR to stakeholders. One of the novelties of the third round is
the attention given to communication aspects, through the design and implementation of a commu-
nication campaign by Eurostat and the countries on the process, its objectives and results. This is a
reaction to one of the most questioned aspects of the second round, which was the limited impact of
the process outside the statistical world. There was a critical view of the (limited) dissemination of
the process.
But communication is essential to achieve one of the fundamental objectives of the PR: to contribute
to the external image of quality and credibility of official statistics. That is, to demonstrate to the in-
stitutions most closely linked to statistics (the "stakeholders": informants, policy makers, users), but
also to society at large, that the European Statistical System "operates within a sound quality frame-
work". In short, to contribute to the credibility and confidence of users in statistical institutions. At
the same time, it will also promote that governmental institutions support the improvement actions
derived from the PR.
To this end, a communication strategy to accompany the third round of ESS peer reviews was defined
based on the design of common instruments and means of dissemination for all countries.

3 Some drawbacks of the third round: Lessons learned and alternatives
for future PR

In November 2022, the halfway point of the third round of peer reviews has been reached, both in
time and in the number of countries evaluated, with 19 of the 31 peer review visits having been
completed.
In the case of Spain, the experts’ visit to INE took place from May 31 to June 3, 2022. Part of the
meetings were held with the statistical production units of INE (35 managers and technicians of the
institution participated in the meetings), but also with 30 representatives of the main stakeholders of
the Spanish Statistical System: other producing institutions, such as Ministries and Bank of Spain;
qualified users -business federations, trade unions, non-governmental organizations-; managers of
administrative registers; representatives of the scientific community: universities and researchers;
media. At the time of writing (November 2022) only a provisional version of the report is known.
Based on the data known so far from the reports published by Eurostat on its website (www), a first
assessment can already be made of the degree to which the objectives pursued are being achieved.
1) Harmonization as a main challenge. A greater harmonisation of the countries’ processes was
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one of the basic objectives of the third round the ESS peer reviews. A challenge of this objective is
how to achieve more harmonisation of the reports while there is flexibility for the reviewers’ team
in the choice of principles/indicators to review. Therefore, harmonization has been focused on the
recommendations: "The aim of harmonisation is about the outcome/ the final results of the peer
review meaning the scope, magnitude and number of recommendations" (Eurostat, 2021b).
Concerning scope and magnitude, to ensure greater harmonization, several elements already
mentioned, were introduced: a guide of the types and categories of recommendations; the above-
mentioned distinction between "Compliance-relevant" (CR) and "Improvement related" (IR); the
inclusion of a Eurostat observer...
As a reference of the outcome of the process, we can summarise figures for the 14 countries: a total
of 251 recommendatiosn were made, most of them (221) belong to the "Improvement" category, and
only 30 are "Compliance-relevant". This is undoubtedly a very positive result, as it reveals the high
degree of compliance with the CoP by European countries. However, an in-depth analysis of the
reports reveals some questionable aspects: on the one hand, there are some countries without any
"CR" recommendations. Although this is possible, as it is reflecting a very high level of compliance
with the CoP, in practice it is questionable, if we remember how the PR self-assessment questionnaire
is designed: For those countries where no CR recommendations have been identified, this means
that the level of compliance with the 84 CoP indicators should be almost total or perfect.
The second doubt that arises from the differences in interpretation among the different teams of
reviewers as to what is included in one category or another, even with different evaluations for
similar recommendations. Of course, the recommendations and their classification in one category
or another is responsibility of the Expert teams; and they are autonomous to guarantee objectivity of
the process. But more homogeneous criteria would be useful.
Another aspect linked to harmonization is the aforementioned issue of Eurostat observers, who, due
to limited resources, only participate in some of the visits (chosen by Eurostat). Thus, this initiative
would have more scope if observers could participate in all reviews.
2) Recommendations and the communication issue. One of the aims of the 3rd round is the
effort to a more intensive dissemination and communication campaign of the process to reassure
stakeholders about the quality of European Statistics. On the other hand, being one of the main
objectives of the PR assessing whether NSI are fully compliant with the CoP, that means to identify
aspects for improvements and/or where there is not compliance with the CoP (as in any auditing
process). That is, the final and more evident outcome of the PR is the list of the recommendations
stated to the countries. The obvious problem is that if the report places excessive emphasis on the
recommendations (by their number, by their nature) and/or points to be improved by the country
under evaluation, the final view portrayed to the stakeholders about the country and its statistical
system is debatable. This may have the opposite effect of what was intended by the review process:
by causing stakeholders to question the quality of official statistics.
Back to the figures for the 14 countries available, the most frequent number of recommendations is
22. This number of recommendations necessarily implies devoting a good part of the country report
to their justification (moreover, the recommendations appear twice in the report: in the executive
summary and in a specific chapter). Thus, for a non-expert reader or a reader outside the statistical
world, it is uncertain what impression can be obtained of the statistical situation of a country from a
report of these characteristics.
3) The scope of the PR. In terms of scope, the PR aims to assess the overall status of countries’
statistical systems, through the level of achievement with the CoP as a whole. This objective is clear,
but probably too broad or ambitious, given the current complexity of statistical systems and the
obvious resource and time constraints faced by the reviews. In practice, it is a difficult challenge,
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firstly for countries to summarize the status of the statistical system in a simple questionnaire and
supporting documentation; secondly, it is also difficult for the team of reviewers, a small group of
people working in a necessarily small amount of time, to analyze the documentation in detail and to
adequately understand and assess a country’s statistical system.
For example, the official self-assessment questionnaire (SAQ) of the third round contains a total
of 182 questions: 84 for the CoP indicators; 60 for the typical SWOT questions; 9 for a general
self-assessment by groups of principles (institutional environment, processes, and products); 29 for
additional questions on other topics.
Moreover, in the case of Spain, the SAQ has been designed under a structure like that of the 2nd
round questionnaire; that is, describing not only compliance with the 84 CoP indicators, but also
compliance with the methods recommended by the QAF 2019. And, in support of this questionnaire,
INE prepared more than ninety documents, in some cases written or updated (and translated into
English) especially for the PR. The investment made by the Spanish NSIs in the preparation of the
PR was very considerable.
After the analysis of all this documentation, the second step of the PR is the visit to the country
assessed by the reviewers. Over the course of five days, the reviewers try to complement their vision
of the statistical system through meetings with INE staff and different stakeholder groups.
Realistically, despite the undeniable effort and professionalism of the experts, it is still a system that
faces obvious limits (in terms of time and resources) to adequately capture the complex reality of
current European statistical systems. And the question remains whether the final reports could not
reflect the great efforts made by the NSIs in this field.
Returning to one of the recurring questions throughout the different rounds, it is worth asking
whether, instead of a global approach aiming to assess the full coverage of the Code, a more in-depth
but narrower scope analysis, focused on groups of principles, would be more appropriate. In
addition, a more concentrated and narrower scope of the PR could also contribute to the recurrent
objective of harmonization.

4 Final comment

There is no doubt that the PR assessments are contributing to the improvement of the quality of
the European statistical system. They constitute a balanced mechanism between simple internal
evaluations and audit exercises, adapted to the peculiarities of official statistics. The third round
represents a new step forward, overcoming some of the limitations of the previous rounds.
Although the third round is still in progress at the time of reviewing this document (December 2022),
based on the final reports for 14 of the countries already reviewed, (and the practical experience of the
author in the case of Spain) a first assessment can already be made of the degree of achievement of the
objectives pursued. As a result of this analysis, some suggestions are made on areas where there is
still room for further efforts: in relation to the scope of application, as in previous rounds, the question
arises once again as to whether the PR can be approached from a perspective more focused on specific
topics, rather than attempting to cover the entire CoP; it is also pointed out that further progress is
needed in the harmonization of results between countries, with greater homogenization of criteria
among the review teams; aspects that could contribute to the objective of better communication of
the nature and value of these exercises aimed at the key players in the statistical system.
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Abstract: Estimates of total and cause-specific mortality rates require information on the number of
deaths (numerator) and the population at risk (denominator). In unlinked mortality studies, the nu-
merator and denominator come from different sources, so there may be a numerator/denominator
bias when estimating mortality rates according to certain individual attributes. This bias does not
occur in linked mortality studies, in which data from the census or general population surveys are
linked to vital records, and in the case of death, to the date and cause of death. However, regulations
to protect individuals’ confidentiality greatly limit the use of linked and unlinked mortality statistics
for scientific research, whether due to the regulations themselves or because of the restrictive inter-
pretations thereof by some statistical offices not always sufficiently argued. On the other hand, some
methodological developments by these offices are of enormous relevance, for example, the linkage
between socioeconomic indicators and mortality by the National Statistics Institute of Spain, which
enables the study of the relationship between socioeconomic factors and mortality and its variation
over time.
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1 Introduction

The creation of civil registries in the 19th century to collect data on deaths and other sociodemo-
graphic characteristics was an important milestone for health research. The information contained
in the death certificates, necessary for registering the deceased in these registries, began to be used
in different studies on mortality according to factors such as occupation and place of residence.
William Farr was the first to use these vital records to calculate the mortality rate across various
occupations and in different geographical areas, in the mid-19th century in England and Wales
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(Drever and Whitehead, 1997). The denominator for calculating this rate came from the population
census. Farr passionately advocated for the development of a standard international nomenclature
for collecting statistics on cause of death, coming to regard it as even more important to research
than establishing a standard system of weights and measures in the physical sciences.

In the early 20th century, researchers in England and Wales also began to use information on
occupation, as provided by the census and by death registries, to calculate mortality rates in different
social strata. They used a social class scheme developed in 1911, which categorized occupations
based on their social prestige. Known as the Registrar General’s social class scheme, it was used
throughout the 20th century in countless studies by British authors. Researchers from other countries
have also developed similar classifications to study socioeconomic differences in mortality.

On the other hand, scientists in numerous countries have used census and other population-
based data to characterize geographic or political-administrative areas based on demographic,
socioeconomic, or environmental variables, using this information to assess the relationship
between different geographic areas and the mortality of the population residing in them. On other
occasions, investigators have evaluated the impact of an unexpected event or a health intervention
on population health by comparing the mortality rates between areas or over time.

Thus, despite their limitations, cause-specific mortality statistics have helped define the main
public health problems and carry out innumerable studies on the epidemiology and natural history
of diseases. In fact, Hill considered that vital statistics laid the groundwork for the birth of epidemi-
ology, and indeed, Snow used London’s vital statistics, provided by the Registrar General in the
mid-nineteenth century, in his landmark study of cholera transmission in that city (Hill et al., 1955).

2 Mortality studies with unlinked information

One of the earliest insights in occupational medicine was the recognition of the healthy worker
effect (Checkoway et al., 2004). Occupational studies of mortality at the end of the 19th century
described this bias after observing lower mortality in people who were employed relative to the
general population. This phenomenon is due to the fact that people with a chronic disease are less
likely to enter or remain in the labor market.

Likewise, for most of the 20th century, studies of socioeconomic inequalities in mortality have
used the death registry and census data. In countries where these data were available (usually
because occupation was recorded on the death certificate), researchers were able to describe
the evolution of socioeconomic differences in overall and cause-specific mortality. For example,
comparative studies in several European countries found that in the 1990s, socioeconomic differences
in mortality were smallest in southern European countries like Italy and Spain (Mackenbach et al.,
1997).

Since the 19th century, studies using a certain characteristic of the geographic or political-
administrative area as the main independent variable have also generated knowledge of interest to
public health. In the 19th century, rural populations had lower mortality than urban ones (Cosby
et al., 2008) — a relationship that has been inverted in high-income countries. Other studies in these
settings have investigated the relationship between various characteristics of the neighborhood of
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residence and mortality, showing that the population residing in more deprived neighborhoods
have higher mortality (Meijer et al., 2012).

Similarly, the availability of data on deaths and on populations in cities, municipalities, regions,
and countries has made it possible to assess the impact of periods of high air pollution, heat
waves, macroeconomic fluctuations, public health regulations, or access to medicines on overall
and cause-specific mortality. For example, one study showed a sharp acceleration in the decline of
mortality due to hepatitis C and other related causes, such as liver cancer and HIV infection, after
the implementation of the Hepatitis C Strategic Plan in Spain, in April 2015, whose main component
was providing universal and free access to direct-acting antivirals against this disease (Table 1)
(Politi et al., 2022).

Annual percent change in mortality rate(*)

Pre-intervention Post-intervention
Cause of death period period

Hepatitis C -3.2 -18.4
Hepatocarcionoma -0.9 -2.7
Cirrhosis -3.7 -3.7
HIV disease -8.3 -15.6
Non-C hepatitis -5.8 -1.4
Other live diseases -3.1 -1.6
All non-hepatic causes -2.2 0.1

(*) 1. The pre-intervention period included from the first quarter 2001 to the first quarter 2015, inclusive.
The post-intervention period included from the second quarter 2015 to the last quarter 2018.

Table 1: Comparison of mortality trends from hepatitis C and other hepatic and non-hepatic causes
of death in the general population, before and after the implementation of the Strategic Plan for
Tackling Hepatitis C: Spain, 2001 – 2018

Scientists’ access to the data needed for such studies is uneven, which helps explain the absence
of these types of investigations in some countries or regions. Restrictions are rooted in the fact
that some statistical offices consider that removing the personal identification of the deceased
—first name, last name, personal identification number— is not enough to protect individuals’
confidentiality. If the population is small, they include characteristics like occupation, day of death,
neighborhood, or municipality of residence within the scope of statistical confidentiality. There are
even statistical offices that consider individual age as an object of special protection, so instead of
providing the age of each deceased, they share only the five-year age group to which the deceased
belongs. Others consider that it is the combination of variables that should remain secret, so they do
not provide both age and cause of death for the deceased. There are endless ways of thinking on this
matter.

Such obstacles make it difficult, if not impossible, to perform spatiotemporal analyses of great
epidemiological and public health interest. For example, restrictions on data access preclude the
study of mortality and daily ecological variables (e.g., temperature, air pollution) or socioeconomic
indicators about the neighborhood or municipality of residence. It is also difficult to develop and
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evaluate highly relevant public health interventions. In some cases, researchers can access these data
once they formalize and fulfill certain administrative requirements imposed by the statistical offices.
But many give up or do not even attempt it in the face of the heavy bureaucratic burden entailed.

Some scientists are surprised at this limitation, first of all, because individual observations are
never disseminated in the findings of medical research, except in some clinical studies based on a
very few patients. Second, the characteristics subject to special statistical protection are instrumental
to generating results of interest. Third, the data that some offices treat as a statistical secret are not
considered as such by others. These scientists probably forget that, in statistical offices, as in many
other places (including research centers), ethics committees establish these limitations according
to different criteria, either due to variations in national regulations on data protection or in the
interpretation of these laws by different offices.

These heterogeneous interpretations can generate paradoxical situations, as in Spain, where for
reasons of confidentiality, the National Statistics Institute does not routinely provide some attributes
of the deceased person’s microdata file, while some regional statistics offices do.

3 Mortality studies with linked information

In classic mortality studies by occupation or social class, researchers have calculated the number of
deaths occurring among people of a given occupation during a given time period, divided by the
number of people in that occupation for half the period. As noted, the data source for the numerator
was the death certificate, and for the denominator the population census. As the numerator and
denominator come from different sources, these are unlinked cross-sectional studies, which are at
risk of a numerator/denominator bias, since a person’s occupation in the death registry may not
match that person’s occupation in the census (Lynge, 2011).

This bias can also occur with other variables, such as sex or age, since both come from different
sources; some people may appear as men in the death registry and as women in the population
census, or vice versa, and the age may different. However, the scientific literature has never made
any reference to these errors because they are probably infrequent and have a negligible impact on
the study results.

Starting in the second half of the 20th century, the central statistics offices of several countries
began to link data from the census and the death registry in individual entries, making it possible
to avoid this numerator/denominator bias in research. The central statistics offices provided
researchers with the linked data set, with census variables along with the date and cause of
death, after removing personal identifiers to protect privacy. The first countries to implement this
methodology were the USA, in the 1960s, followed by Denmark, Finland, Norway, England, Wales,
and France in the 1970s. Some countries established this linkage in the entire population, while
others did so only with a representative census sample (Fox, 1989). Subsequently, some central
statistics offices began to link data from general population surveys to that from the death registry
(Duleep, 1989). Since then, and especially from the 1990s, the statistical offices of other countries
have followed suit, implementing the methodologies needed to create a linked data set. In Spain
and Italy, some regional statistics offices have been ahead of the national statistical offices in that
regard. In Spain, this change was of great importance due to the decrease in the proportion of
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death certificates containing the occupation of the deceased, which made it impossible to perform
mortality studies according to this variable. The creation of a linked data set enabled researchers to
continue investigating the relationship between socioeconomic status and mortality.

Population and First half of’ First half of
educational level(*) Nineties the 2000s’ Nineties the 2000s’

Finland
Low 1.97 2,08 1,59 1,84
Medium 1.6 1.61 1.22 1.35
High 1 1 1 1
Sweden
Low 1.78 1.9 1.88 1.88
Medium 1.42 1.47 1.47 1.42
High 1 1 1 1
Norway
Low 1.88 2.35 1.76 2.12
Medium 1.43 1.63 1.3 1.45
High 1 1 1 1
Denmark
Low 1.77 2 1.62 1.85
Medium 1.46 1.53 1.24 1.34
High 1 1 1 1
France
Low 2.23 2.37 1.64 1.8
Medium 1.6 1.7 1.17 1.38
High 1 1 1 1
Switzerland
Low 1.95 2.22 1.43 1.54
Medium 1.41 1.52 1.11 1.13
High 1 1 1 1
Region of Madrid
Low 1.55 1.56 1.37 1.3
Medium 1.3 1.27 1.18 1.23
High 1 1 1 1
Basque Country
Low 1.49 1.51 1.25 1.39
Medium 1.2 1.16 1.12 1.22
High 1 1 1 1

(*) Low level: lower than primary studies, primary studies and the first cycle of secondary education.
Intermediate level: second cycle of secondary education and studies after secondary education. High
level: university studies.

Table 2: Mortality rate ratio according to educational level in various European populations. Subjects
from 30 to 74 years. Nineties and first half of the two thousand years

Comparative studies with this type of data from various Western European countries have
confirmed the smaller socioeconomic differences in mortality in southern compared to northwestern
European countries (Mackenbach et al., 2015). These results are consistent regardless of whether
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the measure of socioeconomic status is based on occupation or educational attainment. Table
2 shows these findings according to education. Data for Spain and Italy are generally collected
and reported at a regional level, but this pattern is similar in analyses of data in the entire population.

Apart from avoiding the numerator/denominator bias, linked data sets are fertile grounds for
testing hypotheses because of the large number of variables they contain. For example, based on
a linkage between the 2001 population census and the death registry over the following ten years,
implemented by the National Statistics Institute in Spain, a study found an acceleration in mortality
decline during the 2008 economic crisis with respect to the previous period, which was more pro-
nounced in people with low compared to high socioeconomic status (Table 3). In that study, the size
of the dwelling (m2) and the number of cars in the household, as recorded in the 2001 population
census, were used as indicators of socioeconomic status (Regidor et al., 2016).

APC in mortality rate

(1) Precrisis (2) Crisis Effect size
Indicators of wealth (2004-2007) (2008-2011) (2)-(1)

Household floor space(m2)
Low (<72) -1.7 -3.0 -1.4
Medium (72-104) -1.7 -2.8 -1.1
High (>104) -2.0 -2.1 -0.1
Household car ownership
Low (no car) -0.3 -2.3 -2.0
Medium (1 car) -1.6 -2.4 -0.8
High (2 or more cars) -2.2 -2.5 -0.3

Table 3: Table 3. Trends in premature mortality (lower than 75 years old) in Spain. Annual percent
change (APC) in mortality rate before and during the 2008 economic crisis, and effect size according
to indicators of wealth

Statistics offices apply the same interpretation of statistical confidentiality to linked and unlinked
data, withholding information on variables they consider should not be disclosed. Furthermore,
when population samples are linked to the death registry, statistics offices do not provide detailed
information on some variables in the resulting data set. For example, they do not release the specific
cause of death (at the level of the fourth digit of the International Classification of Diseases), but only
the large disease group to which those causes belong.

Statistics offices consider that a low number of deaths from a specific cause cannot be used
for statistical analysis. This paternalistic criterion is inadequate, since it is impossible to know the
hundreds of possibilities that the availability of the specific cause of death would provide in answer
to an infinite number of research questions. Statistics offices have absolute legitimacy when deter-
mining what data are subject to statistical confidentiality, based on whatever law, moral reasoning,
or ethical criteria they deem appropriate to apply. But they lack legitimacy when they resort to
supposedly technical criteria without adequate theoretical and empirical arguments to support them.

A common feature of linked mortality studies in many countries is that investigators often have
little or no control over the linkage processes or the techniques used to build the database. To make
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matters worse, they may also have little information about the processes and techniques used. This
knowledge is essential because linkage errors, materialized in the impossibility of linking some indi-
vidual records (missing links) or falsely linking records, could generate bias when they do not occur
randomly. In fact, scientific journals often ask researchers for details about the process before pub-
lishing the results. It is understandable that statistics offices prevent access to individualized records
with personal identifiers, but it is highly questionable that they rarely provide basic information on
linkage techniques or the validity of the linkage made. It is also problematic that researchers do not
participate in the planning of these processes, since it could allow them to assess the quality of the
linkage, reducing errors and enabling a better interpretation of the study results drawn from these
linked databases (Harron et al., 2017; Harron, 2022).

4 Other mortality studies with linked information

Another methodological option that avoids numerator/denominator bias in studies of socioeco-
nomic characteristics and mortality is that developed by the National Statistics Institute of Spain
in the continuous updating of population figures. By crossing numerous sources of administrative
information, all the socioeconomic indicators collected in any of those sources are made available
for each citizen. Subsequently, the National Statistics Institute links these variables to each deceased
person in the death registry, thus avoiding the numerator/denominator bias when calculating
mortality rates based on these attributes.

These population and mortality data, plus data on sex, age, and level of studies, were used to
calculate the estimates that appear in Figure 1. In mortality from causes of death strongly related
to alcohol, there is an inverse gradient according to the level of studies in both men and women,
a result that is similar to those from other high-income countries. Likewise, in Spain and other
countries, there is an inverse gradient in alcohol intake according to the level of studies in men,
while in women, alcohol intake is most frequent in those with a high level of studies (Boyd et al.,
2021; Donat et al., 2022). This discordance between the findings on alcohol-related mortality and
alcohol intake in women has been called the alcohol harm paradox, the reasons for which are still
unclear among the international scientific community.

5 Epidemiological follow-up studies

In epidemiological follow-up studies, a large amount of information is obtained over time from a
large sample of research subjects. The data collection questionnaires include numerous variables
obtained through personal interviews, physical tests, and blood and urine analyses. In this way
it is possible to estimate the relationship between a wide variety of factors and the appearance of
diseases and cause-specific mortality.

Researchers turn to statistics offices to find out the vital status of research subjects and, if
deceased, the cause of death. Some offices make this information contingent on different agreements
and protocols with researchers, so that investigators can obtain the information they need from
the death registry. In Spain, to determine an individuals’s vital status, researchers can request
the data from either the National Statistics Institute or from the National Death Index, a database
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1.Alcohol-induced pseudo-Cushing’s syndrome (E24.4), alcohol use disorders (F10), alcoholic nervous system degenera-
tion (G31.2), alcoholic polyneuropathy (G62.1), alcoholic myopathy (G72.1), alcoholic cardiomyopathy (I42.6), alcoholic
gastritis (K29.2), alcoholic liver disease (K70), alcohol-induced acute pancreatitis (K85.2), alcohol-induced chronic pancre-
atitis (K86.0), maternal complication of foetal alcohol injury (O35. 4), foetus and newborn affected by maternal alcoholism
(P04.3), foetal alcohol dysmorphic syndrome (Q86.0), blood alcohol finding (R78.0), accidental alcohol exposure poisoning
(X45), intentional self-inflicted alcohol exposure poisoning (X65), alcohol exposure poisoning, undetermined intent (Y15)
and evidence of alcohol involvement (Y90-Y91).Chronic hepatitis, not elsewhere classified (K73) and fibrosis and cirrhosis
of liver (K74, except biliary cirrhosis -K74.4 to K74.5-). Cancers of lip, oral cavity and pharynx (C00-C13), oesophagus (C15),
larynx (C32) and liver (C22). Tuberculosis (A15-A19, B90, K67.3, P37.0) and lower respiratory infection/pneumonia (A48.1,
A70, J09-J15.8, J16, J20-J21, P23.0-P23.4), pancreatitis (K85-K86, except alcohol-induced pancreatitis ?K85.2 and K86.0-) and
epilepsy (G40-G41).

Figure 1: Age-standardized mortality rate from causes closely related to alcohol in people aged 25
years, by educational attainment. Spain, 2016-2019

managed by the Ministry of Health; however, this index does not provide access to the cause of death.

Based on the results obtained in some of these investigations, it is possible to quantify the impact
that certain circumstances or factors may have on the burden of disease and death in the popula-
tion. For example, using estimates on the relationship that tobacco and alcohol consumption have
with mortality from various causes of death, together with information on the prevalence of these
behaviors, it is possible to estimate deaths potentially attributable to tobacco and alcohol from vari-
ous causes of death, together with information on the prevalence of these behaviors, it is possible to
estimate deaths potentially attributable to tobacco and alcohol. According to two studies, 14.0 and
4.0 of deaths were attributable to tobacco and alcohol use, respectively, over the first two decades of
the 21st century in Spain (Ministerio de Sanidad, Servicios Sociales e Igualdad (MSSSI), 2016; Donat
et al., 2022).
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6 Conclusions

Mortality registries and cause-of-death statistics are of immense importance to clinical and public
health research, far outweighing the value of existing morbidity records. In Spain, for example, the
quality of the mortality data and their value have increased considerably by including new sociode-
mographic variables, such as educational level or occupation. In addition, the validity of registered
causes of death has increased by better incorporating judicial and forensic information. However,
fully capitalizing on the potential of these data is still not possible due to limitations in accessing some
variables, such as the day or municipality of death. These restrictions derive from a very conservative
interpretation of personal data protections by the ethics committees in some statistics offices. This
rigid position should be reconsidered, and efforts made to design simple procedures so that scientists
can access this information —with privacy guarantees but without tedious bureaucratic procedures.
After all, the greatest benefits for the population derive, surely, from achieving an adequate balance
between protecting people’s right to privacy and carrying out research that improves their health
and quality of life.
On the other hand, the usefulness of mortality registries for health research would be greatly im-
proved if investigators requesting linkages to other registries could participate in some way in plan-
ning the linking procedures or at least receive detailed information about them. In this way, they
could more adequately interpret the findings of their research and respond with confidence to the
editors of the journals that disseminate their work.
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the analysis of the causes of death using available administrative sources.

Keywords: underlying cause of death, multiple cause of death, International Classification of Dis-
eases, coding, IRIS System, IMLweb, administrative data
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1 Introduction

This work is part of the review process within the strategy of the European Statistical System
(ESS) to implement one of the recommendations of the Code of Good Practices (CoP) through the
evaluation of key statistics by external experts. For this purpose, a session has been included within
the framework of the XXXIX Spanish conferences on Statistics and Operation Research and of the
XIII Conference of Public Statistics to present the Statistics on causes of death methodology, with two
speakers from Complutense University of Madrid and the National School of Health of the Carlos
III Health Institute.
The Statistics on Cause of Death is an annual operation legally supported by Regulation (EU)
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328/2011 of the Commission, of April 5, 2011, which develops Regulation (EC) 1338/2008 of the
European Parliament and of the Council regarding community statistics on public health and safety
and health at work in the field of statistics on causes of death, which establishes the commitments
acquired by the Member States and Eurostat in relation to the statistics on Causes of Death,
Commission Regulation (EC) 328/2011 specifies the scope, the definitions, the list of variables, the
reference period, the deadline to send the data and the set of variables and metadata to be provided
to Eurostat.
The main objective of the statistics is to know the pattern of mortality. Information on causes of
death is the traditional study that has allowed us to know better the health situation since the
19th century and continues to have great potential as a tool for decision-making in public health.
This statistic began based on a list of 5 diseases. Later, the cause of death was classified according
to a list of 99 diagnoses, origin of the International Classification of Diseases (ICD) of the World
Health Organization (WHO) and nowadays there is the tenth revision of this classification (ICD- 10),
containing more than 12,000 diagnostic codes, which allows classifying the mortality causes with a
high degree of clinical specification (OPS 1995).
The purpose of the causes of death data is to know the pattern of mortality associated with each
sex, group of age and geographical areas, as well as its evolution over the time. The key variable
is the underlying cause of death, which is selected following the ICD-10 criteria from the diseases
informed by the physician in the Medical Death Certificate. (INE 2020)
The study of mortality based on the underlying cause of death constitutes a great value tool; in fact,
it has allowed to detect changes in the trend of certain diseases. Four decades ago, cardiovascular
diseases were the main cause of almost half of deaths, but their relative weight has been decreasing
since then (26% in 2021) and, although they remain the leading cause of death, they have been
displaced for other causes such as tumours, dementia, or Alzheimer’s disease. These last two
diseases mentioned have been the main cause of more than 30,000 deaths in 2021, 66% more than in
2005. And with the outbreak of the pandemic, this pattern has undergone some new changes.
Another important contribution of the underlying cause of death, with relevant social and economic
impact, is to identify the ”guilty” causes of premature deaths and quantify the years of life lost
(INE 2021) due to these causes. Violent deaths —that is, traffic accidents, poisonings, falls or other
accidents, suicides, or homicides— are the causes that deprive of more years of life. People who die
of a violent cause, live, on average, 27 years less than the years they would theoretically have to live.
And if we refer to tumours, we would be talking about 12 years of life lost. However, if Statistics on
causes of death were limited to the study of the underlying cause, the opportunity to identify the
associations of the most frequent pathologies and to know the true dimension of mortality would
be lost. An aging population, like the case of Spain, have a significant increase of chronic diseases
in which several pathologies converge, although they do not lead to death, they can contribute to
hastening it. This is the case, for example, of diabetes or hypertension.
When one of these diseases is informed on the certificate, its selection as underlying cause will
depend on the rest of the diseases that have also been mentioned. For example, if hypertension
and COVID-19 appear together, depending on the order in which both diseases are informed, the
ICD-10 selection rules may penalize hypertension by displacing it in favour of COVID-19. Thus,
the opportunity to know and analyse the true dimension of hypertension in mortality would be
lost, apart from to identify the most frequent associations with other pathologies and, therefore, to
adopt more effective prevention action measures. Another recent example of the importance of the
multiple causes of death availability (INE 2021) has been their effect on respiratory diseases with the
irruption of the COVID-19. Respiratory system diseases have been displaced as underlying cause by
the COVID-19 when both were informed in the same certificate. Thanks to the multiple causes, the
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impact of respiratory diseases on mortality was not lost and it was possible to obtain information on
the complications derived from COVID-19 and the comorbidities presented by the people who died.
Apart from that and without any doubt, the usefulness of the causes of death data is also linked to
the continuous quality improvement to be able to respond to new demands.
In recent years, great efforts have been made to improve the quality of these statistics. An
international automatic system for coding (IRIS) has been implemented and, the Institutes of Legal
Medicine and Forensic Sciences have been incorporated as a source of information of the causes of
deaths in case of deaths with judicial intervention.
In terms of responding new demands, the Causes of Death Statistics offer very precise and high-
quality information, however it does not provide information in the short term as evidenced during
the COVID-19 crisis. This fact is due to the administrative steps required by the Civil Registers
before sending the Death Certificate (paper document with the needed information) to the NSI and
its complex process of mass scanning and OCR review. The solution is found in the Electronic Death
Certificate, a project framed in the digitization of the Civil Register as established by Law 20/2011
and in which the NSI collaborates with the Civil Register. Nevertheless, Causes of Death Statistics
is the source of numerous epidemiological studies and health research. The pandemic, that has
given visibility to epidemiology, has also made this Statistics more visible, proof of this is the huge
number of accesses to its results. In 2019 there were around 260,000 queries and since 2020 they are
approaching two million.

2 Statistical processes in the pandemic context

When the COVID-19 pandemic emerged, the information on mortality that was becoming known
referred to estimated mortality data (Daily Mortality Monitoring System - MoMo - and Experimental
Statistics on weekly estimations of deaths) and mortality declared to the National Epidemiological
Surveillance Network (RENAVE). On the one hand, the mortality declared by COVID-19, provided
by the Ministry of Health from the registers of the Autonomous Communities, met the criterion of
deaths with a positive COVID test without distinguishing the direct cause of these deaths and, on
the other hand, the estimated mortality made it possible to know the excess mortality, but without
having information on the causes of death.

This daily information was essential for the epidemiological surveillance of the pandemic;
however it was not enough to know the real impact of COVID-19 on mortality. The source that
would provide the best estimation of mortality attributable to the pandemic would be the Statistics
on Causes of Death.
The Death Certificate, document in which the physician informs the sequence of diseases that finally
lead to death, is the source of information for the Causes of Death Statistics.

The Civil Registers send the death certificates to the Provincial Delegations of NSI to be scanned.
These certificates are designed for optical recognition. Taking into account that the terms to be
recognized are diseases, their recognition is quite complicated, for that reason it is necessary to
develop a diseases dictionary from the information provided by physicians in the death certificates
over the years. Currently, this dictionary has around 170,000 different terms and the recognition
success level is around 85-90Some difficulties had to be faced during the health crisis, such as the
collapse in the Civil Registers during the first wave of the pandemic, a greater volume of deaths

SJS, VOL. 4, NO. 1 (2022), PP. 99 - 105



102 M.G. FERRUELO, M.R. GONZÁLEZ

Figure 1: Medical death certificate

and, the most important, dealing with a new disease in the process of codification. In March 2020,
when the first deaths due to covid occur, the Optical Recognition System did not recognize the terms
referring to this new disease because of not being included in the dictionary. For that reason, coders
from the Autonomous Communities, within the collaboration agreements with the NSI for the work
of the Statistics, had to compare exhaustively the recognition result with the certificate images and
correct any errors. As soon as possible, the terms used in the first certificates referring to COVID
were included in the dictionary (around 145 different expressions).
Once the information on the certificates has been scanned and reviewed by coders, the next step is
to identify the initial cause of death, applying the ICD-10 rules in the sequence of diseases informed
by the physician in the Death Certificate, and finally determine the underlying cause of death. The
Volume 2 of ICD-10 describes these rules according to medical criteria and applying medical logical
relations between the diseases informed in the certificate. This is undoubtedly the most complicated
part of the process and requires continuous medical supervision and advice.
Until 2013 the coding process was manual, and the emerging doubts were solved through a forum
created for this purpose between the NSI and the Regional Mortality Registers. However, the manual
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coding of causes of death, apart from being affected by the same problems as other manual coding,
that is, it requires time, requires numerous human and financial resources, and is very sensitive
to systematic errors by coders, presents another specific problem: the selection of the underlying
cause of death must be based on the guidelines described in the ICD and these are characterized
by their complexity and, above all, their numerous exceptions. In the context of improving the
quality of this statistics, the IRIS automatic system was implemented in Spain with the 2014 data, as
a consequence, a fundamental advance has been achieved in terms of punctuality and comparability
of the information, both at national and international level (Carrillo and González, 2016). IRIS is an
intelligent system prepared to work with the WHO medical death certificate model, which is in force
in Spain. It works using algorithms based on codes assigned to medical terms, on causal medical
relations and on the application of selection rules in accordance with the guidelines of Volume 2 of
the ICD-10. To get an idea of how valuable this tool, it is enough to mention that the number of
relations between diseases programmed exceeds 29 million.
Although Iris is linked to the names of its two co-founders, Lars Age Johansson and Gérard Pavillon,
as well as the rest of the Core Group members, it is important to highlight that the automatic system
success is also a consequence of the involvement of all countries that, to a greater or lesser extent, are
part of the project. The development of a tool that guarantees the comparability of causes of death
statistics at a world level could not be understood without a coordinated international cooperation.
IRIS is a language-independent international software because it works with codes and this implies
the development of a dictionary in the national language that associates an ICD-10 code with each
disease. Currently, the Spanish dictionary consist of 167,000 standardized terms associated with
their ICD-10 code. The COVID-19 pandemic brought new challenges for IRIS since their decision
tables had to be modified to include the new disease.
The inclusion of COVID-19 in the statistical process began from the moment that WHO incorporated
the new disease into the ICD-10, assigning two different codes to distinguish between COVID-19
virus identified (with positive test) and COVID-19 virus not identified (suspected), thereby making
it possible to determine the mortality directly caused "by" confirmed COVID and "by" suspected
COVID.
Apart from that, as mentioned before, in addition to the underlying cause, the Statistics also
provides information on the diseases that have contributed to the death and have been reported
by the physician in the Death Certificate (multiple causes). In this way, deaths with the presence
of COVID-19 without being this disease the underlying cause, that is, mortality "with" confirmed
COVID and "with" suspected COVID could be identified.
In the same way, multiple causes gave information about complications due to COVID-19 and
the comorbidities of people who died of this disease. Respiratory failure and pneumonia were
the most frequent complications reported on the Death Certificates of people who died âĂIJofâĂİ
COVID-19, both identified and not identified virus. In terms of comorbidities, hypertensive disease
and renal failure were the main comorbidities in COVID-19 virus identified mortality and dementia
in the case of COVID-19 virus not identified mortality. The results showed that there were 60,358
deaths due to COVID-19 virus identified in 2020 and another 14,481 deaths due to suspected
COVID-19 due to having symptoms compatible with the disease (COVID-19 virus not identified). In
addition, physician certified 8,275 deaths due to other causes, but having COVID-19 as comorbidity
contributing to the death. In 3,770 cases the physicians identified the virus and in 4,505 cases they
suspected its presence due to having symptoms compatible with the disease.
The other action to improve quality that deserves to be highlighted is the incorporation of the
Institutes of Legal Medicine and Forensic Sciences as a source of information on deaths with judicial
intervention. Although quantitatively judicial deaths have little relative weight (between 5-6% of
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mortality), they are very relevant qualitatively because most of them are premature and avoidable
deaths.
Up to 2019, the main source of this information was the judicial authorities and around 40% of
reported judicial deaths had incomplete information on causes of death. This implied that the
Mortality Register of Autonomous Communities, depending on their available human resources,
had to improve this information by contacting the coroners, creating comparability problems
between regions and time series.
The NSI has developed a software in order the coroner to provide the information on deaths with
judicial intervention, the tool is in line with the statistical needs, that is, focused on obtaining the
ICD-10 code and guarantees coverage and comparability. The incorporation of the Institutes of
Legal Medicine and Forensic Sciences in the circuit of deaths with judicial intervention information,
as recommended by numerous studies, has led to a very significant improvement in quality. In
addition, the collaboration of the Institutes of Legal Medicine and Forensic Sciences positions them
as a key source of information in the circuit of official statistics on causes of death, reinforcing their
social and health projection. The software also provides reports with the same format and common
international health language that facilitates comparability between Institutes of Legal Medicine and
Forensic Sciences and the preparation of its annual reports.

3 Some examples of epidemiological studies and health research based
on the Statistics on Causes of Death

As mentioned in the introduction, the Statistics on Causes of Death is the source of information for
numerous epidemiological studies and health research. In order to show the potential offered by
the Statistics, it is presented below some of the numerous research projects based on monitoring the
mortality of specific cohorts’ members:
- Monitoring of the mortality of the cohort of patients affected by the Toxic Oil Syndrome. The
Carlos III Health Institute has been monitoring for 37 years the Toxic Oil Syndrome epidemiological
cohort with 20,643 affected since the beginning of the outbreak. The NSI annually provides the vital
status of those affected and the cause of death in case of decease to identify a mortality pattern of
this epidemic. Up to now, more than 5,000 deaths have been identified.
- EPI-CT project on potential health effects of exposure of children and adolescents to ionizing
radiation during TAC scans carried out by the Centre for Research in Environmental Epidemiology
(CREAL) of Catalonia.This project came to light through a collaboration agreement between the NSI
and the Centre for Research in Environmental Epidemiology (CREAL) of Catalonia. The objective
was to determine the potential effects of the ionizing radiation doses applied during the TAC scans,
to see the possible effects and, according to the results, to reduce and optimize these doses. There
was first a pilot study with 10,000 patients and later with more than 200,000 patients. The cohort was
crossed with 27 mortality data files.
- BIFAP Project: Database for Pharmacoepidemiologic Research in Primary Care. The Spanish
Agency for Medicines and Health Products requires information on mortality by cause to evaluate
the safety and effectiveness of new medicines.
- Prospective study of the Health Research Institute of the Hospital La Paz on the follow-up during
12 months of a 2,000 individual cohort with a suicide attempt. This study aims at assessing the
incidence of re-attempted suicide and identify risk factors. For this purpose, this cohort has been
crossed with the mortality data files. - Mortality study among medical professionals. The Council
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of Official Colleges of Physicians has prepared a mortality study among the medical professionals.
This initiative analyses, for the first time in Spain, the expectancy life and causes of death of Spanish
physicians, based on the data from its register and mortality data from the NSI. The study analyses
the evolution of the number of medical professional deaths in the period 2005-2014 and the main
causes of death in this group.

4 Other user demands

The availability of additional variables of interest for the mortality analysis is a reiterated demand
from researchers.
Based on 2016 data, variables such as educational level and activity status have been obtained from
administrative sources and incorporated into the microdata file. Occupation, at the one-digit of the
National Classification of Occupations (CNO 11) level, has been assigned in case the deceased over
16 years of age was working at the time of death.
For this purpose, the information from the pre-census population files that were prepared for the
elaboration of the 2021 Population and Housing Census has been used (INE 2014).
The sources of information have been the Mutual insurance companies of civil servants (MUFACE,
MUGEJU and ISFAS), the file of current contracts from the Public Employment Service (SEPE) and
the 2011 and 2001 Censuses.
Also from 2010 data, the geographical coordinates of the census section corresponding to the
residence of each deceased are made available to the researchers in the microdata file.
For the future, other information of interest, such as the average income of the census section, it will
be incorporated into the microdata files for researchers as soon it is available.
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Abstract: The creation of civil registries, together with the obligation to report information on
the deceased from the death certificate, have enabled the monitoring of various population health
indicators. Data from death certificates, as compiled and disseminated by central statistics offices,
are used to estimate different measures, most classically infant mortality and life expectancy.
However, in high-income countries, infant mortality is no longer considered an appropriate measure
of population health due to its low magnitude. From the health system perspective, the adoption
of the International Classification of Diseases and Causes of Death was a crucial milestone in
population health statistics, shedding light on the diseases responsible for most deaths and the
trends in causes of death over time. Morbidity statistics and public health surveillance systems have
important objectives, but they do not allow adequate monitoring of the frequency of diseases and
other health problems, nor can they quantify diseases’ impact on population health. On the other
hand, statistics on cause of death do provide this information thanks to the combination of two
features: the exhaustiveness of the data they collect and the objective nature of the phenomenon
they quantify.
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causes of death, public health surveillance
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1 Introduction

The emergence of the State entailed tremendous political, economic, and administrative advances in
human societies. From an administrative point of view, the obligation to record vital events —births,
deaths, stillbirths, marriages, and divorces— was established in order to know at all times what was
the situation in which its citizens were in terms of their vital and marital status. Most European
countries created such systems over the 19th century, although in some, such as Sweden, they were
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introduced as early as the 18th century (Mackenbach, 2020).

Prior to the 19th century, information on these phenomena was often available from parish
records of baptisms, burials, and marriages. The information contained in these registries has been
used to estimate changes in the structure of the population, such as birth, death, and marriage rates.
But its uneven implementation does not provide a comprehensive vision of the evolution of these
phenomena during this period. And a sufficiently valid comparison of these estimates according to
different sociodemographic characteristics of citizens is not possible either.

Since the creation of civil registries, central statistics offices of the countries have been in
charge of managing the data obtained in these registries for their compilation and subsequent
dissemination. This has made it possible to rigorously assess trends in births, deaths, and marriage
rates and to assess variations in the magnitude of these rates according to sociodemographic and
geographic characteristics. Data on deaths in the civil registries come from the death certificates,
and it is this information that central statistics offices compile and disseminate for their mortality
statistics.Estimates of total and cause-specific mortality rates require information on the number of
deaths (numerator) and the population at risk (denominator). In unlinked mortality studies, the
numerator and denominator come from different sources, so there may be a numerator/denominator
bias when estimating mortality rates according to certain individual attributes. This bias does not
occur in linked mortality studies, in which data from the census or general population surveys are
linked to vital records, and in the case of death, to the date and cause of death. However, regulations
to protect individuals’ confidentiality greatly limit the use of linked and unlinked mortality statistics
for scientific research, whether due to the regulations themselves or because of the restrictive
interpretations thereof by some statistical offices not always sufficiently argued. On the other hand,
some methodological developments by these offices are of enormous relevance, for example, the
linkage between socioeconomic indicators and mortality by the National Statistics Institute of Spain,
which enables the study of the relationship between socioeconomic factors and mortality and its
variation over time.

2 Classical population health indicators

In high-income countries, information on deaths, compiled and disseminated for central statistics
offices, has been used to document the enormous reduction in infant mortality rate and the rise in life
expectancy over the 20th century. For example, it is known that the infant mortality rate in different
Western European countries ranged from 80 to 210 deaths per 1,000 live births in 1990. By the end
of the century, these rates had converged and dropped precipitously across the region, standing at
3 to 6 deaths per 1,000 live births. In Spain, infant mortality fell from 204 to 4 per 1,000 live births
between 1900 and 2000 (Gómez, 1991; Viciana, 2003). This reduction, together with parallel advances
in medical treatments and living conditions, led to a dramatic increase in life expectancy, from 35.7
years in 1900 to 79.3 years in 2000 (Goerlich and Pinilla, 2006). Similar trends were observed in
surrounding countries with a similar socioeconomic situation (MSC 2005).

Traditionally, infant mortality and life expectancy have been the classic indicators of population
health status. However, in high-income countries, the low rates of infant mortality have reduced
their usefulness as a sentinel indicator to reflect population health. On the other hand, life expectancy
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continues to be an ideal measure in that regard. Life expectancy at age x is the average number of
years that a person of that age is expected to continue to live. This is a hypothetical measure since
it does not measure the actual chances of survival. Its calculation is based on current mortality
rates, which logically are subject to changes over time. Its fundamental advantage is that it can be
used to compare different regions or countries and to observe their evolution over time, since it is
not influenced by differences in the age structure of the populations being compared. In fact, the
estimation of life expectancy has revealed the reversal of a key trend in Western Europe over the
20th century. People born in southern European countries in the late 19th and early 20th centuries
could expect to live to around 40 years of age in Spain, Portugal, Italy, and Greece, lagging far
behind their northwestern neighbors. However, the generation born in southern Europe the 1960s
had a similar life expectancy as their northern peers, and by the 1980s life expectancy in south-
ern European countries had surpassed that of some countries of higher latitudes (Mackenbach, 2020).

In the 21st century, life expectancy continues to be an ideal indicator for monitoring population
health worldwide, since it reflects the impact that numerous health problems have on population
mortality (WHO, 2022b). Figure 1 shows the evolution of life expectancy at birth in Spain from 2001
to 2020.

Figure 1: Life expectancy at birth. Spain, 2001-2020

Several years showed year-on-year decreases in life expectancy at birth, specifically 2003, 2005,
2015, and 2020, while this indicator hardly changed in 2007 and 2012. The increase in recorded deaths
accounts for the decrease or maintenance of life expectancy each year compared to the previous
one. The increase in deaths in the second half of 2003 was due to the heat wave that occurred that
summer. In the rest of the years, except for 2020, the spikes in deaths were most likely the result of
the increased intensity and/or duration of the influenza virus. The decrease in life expectancy from
2014 to 2015 —not only in Spain but also in most countries in the northern hemisphere— is notable
(Ho and Hendi, 2018). In the 50 previous years, there had been no comparable reductions in life
expectancy from one year to another; this decline is probably attributable to the combined effects
of the two phenomena mentioned above: a particularly virulent flu season and a heat wave. As for
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2020, the striking decline was due to the increase in deaths as a result of the COVID-19 pandemic.

The year-on-year changes in the number of deaths are also evident in the crude death rate, as
shown in Figure 2. After all, life expectancy at birth can be considered a snapshot of the mortality of
the population in a given period.

Figure 2: Crude death rate per 100,000 population. Spain, 2001-2020

3 International Classification of Diseases and Causes of Death

From a public health perspective, standardized recording of the cause of death in the civil registry
was a milestone, providing valuable insight on the diseases responsible for the most deaths. A
second great achievement was the establishment of an international classification of causes of death,
which provided standard criteria for central statistics offices to use in the collection, processing, and
classification of information, and for the presentation of death statistics.

The need for a common system to classify causes of death was recognized at the first International
Statistical Congress, held in Brussels in 1853. The Congress asked William Farr and Marc d’Espine to
prepare a standard classification of causes of death applicable to all countries. At the next Congress,
in Paris in 1855, Farr and d’Espine presented two separate lists based on very different principles;
the Congress adopted a version representing a compromise between the two. In successive years,
that list was revised according to Farr’s criteria, although it never gained universal acceptance. The
first International List of Causes of Death would have to wait until Jacques Bertillon’s proposal
was approved by the International Institute of Statistics in 1893. This classification adopted Farr’s
criteria for distinguishing systemic diseases from those with a precise anatomical location. In
1899, the International Statistical Institute agreed to revise the list every 10 years in order to reflect
advances in medical science and statistical procedures. Numerous revisions were undertaken
throughout the 20th century. The most recent, known as the International Statistical Classification
of Diseases and Related Health Problems, 10th revision (ICD-10), was released in 1999. Since the
sixth revision in 1948, when the World Health Organization (WHO, 2022a) took over its develop-
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ment, the Classification has also contained a list of causes of morbidity (Alderson 1988, WHO, 2022a).

The list of causes of morbidity has given rise to various classifications in different medical spe-
cialties and areas of the health system. Possibly the best known and most used is the International
Classification of Diseases, Ninth Revision, Clinical Modification, which was published in the USA
to classify diagnoses and reasons for health care contacts. It is a classification of both diseases and
procedures, used to code clinical information derived from health care, mainly in hospitals and other
specialized medical care settings.

Mortality statistics remain the most suitable indicator for monitoring trends in the burden of
disease over time and from one place to another. However, this is not, nor can it be, the objective
of the morbidity statistics derived from health services data. These statistics reflect the burden of
disease that the health system has to deal with at any given time, but this information is not suitable
for reflecting the trend in the frequency of diseases. This important distinction can be explained
by the increase in healthcare resources, the growing size of the population covered by all types of
healthcare insurance, improvements in diagnosis, and new indications for care. Moreover, some
patients suffering from a disease may not use any health services, while others could be registered
several times in the information systems of different health services. Likewise, patients could present
to different health centers whose information systems are not interconnected. These circumstances,
inherent to the health system of any country, make it impossible to ascertain whether the variations
observed in morbidity reflect changes in the frequency of disease or only variations in the use of
health services. Morbidity statistics have similar limitations in terms of their aptness for estimating
geographic variations in disease frequency.

These imprecisions do not exist in death statistics, because a person dies only once. In addition
to the objective nature of the phenomenon, the exhaustive nature of vital statistics makes mortality
indicators very useful for monitoring diseases and other health problems and for establishing
public health priorities. It is true that morbidity statistics from population-based disease registries
enable an adequate comparison of the incidence —new cases— of diseases. But various limitations
related to the clinical characteristics and diagnostic criteria for different pathologies, together with
the inefficiencies inherent to these registries, mean that relatively few population-based disease
registries exist.

4 Main causes of death

The available data on cause of death have revealed important changes in the percentage of deaths
attributable to specific diseases. In high-income countries, the proportion of deaths from infectious
diseases —tuberculosis, intestinal infectious diseases, influenza, and pneumonia— declined in the
first half of the 20th century, while deaths from cardiovascular diseases and accidents rose. During
the second half of the century, the contribution of these causes to total mortality decreased, while
cancer deaths increased. Recent decades have also seen a rise in deaths from mental and neurological
diseases, namely Alzheimer’s disease and Parkinson’s disease. However, since mortality statistics
cannot reflect the burden of diseases and health problems that are not lethal, mental illnesses impose
a much larger burden to the population than that reflected in these statistics.
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Adequate estimation of mortality from cause of death requires high-quality information on this
variable in death certificates. This quality has gradually improved. The quality of information
on cause of death in national mortality registries has gradually improved. In Spain, for example,
through the better inclusion of judicial and forensic information in cases where professionals from
these fields are involved. This was not always the case: into the 1980s and 1990s, specific registries
of mortality from AIDS or from acute reactions to drugs were necessary to adequately monitor the
impact of these problems on population health (De la Fuente et al., 1995; Brugal et al., 1999). Another
indicator of the quality of mortality statistics by cause of death is through the proportion of deaths
that cannot be assigned to a specific cause of death. In Spain, the figure is around 2.

Currently, the leading causes of death in in high-income countries are cancer, heart disease and
cerebrovascular disease. These three causes of death represent half of the deaths, as can be seen in
Table 1 referring to Spain. The exception was the year 2020, since deaths from COVID-19 represented
the third leading cause of death.

Cause of death Codes 2017 2018 2019 2020

All causes 424,523 427,721 418,703 493,776
Malignant neoplasms (cancer) C00-C97 109,073 108,526 108,867 108,533
Diseases of heart (heart disease) I00-I09,I11, I13, 85,143 83,744 80,444 82,309

I20-I51
COVID-19 U07.1, U07.2 .. .. .. 74,839
Cerebrovascular diseases (stroke) I60-I69 26,937 26,420 25,712 25,817
Alzheimer disease G30 15,201 14,929 14,634 15,571
Chronic lower respiratory diseases J40-J47 15,486 14,607 13,808 12,734
Influenza and pneumonia J10-J18 11,397 12,267 10,843 11,676
Accidents (unintentional injuries) V01-X59,Y85-Y86 11,502 11,530 11,827 11,297
Diabetes mellitus E10-E14 9,773 9,921 9,644 9,662
Nephritis, nephrotic syndrome and nephrosis N00-N07, N17-N19, 6,757 7,269 7,369 7,517

N25-N27
Hypertensive disease I10, I12, I15 4,787 4,998 4,912 6,239
Parkinson disease G20-G21 4,656 4,583 4,615 5,008
Chronic liver disease and cirrhosis K70, K73-K74 4,236 4,001 4,021 3,976
Suicide X60-X84+Y87.0 3,680 3,541 3,673 3,941
Septicemia A40-A41 3,800 3,040 2,885 2,745

Table 1: Number of deaths for the 15 leading causes of death for the total population. Spain, 2017-
2020. (Cause of death and codes based on International Classification of Diseases, 10th Revision)

Many criteria are considered in the development of the ICD, for instance disease etiology,
anatomical location, and clinical manifestations. Some diseases, including several infectious
diseases, are even encompassed under other groups because one criterion is prioritized over another.
Therefore, there is no single way of presenting the information. Table 1 shows the method used by
the US National Center for Health Statistics and by the Spanish Ministry of Health to determine the
main causes of death. But other institutions and central statistics offices use other techniques. For
example, based on the large groups of the ICD, diseases of the circulatory system constitute the main
cause of death in Spain. This statement is correct, but so is the more granular information in Table
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1. Thus, when presenting such statistics, it is important to report the ICD codes used to group the
selected causes of death.

The cause of death tabulated is the underlying cause of death. In accordance with WHO
recommendations, medical death certificates include three causes of death: the immediate cause (the
disease or condition that directly led to death), the intermediate cause of that disease or condition,
and finally, the initial or basic cause (the disease or injury that initiated the aforementioned events
that led to death). This last cause is the one used to disseminate information on causes of death,
monitor the main diseases and health problems, and conduct research. However, on occasion,
some countries’ central statistics offices and some research groups disseminate information on the
number of deaths according to multiple causes in order to consider various combinations of causes
appearing on medical death certificates.

These calculations show that certain causes appear on the death certificates of many deceased
people, even though they are not the basic cause of death. The utility of this information, however, is
unknown. It can confound conclusions about mortality patterns by cause of death. A physician can
include in the death certificate certain intermediate and immediate causes, but another physician
can include other different intermediate and immediate causes. Furthermore, from a statistical
point of view it makes no sense. If, instead of including the three causes of death mentioned above,
numerous other causes could be included in the medical death certificate, the presence of some
causes would increase even more than in the combination of multiple causes. The only way for
an analysis of multiple causes of death to be logically rigorous would be to include all the causes
of death from the ICD in a death certificate, and for the physician certifying the death to explicitly
indicate whether each one was or not relevant to the case at hand —something completely crazy.

5 Public health surveillance

One objective of public health surveillance is the early detection of epidemic outbreaks for purposes
of disease control. This endeavor requires a continuous collection of health data for analysis and
interpretation, but not exhaustive information on each and every disease case (de Mateo and
Regidor, 2003). Indeed, not all sick people use health services. Furthermore, the collection criteria
may change to increase the validity of the measurement of the phenomenon under surveillance, as
information emerges around the transmissibility of the infectious agent, its clinical manifestations,
and the prognosis of the patients. Therefore, the real impact of an epidemic outbreak on the mortality
of the population does not necessarily correspond to the deaths from cases that have been detected.

In most epidemic outbreaks, numerous media sources and large swaths of the scientific commu-
nity criticize the mortality figures produced by public health surveillance systems. These criticisms
were highly publicized during the COVID-19 pandemic. Most likely, such judgments are due to the
poor understanding of this public health practice, together with the anxiety generated by epidemic
situations. A very rough estimate of the impact of epidemic outbreaks on mortality is made using
the daily mortality monitoring systems of public health surveillance institutions, or through weekly
death statistics from central statistics offices. The true estimate can only be made much later, when
the mortality statistics by cause of death have been consolidated, since these statistics are the ones
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that offer exhaustive data on deaths.

Notably, before the end of 2021, Spain was one of a very few countries worldwide that had
exhaustive information on cause-specific mortality from 2020, when the first two waves of the
COVID-19 pandemic occurred. This achievement was only possible due to the diligent efforts of the
National Statistics Institute and the regional statistics agencies and death registries to expedite the
compilation and dissemination of the cause-specific death statistics for 2020.

6 Conclusions

Mortality statistics remain the most suitable indicator for monitoring trends in the burden of disease
over time and from one place to another. Information on deaths, compiled and disseminated for
central statistics offices from the civil registries, has been used to document the enormous reduction
in infant mortality rate and the rise in life expectancy. Likewise, from a public health perspective,
standardized recording of the cause of death in the civil registry was a milestone, providing valuable
insight on the diseases responsible for the most deaths. A second great achievement was the
establishment of an international classification of causes of death.

The tabulation on basic cause of death is used monitor the main diseases and health problems,
and conduct research. Sometimes, some countries’ central statistics offices and some research groups
disseminate information on the number of deaths according to multiple causes in order to consider
various combinations of causes appearing on death certificates. The utility of this information,
however, is unknown and it can confound conclusions about mortality patterns by cause of death.

Whereas the objective of public health surveillance is the early detection of epidemic outbreaks
for purposes of disease control, the true estimate of impact of epidemic outbreaks can only be known
much later, when the mortality statistics by cause of death have been consolidated, since these statis-
tics are the ones that offer exhaustive data on deaths.
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