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Abstract: Nowadays, due to the progress in technological advances, massive amounts of data are
generated. As a result, new statistical methodology is needed to properly manage this information.
The functional data are an example of special importance. These are mainly obtained by means of
high-frequency measurements (spectrometric curves, stock prices recording, etc.). Since the begin-
ning of this century, this type of data has achieved great popularity. This fact has generated new
distribution or regression models, among others, appropriate to the functional context. In the last 10
years, novel specification tests are proposed for those models. These are generalizations of method-
ologies developed for the vectorial framework over the last century. Besides, innovative procedures
based on distance correlation ideas have been proposed as well. This article reviews the most notable
developments in this context, providing some illustrations from real data sets.
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1 Introduction

The invention of computers meant a real change in statistical methodology in the last century. The
scientific developments, derived mainly from the first half of the 20th century, were headed to
understand existing real data sets information. These were of medium size, obtained wit a great
effort in many cases. Other developments in Statistics during the first part of the 20th century were
leaded to the design of algorithms for the estimation and testing of different models parameters. In
all of these, the computational burden was considerable for the available and quite limited calculus
capacity of that moment. Real parameters were estimated, but not curves due to poor graphics
resources. The behavior of the statistics distributions were analyzed, under some parametric hypoth-
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10 W. GONZÁLEZ-MANTEIGA

esis, because of the obvious impossibility of working with large sample sizes in a nonparametric way.

In the 80s, the versatility provided by advances in computer calculus generated new statistical
procedures. These are based on simulating artificial data, as is the case of “Bootstrap”. Never-
theless, it is not until the next decades, motivated by Internet use, new technologies information,
development of distributed as well as parallelized computing, and computational costs reduction
for storage and data processing, when the beginning of the “Big Data” age can be established. This
phenomenon has a great impact on the development of modern technology in Statistics as well as on
all its applications.

Currently, many companies already have continuous and real-time monitoring systems: stock
quotes can be measured as high-frequency data, information generated by web pages, social media
data or just the credit cards transactions are some examples of massive information generation
sources. Other example can be found in the electric market, where high-frequency measures about
energy consumption or demand are available as well. In all these cases it is quite relevant to be able
to correctly process and control the information.

It is, precisely, in this context of massive, high-frequency or related data, where functional data
arise. This kind of data gains an immense popularity with Ramsay and Silverman (2005), Ferraty
and Vieu (2006) or more recently with Horváth and Kokoszka (2012), Hsing and Eubank (2015) and
Kokoszka and Reimherr (2017), among others. Functional data allows to summary a great amount of
information through a curve, surface or, in general, using a “statistical object”. This last is typically
modeled in a functional space, such as Hilbert spaces.

The management of functional data guide us, naturally, to the consideration of models based
on these (distribution models, regression models, etc.), employed for prediction purposes, using
interpretation of the results in diverse applications. Thus, the necessity of mechanism for specifica-
tion testing devoted to models with functional data appears. In this article, the diverse procedures
that have emerged during this period are reviewed. These have been mainly developed in the last
10 years, generalizing classic procedures introduced in the first half of the 20th century, essentially
based on the empirical distribution, and the more recent advances in the last part of the 20th century
making use of nonparametric estimations of the density or regression function.

Although the Goodness-of-Fit (GoF) term is due to Pearson, at the beginning of the 20th century,
it is not until the 70s with Durbin (1973) and Bickel and Rosenblatt (1973) where modern specification
tests start. These are based on distances between nonparametric estimators of the distribution or
density function with respect to hypothetical estimations under the null hypothesis of the model.

In this way, formally, assume that {X1, . . . , Xn} is an identically and independent distributed
(iid) sample of a random variable X with (unknown) distribution F (or density f , if that is the
case). If the target function is the distribution F , then the GoF testing problem can be formulated
as testing H0 : F ∈ FΘ = {Fθ : θ ∈ Θ ⊂ Rq} vs. H1 : F /∈ FΘ, where FΘ stands for a parametric
family of distributions indexed in some finite-dimensional set Θ. A general test statistic for this
problem can be written as Tn = T (Fn, Fθ̂), with the functional T denoting, here and henceforth,
some kind of distance between a nonparametric estimate, given in this case by the mentioned
empirical cumulative distribution function Fn(x) = n−1

∑n
i=1 I(Xi ≤ x), and an estimate obtained

under the null hypothesis H0, Fθ̂ in this case. Similarly, for the case of a parametric density model,
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the testing problem is formulated as H0 : f ∈ fΘ = {fθ : θ ∈ Θ ⊂ Rq} vs. H1 : f /∈ fΘ and can be
approached with the general test statistic Tn = T (fnh, fθ̂). In this setting, fθ̂ is the density estimate
under H0 and fnh denotes a general nonparametric density estimate, as for example, the kernel
density estimator fnh(x) = n−1

∑n
i=1Kh(x−Xi) introduced by Parzen (1962) and Rosenblatt (1956)

where Kh(·) = K(·/h)/h, K is the kernel function
(
K(x) ≥ 0 and

∫
K(x)dx = 1

)
, and h is the

smoothing bandwidth.

More recent procedures were generalized to the context of regression models in the 1990s. Con-
sider a nonparametric, random design, regression model such that Y = m(X) + ε, with (X,Y ) ∈
Rp × R, m(x) = E[Y |X = x] and E[ε|X = x] = 0. Denote by {(Xi, Yi)}ni=1 an iid sample of (X,Y )
satisfying such a model. In this context, the GoF goal is to test H0 : m ∈MΘ = {mθ : θ ∈ Θ ⊂ Rq} vs.
H1 : m /∈ MΘ, whereMΘ represents a parametric family of regression functions indexed in Θ. Fol-
lowing Durbin (1973) and Bickel and Rosenblatt (1973) ideas, the seminal works of Stute (1997) and
Härdle and Mammen (1993), respectively, introduced two types of GoF tests for regression models:

a) Tests based on empirical regression processes, considering distances between estimates of the
integrated regression function I(x) =

∫ x
−∞m(t) dF (t) (F being the marginal distribution of

X under H0 and H1). Specifically, the test statistics are constructed as Tn = T (In, Iθ̂), with
In(x) = n−1

∑n
i=1 I(Xi ≤ x)Yi and Iθ̂(x) = n−1

∑n
i=1 I(Xi ≤ x)mθ̂(Xi).

b) Smoothing-based tests, using distances between estimated regression functions, Tn =
T (mnh,mθ̂), with mnh a smooth regression estimator. As a particular case, mnh(x) =∑n

i=1Wnh,i(x)Yi, with Wnh,i(x) some weights depending on a smoothing parameter h. Such
an estimator can be obtained, for example, with Nadaraya–Watson or local linear weights (see,
e.g., Wand and Jones (1995)).

A complete review of these methodologies, related to specification tests, can be consulted in
González-Manteiga and Crujeiras (2013). This is an invited article with discussion for the TEST
journal. In this reference, different contributions on this topic since 1990 are reviewed. Resulting
statistics for diverse specification tests as well as its distribution calibration, by means of asymptotic
techniques or resampling procedures like the Bootstrap, are studied. This review analyzes more
than 20 years of developments, being very scarce or almost non-existent the procedures designed
for functional data. Very recently, in a chapter of the book González-Manteiga et al. (2022), we
perform a review of the existing methodologies for specification tests in the functional data context.
These procedures are mainly based on extensions of the methodology introduced in the 90s for
specification tests in the vectorial framework to the functional case.

In this paper, an update of the chapter corresponding to the book González-Manteiga et al. (2022)
is provided in the next section. Later, in Section 3, the “fundamental case” of the manuscript is
presented. This is covered with a detailed review of specification tests based on “distance correlation”
ideas and their novel extension to the functional data context. In Section 4 some applications to real
data sets for specification testing in the functional framework, applying techniques introduced in
previous sections, are displayed. Finally, some conclusions arise in Section 5 and the document
finishes with an exhaustive revision of relevant references.

SJS, VOL. 4, NO. 1 (2022), PP. 9 - 40
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2 Testing specification models for functional data using smoothing or
empirical processes

In this section we review the most notable results for specification tests in terms of the distribution
function or regression models in the functional data context. For the development of these proce-
dures it is necessary to include functional data in complex structures associated to general spaces
(metric or topological ones), as Hilbert spaces. These represent a natural and quite employed way
for adequate model description in the functional context.

2.1 GoF for distribution models for functional data

Let H denote a Hilbert space over R, the norm of which is given by its scalar product as
‖x‖ =

√
〈x, x〉. Consider {X1, . . . , Xn} iid copies of the random variable X : (Ω,A) → (H,B(H)),

with (Ω,A,P) the probability space where the random sample is defined and B(H) the
Borel σ-field on H. The general GoF problem for the distribution of X consists on testing
H0 : PX ∈ PΘ = {Pθ : θ ∈ Θ} vs. H0 : PX /∈ PΘ, where PΘ is a class of probability measures
on H indexed in a parameter set Θ, now possibly infinite-dimensional, and PX is the (unknown)
probability distribution of X induced overH.

When the goal is to test the simple null hypothesis H0 : PX ∈ {P0}, a general feasible approach
that enables the construction of different test statistics is based on projections π : H → R, in
such a way that the test statistics are defined from the projected sample {π(X1), . . . , π(Xn)}.
Such an approach can be taken on the projected distribution function: Tn,π = T (Fn,π, F0,π) with
Fn,π(x) = n−1

∑n
i=1 I(π(Xi) ≤ x) and F0,π(x) = PH0(π(X) ≤ x). Some specific examples are given by

the adaptation to this context of the Kolmogorov–Smirnov, Cramer–von Mises, or Anderson–Darling
type tests. As an alternative, based on smoothing techniques tests presented in Section 1, a test
statistic can also be built as Tn,π = T (fnh,π,EH0 [fnh,π]) with fnh,π(x) = n−1

∑n
i=1Kh(x − π(Xi)) the

density estimate of π(x). It should be also noted that, when embracing the projection approach, the
test statistic may take into account ‘all’ the projections within a certain space, e.g. by considering
Tn =

∫
Tn,π dW (π) for W a probability measure on the space of the different projections, or take just

Tn = Tn,π̂ with π̂ being a randomly-sampled projection from a certain non-degenerate probability
measure W .

Now, when the goal is to test the composite null hypothesis H0 : PX ∈ PΘ, the previous generic
approaches are still valid if replacing P0,π(x) with Pθ̂,π(x) = PPθ̂

(π(X) ≤ x). Cuesta-Albertos et al.
(2006) and Cuesta-Albertos et al. (2007) provide a characterization of the composite null hypothesis
by means of random projections, and provide a bootstrap procedure for calibration, see also Bugni
et al. (2009) and Ditzhaus and Gaigall (2018). In the space of real square-integrable functions
H = L2[0, 1], one may take πh(x) = 〈x, h〉, with h ∈ H. The previous references provide also some
approaches for the calibration of the tests under the null hypothesis of the rejection region {Tn > cα},
where P(Tn > cα) ≤ α.

A very relevant alternative to the procedures based on projections is the use of the so-called
"energy statistics" Székely and Rizzo (2017). Working with H a general Hilbert separable space (as it
can be seen in Lyons (2013)) if X ∼ PX and Y ∼ PY = P0 (P0 being the distribution under the null)
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then

E = E(X,Y ) = 2E[‖X − Y ‖]− E[‖X −X ′‖]− E[‖Y − Y ′‖] ≥ 0, (1)

with {X,X ′} and {Y, Y ′} iid copies of the variables with distributions PX and PY , respectively.
Importantly, (1) equals 0 if and only if PX = PY , a characterization that serves as basis for a GoF test.
See the nice review of Székely and Rizzo (2017), where a motivation is given for the duality between
the expression displayed in (1) and the well-known energy formula of Einstein.

The energy statistic in (1) can be empirically estimated from a sample {X1, . . . , Xn} as

Ê∗ =
2

n2

n∑
i=1

n∑
j=1

‖Xi − Y ∗j ‖ −
1

n2

n∑
i=1

n∑
j=1

‖Xi −Xj‖ −
1

n2

n∑
i=1

n∑
j=1

‖Y ∗i − Y ∗j ‖,

The distribution of Ê∗, P∗
{
Ê∗ ≤ x

}
can be approximated by simulation of the artificial variable

Y ∗ ∼ PY , resulting in
{
Y ∗b1 , . . . , Y ∗bn

}
with b = 1, . . . , B. The critic point for a given α level can be

obtained in a natural way from the quantiles of the sorted sample: Ê∗(1) ≤ · · · ≤ Ê∗(B) as a result of
the Monte Carlo replicates of the artificial samples.

The most studied case is the Gaussian one, where PY follows the distribution of a Gaussian
process. This is analyzed in recent literature as in Kellner and Celisse (2019), Kolkiewicz et al. (2021),
Górecki and Łukasz (2019), Henze and Jiménez-Gamero (2021) and Bongiorno et al. (2019). In these
works, diverse alternatives to the mentioned procedures are provided and reviewed to specification
of a functional model of Gaussian distribution or related.

Finally, in the context of tests for distributions, it is worth it to mention the related two-sample
problem, a common offspring of the simple-hypothesis one-sample GoF problem. This topic has
been extensively studied for scalar random data in the last decades. However, the situation involving
functional random data has attracted less attention until now. Three main related approaches have
been considered in this setting recently, namely,

a) Comparison of functional means using, e.g., principal component approaches (Horváth and
Rice (2015), Ghale-Joogh and E. Hosseini-Nasab (2018)) or adapting the ideas of the F-test
to the functional context (Cuevas et al. (2004), González-Rodrígez et al. (2012), Górecki and
Łukasz (2019), Lee et al. (2015), Zhang and Liang (2014), Qiu et al. (2021)).

b) Comparison of covariance structures (Boente et al. (2018), Fremdt et al. (2013), Guo et al. (2018),
Guo et al. (2019), Guo et al. (2019)).

c) Comparison of the distribution structure in various ways. Tests based on smoothing discrete
observed data in potential functional data are developed in Bárcenas et al. (2017) and, similarly,
in Estévez-Pérez and Vilar (2013) or Pomann et al. (2016). Empirical processes have been used
in Bárcenas et al. (2017). An L2-type criterion based on empirical distribution functions is used
in Jiang et al. (2019). Some Cramér-von Mises-type statistics adapted to the functional case are
employed in Bugni and Horowitz (2021).

SJS, VOL. 4, NO. 1 (2022), PP. 9 - 40
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2.2 GoF for regression models with functional data based on smoothing or empirical
processes

We assume in the following, for easier presentation of the different methods, that both the predictor
X and response Y are centered, so that the intercepts of the linear functional regression models are
null.

A particular case of a regression model with functional predictor and scalar response is the so-
called functional linear model. ForHX = L2[0, 1], this parametric model is given by

Y = mβ(X) + ε, mβ(x) = 〈x, β〉 =

∫ 1

0
x(t)β(t) dt, (2)

for some unknown β ∈ HX indexing the functional form of the model and E [ε|X ] = 0. This model is
the natural generalization of the classical and popular linear (Euclidean) regression models.

In general, there have been two approaches for the inference on (2): (i) testing the significance of
the trend within the linear model, i.e., testing H0 : m ∈ {mβ0} vs. H1 : m ∈ {mβ : β ∈ HX , β 6= β0},
usually with β0 = 0; (ii) testing the linearity of m, i.e., testing H0 : m ∈ L = {mβ : β ∈ HX} vs.
H1 : m 6∈ L.

For the GoF testing problem presented in (ii), given an iid sample {(Xi, Yi)}ni=1 and following
Härdle and Mammen (1993) ideas in the vectorial case, a test statistic structure can be given by
Tn = T (mnh,mβ̂), where β̂ is a suitable estimator for β and

mnh(x) =
n∑
i=1

Wni(x)Yi =
n∑
i=1

Kh(‖x−Xi‖)∑n
j=1Kh(‖x−Xj‖)

Yi (3)

is the Nadaraya–Watson estimator with a functional predictor. In Delsol et al. (2011), a L2 distance is
offered,

Tn =

∫ (
mnh(x)−mnh,β̂(x)

)2
ω(x) dPX(x),

where mnh,β̂ is a smoothed version of the parametric estimator that follows by replacing Yi with
mβ̂(Xi) in (3). A crucial problem is the computation of the critical region {Tn > cα}, which
depends on the selection of h when a class of estimators for β is used under the null. This class
of smoothed-based tests, or related, were deeply studied in the Euclidean setting (see González-
Manteiga and Crujeiras (2013)). Nevertheless, this is not the case in the functional context, except for
this mentioned contribution and others more recent by Maistre and Patilea (2020) and Patilea and
Sánchez-Sellero (2020).

As in the vectorial case, it is possible to avoid the bandwidth selection problem using tests based
on empirical regression processes. For this purpose, a key element is the empirical counterpart
of the integrated regression function In(x) = n−1

∑n
i=1 I(Xi ≤ x)Yi, where Xi ≤ x means that

Xi(t) ≤ x(t), for all t ∈ [0, 1]. In this scenario, the test statistic can be formulated as Tn(In, Iβ̂),

where Iβ̂(x) = n−1
∑n

i=1 I(Xi ≤ x)Ŷi, where Ŷi = 〈Xi, β̂〉. Deriving the theoretical behavior of an
empirical regression process indexed by x ∈ HX , namely Rn(x) =

√
n(In(x) − Iβ̂(x)) is, still today,

a challenging task. Yet, as previously presented, the useful projection approach over HX can be
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considered. The null hypothesis H0 : m ∈ L can be formulated by means of

H0 : E[(Y − 〈X,β〉)I(〈X, γ〉 ≤ u)] = 0, for a β ∈ HX and for all γ ∈ HX ,

which in turn is equivalent to replacing ‘for all γ ∈ HX ’ with ‘for all γ ∈ SHX ’ or ‘for all
γ ∈ Sp−1

HX ,{ψj}∞j=1
, for all p ≥ 1’, where

SHX = {ρ ∈ HX : ‖ρ‖ = 1}, Sp−1
HX ,{ψj}∞j=1

=

{
ρ =

p∑
j=1

rjψj : ‖ρ‖ = 1

}

are infinite- and finite-dimensional spheres on HX , {ψj}∞j=1 is an orthonormal basis for HX , and
{rj}pj=1 ⊂ R. As follows from García-Portugués et al. (2014) a general test statistic can be built
aggregating all the projections within a certain subspace: Tn =

∫
Tn,π dW (π) with Tn,π = T (In,π, Iβ̂,π)

based on

In,π(u) = n−1
n∑
i=1

I(π(Xi) ≤ u)Yi and Iβ̂,π(u) = n−1
n∑
i=1

I(π(Xi) ≤ u)Ŷi, (4)

for π(x) = 〈x, γ〉. In this case, W is a probability measure defined in SHX or Sp−1
HX ,{ψj}∞j=1

, for a
certain p ≥ 1. Alternatively, the test statistic can be based on only one random projection: Tn = Tn,π̂.
More generally, Tn may consider the aggregation of a finite number of random projections, as
advocated in the test statistic of Cuesta-Albertos et al. (2019). Both types of tests, all-projections and
finite-random-projections, may feature several distances for T , such as Kolmogorov–Smirnov or
Cramár–von Mises types.

In the last years, more general procedures for model (2) focus on model specification with scalar
response and functional covariate are defined. McLean et al. (2015) consider the functional general-
ized additive model

Y = mF + ε = η +

∫ 1

0
F(X(t), t)dt, (5)

being (2) a particular case of (5) takingF(x, t) = xβ(t) and η = 0, whereas Horváth and Reeder (2013)
take under consideration the functional quadratic regression model

Y =

∫ 1

0
β(t)X(t)dt+

∫ 1

0

∫ 1

0
γ(s, t)X(t)X(s)dtds+ ε (6)

where (2) corresponds with taking γ = 0 in (6).

Besides, we can highlight some recent alternatives: generalizing the well-known F-test for
specification testing or, more generally, the likelihood ratio test. See McLean et al. (2015) or Kong
et al. (2016). New ones which establish alternative tests with easy to calibrate distribution as Shi
et al. (2022) or devoted to speed computational tasks as in Zhao et al. (2022).

It is also worth mentioning literature comparing the above mentioned procedures. See Tekbudak
et al. (2019) for an extensive comparative between procedures based on smoothing techniques,
empirical processes and adapted statistics from the likelihood ratio test.

SJS, VOL. 4, NO. 1 (2022), PP. 9 - 40
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When both the predictor and the response, X and Y , are functional random variables evaluated
in HX = L2[a, b] and HY = L2[c, d], the regression model Y = m(X) + ε is related with the operator
m : HX → HY . Perhaps the most popular operator specification is a (linear) Hilbert–Schmidt integral
operator, expressible as

mβ(x)(t) = 〈x, β(·, t)〉 =

∫ b

a
β(s, t)x(s) ds, t ∈ [c, d], (7)

for β ∈ HX⊗HY , which is simply referred to as the functional linear model with functional response.
The kernel β can be represented as β =

∑∞
j=1

∑∞
k=1 bjk(ψj ⊗ φk), with {ψj}∞j=1 and {φk}∞k=1 being

orthonormal bases ofHX andHY , respectively.

Similarly to the case with scalar response, performing inference on (7) have attracted the
analogous two mainstream approaches: (i) testing H0 : m ∈ {mβ0} vs. H1 : m ∈ {mβ : β ∈
HX ⊗ HY , β 6= β0}, usually with β0 = 0; (ii) testing H0 : m ∈ L = {mβ : β ∈ HX ⊗ HY } vs.
H1 : m 6∈ L. The GoF problem given in (ii) can be approached by considering a double-projection
mechanism based on πX : HX → R and πY : HY → R. Given an iid sample {(Xi, Yi)}ni=1, a general
test statistic follows (see García-Portugués et al. (2021)) as Tn =

∫
Tn,πX ,πY dW (πX × πY ) with

Tn,πX ,πY = T (In,πX ,πY , Iβ̂,πX ,πY ), where In,π1,π2 and Iβ̂,π1,π2 follows from (4) by replacing π with

πX , and Yi and Ŷi with πY (Yi) and πY (Ŷi), respectively. In this case, W is a probability measure is
defined in SHX × SHY or Sp−1

HX ,{ψj}∞j=1
× Sq−1

HY ,{φk}∞k=1
, for certain p, q ≥ 1. The projection approach

is immediately adaptable to the GoF of (7) with HX = R, and allows graphical tools for that can
help detecting the deviations from the null, see García-Portugués et al. (2020). An alternative route
considering projections just for X is presented by Chen et al. (2020).

The above generalization to the case of functional response is certainly more difficult for the class
of tests based on the likelihood ratios. Regarding the smoothing-based tests, Patilea et al. (2016)
introduced a kernel-based significance test consistent for nonlinear alternative. Moreover, Smaga
(2022) extends the F-test to the context of functional response making use of projections.

3 A new generation of procedures for testing in regression models based
on distance correlation

Since the article of Székely et al. (2007), with the first correlation distance methodology development,
there has been a huge variety of works using its ideas for independence tests. Some of them
focused on the specification testing field. Very recently, in the last five years, new procedures for
specification testing have been derived extending correlation distance ideas. These have resulted
in novel covariates selection or GoF approaches. In case of covariates selection, this translates in
testing if all considered X1, . . . , Xp covariates are relevant to explain a variable Y or some can
be excluded from the model. For this aim, the covariates selection problem is rewritten as an
independence test and distance correlation methodology is used to construct proper statistics. For
GoF the model is estimated under the null hypothesis assumptions and then, the independence
between the estimation of the model error and covariates is tested. As a result, specification tests
result in independence ones which can be performed using distance correlation ideas.

In this section, a first timeline review of classical methods for independence or significance test-
ing in regression models, being special cases of specification tests, is carried out in Section 3.1. We
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highlight the most notable procedures and expose their drawbacks. Then, the benefits of the distance
correlation based tests, specially in the high-dimensional context of p > n, are motivated. Next,
a review of the distance correlation and derivatives methodology is introduced in Sections 3.2, 3.3
and 3.4. The distance correlation, the martingale difference divergence and the conditional distance
correlation coefficients, as well as their associated independence tests, are described for the vecto-
rial framework in these sections, respectively. Eventually, specific advances for statistics based on
distances in the functional data context are detailed in Section 3.5.

3.1 Previous considerations of correlation measures based on distances

During the last decades, covariates selection procedures have received special attention. This study
has been specially focused on the big data context, in which the number of covariates (p) is high,
even larger than the sample size (n), p > n. As a result, several covariates selection techniques have
been developed for this framework.

From the beginning, one of the first and well-known dependence measures for random vectors
is the correlation coefficient. See, for example, Pearson (1920). This allows to perform covariates
selection taking under consideration only covariates with the greatest correlation value with the
response. However, this is only able to correctly detect linear relations. As a result, we can only select
covariates if we can assume a linear structure in the regression model. With the aim of identifying
other types of dependence, other coefficients measures based on ranks were proposed. These are the
Spearman’s coefficient (Wissler (1905)) or the Kendall’s τ (Kendall (1938)). These measures are robust
to outliers and detect any type of monotone dependence pattern. Nevertheless, it is not possible to
identify non-monotone structures, being unsuitable for some regression models. These techniques
only measure the grade of dependence for each covariate separately and do not pay attention to the
information provided by the rest of them in the process. Moreover, the computational cost increases
in terms of the p size.

If certain structure of the regression model can be assumed, this information can be employed
to perform significance tests for covariates selection. For example, under the linearity assumption
with Gaussian errors, we can resort to the well-known F-test. Nonetheless, these methodologies
are not available in the p > n case and other approaches are needed. In this framework, the
most important covariates selection methods are those based on regularizations. These have been
specifically proposed for the covariates selection problem in the big data context of p > n to face
the problem of the curse of dimensionality. In this way a sparse parameter vector associated with
a linear regression model is estimated and those covariates with negligible associated coefficient
are excluded. Some examples are the LASSO (Tibshirani (1996)), the SCAD (Fan and Li (2001)), the
adaptive LASSO (Zou (2006)) or the Dantzig selector (Candes and Tao (2007)) to name a few. See
the review of Freijeiro-González et al. (2022) for in-depth details. However, these procedures and
their extensions have some restrictions in practice: it is necessary to assume certain structure in the
regression model, which can not always be a reliable assumption, and their behavior is worse when
p increases faster than n. Furthermore, some of these techniques require of high computational time
and resources for a large number of covariates.

Motivated by these previous limitations, Székely et al. (2007) introduced the concept of distance
correlation (DC). This coefficient detects all types of possible dependence relations and, as a result,
solve the main drawbacks of the previous correlation coefficients. Besides, no structure assumption
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is needed in comparison with regularization techniques. Hence, a covariates selection approach
can be performed using the DC coefficient no matter the regression model structure. Consequently,
innovative techniques for covariates selection were proposed using DC ideas of Székely et al. (2007).
Some examples are the procedure of Székely et al. (2007), the DC-SIS (distance covariance sure
independence screening) procedure of Li et al. (2012), using the SIS (sure independence screening)
algorithm for linear models of Fan and Lv (2008), or the partial distance correlation methodology
introduced in Székely and Rizzo (2014). First and third approaches apply independence tests
considering an adequate statistic based on DC ideas. In contrast, the DC-SIS sorts out covariates
using the distance correlation values and then applies some cutoff or threshold to consider only the
most important ones in model explanation terms, which corresponds with the greatest DC values
between covariates and response.

In the last years, two new measures of dependence related with the DC were introduced. The
martingale difference divergence (MDD) of Shao and Zhang (2014) and the conditional distance
correlation (CDC) of Wang et al. (2015). The MDD is used to test the causality of a vector Y ∈ Rq
conditioned to a scalar random variable X ∈ R, whereas the CDC tests the conditional dependence
of two random vectors X ∈ Rp and Y ∈ Rq conditioned to a third one, Z ∈ Rr. Both coefficients can
be employed to derive specification tests and to implement covariates selection procedures. See, for
example, the work of Shao and Zhang (2014) and Zhang et al. (2018) for the MDD case and all the
details of the procedure proposed in Wang et al. (2015) for the CDC performance.

The necessity of covariates selection and specification testing procedures for the functional data
context has motivated the recently development of new procedures for this framework. Here, classic
methodologies are not available and thus, new ones are needed. Works as the one developed by
Gretton et al. (2005) or Febrero-Bande et al. (2019) in the machine learning context, are examples
of novel screening tools and bring out the complexity of the functional data case. In Section 3.5 a
review of novel specification tests using DC ideas for the functional context is introduced.

In the following, more details about DC, MDD and CDC are given for a deeper understanding of
these three kinds of dependence measures for random vectors in Sections 3.2, 3.3 and 3.4, respectively.
Next, recent advances in the functional data context using these ideas are described in Section 3.5.

3.2 Distance correlation

The DC is a measure of dependence which detects all types of relations between two random vectors
of different dimensions. This coefficient is introduced for the first time by Székely et al. (2007). The
main DC interest is to test if two random vectors, X ∈ Rp and Y ∈ Rq with p, q ≥ 1, are independent.
This results in testing

H0 : X ⊥ Y vs. H1 : X 6⊥ Y, (8)

where X ⊥ Y denotes independence between X and Y .

Two random vectors are said to be independent if they verify FX,Y = FXFY , being FX , FY the
distribution functions of X and Y , respectively, and FX,Y their joint distribution. This condition can
be rewritten in terms of the characteristic functions and the independence test can be formulated as

H0 : ϕX,Y = ϕXϕY vs. H1 : ϕX,Y 6= ϕXϕY (9)



FUNCTIONAL GOF TEST WITH SOME APPLICATIONS 19

being ϕX,Y the joint characteristic function and ϕX , ϕY the marginal characteristic functions of X , Y .

So, for the testing of the null hypothesis (9) it is needed a statistic measuring if the difference
ϕX,Y − ϕXϕY is significant. This is the main motivation for the introduction of the DC coefficient
(Székely et al. (2007), Székely and Rizzo (2017)).

In order to measure the difference between ϕX,Y and ϕXϕY a weighted L2 norm (‖ · ‖2w) in the
Rp × Rq space of complex functions is applied. This is defined as

‖ϕX,Y (t, s)− ϕX(t)ϕY (s)‖2w =

∫
Rp×Rq

|ϕX,Y (t, s)− ϕX(t)ϕY (s)|2w(t, s) dt ds (10)

where w(·, ·) is a weight function properly selected to guarantee the existence of the above integral
and |f | = ff̄ for f(·), a complex value function with conjugate f̄(·).

Then, once the weight function w(·, ·) has been selected, we can take as a measure of dependence
V2(X,Y ;w) = ‖ϕX,Y (t, s)− ϕX(t)ϕY (s)‖2w satisfying that V2(X,Y ;w) = 0 if and only if X and Y are
independent. Particularly, dividing V2(X,Y ;w) by

√
V(X;w)V(Y ;w), where

V2(X;w) =

∫
R2p

|ϕX,X(t, s)− ϕX(t)ϕX(s)|2w(t, s) dt ds (11)

we obtain a type of unsigned correlationRw.

Following these guidelines, in Székely et al. (2007) it is taken

w(t, s) = (cpcq|t|1+p
p |t|1+q

q )−1dt ds for cp =
π(p+1)/2

Γ((p+ 1)/2)
and cq =

π(q+1)/2

Γ((q + 1)/2)
, (12)

denoting by ‖ · ‖p and ‖ · ‖q the euclidean norms in Rp and Rq and Γ(·) the gamma function.

For simplicity, we write ‖ · ‖2 henceforth, instead of ‖ · ‖2ω, as the L2 norm using this weight
function. Thus, for finiteness of ‖ϕX,Y (t, s) − ϕX(t)ϕY (s)‖2, it is sufficient that E[‖X‖p] < ∞ and
E[‖Y ‖q] <∞. With this notation, the DC between random vectors X and Y with finite first moments
is the nonnegative number V2(X,Y ) defined by expression (13)

V2(X,Y ) = ‖ϕX,Y (t, s)− ϕX(t)ϕY (s)‖2 =
1

cpcq

∫
Rp+q

|ϕX,Y (t, s)− ϕX(t)ϕY (s)|2
‖t‖p+1

p ‖s‖q+1
q

dt ds (13)

Similarly, distance variance is given as the square root of

V2(X) = V2(X,X) = ‖ϕX,X(t, s)− ϕX(t)ϕX(s)‖2. (14)

The DC coefficient between random vectorsX and Y with finite first moments is the nonnegative
numberR(X,Y ) defined by

R(X,Y ) =

{ V2(X,Y )√
V2(X)V2(Y )

, V2(X)V2(Y ) > 0,

0, V2(X)V2(Y ) = 0.
(15)

It is verified that 0 ≤ R(X,Y ) ≤ 1, andR(X,Y ) = 0 if and only if X and Y are independent.
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Alternative expressions for (13) are

V2(X,Y ) =E
[
‖X ′ −X ′′‖p‖Y ′ − Y ′′‖q

]
+E

[
‖X ′ −X ′′‖p

]
E
[
‖Y ′ − Y ′′‖q

]
− 2E

[
‖X ′ −X ′′‖p‖Y ′ − Y ′′′‖q

] (16)

and

V2(X,Y ) =EX′Y ′
[
EX′′Y ′′

[
‖X ′ −X ′′‖p‖Y ′ − Y ′′‖q

]]
+EX′X′′

[
‖X ′ −X ′′‖p

]
EY ′Y ′′

[
‖Y ′ − Y ′′‖q

]
−2EX′Y ′

[
EX′′

[
‖X ′ −X ′′‖p

]
EY ′′

[
‖Y ′ − Y ′′‖q

]] (17)

being (X ′, Y ′), (X ′′, Y ′′) and (X ′′′, Y ′′′) iid copies of (X,Y ). See Székely et al. (2007) for more details.

Given (Xn,Yn) = {(Xi, Yi), i = 1, . . . , n} an iid sample from the joint distribution function of
(X,Y ) ∈ Rp×Rq, the empirical sample versions of the estimator of V2(·, ·) can be obtained as follows.
Defining Ail = ail − āi· − ā·l + ā·· by means of quantities

ail = ‖Xi −Xl‖p, āi· =
1

n

n∑
l=1

ail, ā·l =
1

n

n∑
i=1

ail and ā·· =
1

n2

n∑
i,l=1

ail, (18)

similarly Bil = bil− b̄i·− b̄·l + b̄·· with bil = ‖Yi−Yl‖q. The empirical distance covariance V2
n(Xn,Yn),

based on the empirical estimator of (13), is the nonnegative number given by

V2
n(Xn,Yn) =

1

n2

n∑
i,l=1

AilBil. (19)

Respectively, V2
n(Xn) is the nonnegative number defined by

V2
n(Xn) = V2

n(Xn,Xn) =
1

n2

n∑
i,l=1

A2
il. (20)

In summary, the estimation given in (19) is an easier way of obtaining an estimator of V2(X,Y )
just centering two times the data.

Furthermore, the empirical DC,Rn(Xn,Yn), is the square root of

Rn(Xn,Yn) =

{ V2
n(Xn,Yn)√
V2
n(Xn)V2

n(Yn)
, V2

n(Xn)V2
n(Yn) > 0,

0, V2
n(Xn)V2

n(Yn) = 0.
(21)

This coefficient takes values 0 ≤ Rn(Xn,Yn) ≤ 1, and verifies that, if Rn(Xn,Yn) = 1, then
there exist a vector a, a nonzero real number b and an orthogonal matrix C such that Yn = a+ bXnC.
Moreover, it is verified almost surely that limn→∞R2

n(Xn,Yn) = R2(X,Y ). For more properties
about V2

n(Xn,Yn), Vn(Xn) andRn(Xn,Yn) we refer to Székely et al. (2007).

Under the null hypothesis of independence, it is verified that nV2
n(Xn,Yn)/S2 converges in

distribution to a quadratic form Q=
∑∞

m=1 cmG
2
m, where S2 is a normalizing factor defined in

Székely et al. (2007), {Gm}∞m=1 are independent standard normal random variables and {cm}∞m=1



FUNCTIONAL GOF TEST WITH SOME APPLICATIONS 21

nonnegative constants that depend on the distribution of (X,Y ). Moreover, when this hypothesis
is violated, nV2

n(Xn,Yn) → ∞ in probability as n → ∞. Thus, a test which rejects H0 for large
values of nV2

n(Xn,Yn) is consistent in an omnibus way against dependence alternatives. In practice,
the limiting distribution can be approximated by resampling techniques, as for example using
permutation tests.

DC can be also used to perform proper GoF tests. In Xu and He (2021) a procedure based on DC
is used to test the null hypothesis H0 : X ⊥ ε and m ∈ Mβ in the regression model Y = m(X) + ε
with m ∈ Mβ = {g(x)>β : β ∈ Rp} for a given known function g(·). In this context, Yn is built with
the residuals of the fitted model.

Despite all discussed desirable qualities of the empirical distance covariance coefficient, this is
a biased estimator of (13) and its bias increases with dimension of X and Y , i.e. when p, q → ∞.
Besides, the DC statistic introduced in (21), and based on these coefficients, exhibits some drawbacks
as well. As it is explained in Székely and Rizzo (2013), although distance correlation characterizes
independence, interpretation of the size of Rn(Xn,Yn) without a formal test is difficult in high
dimensions. An explanation for this is that R2

n(Xn,Yn) −→ 1 as p, q → ∞, even though X and Y
are independent. Székely and Rizzo (2013) proposed a new unbiased sample estimator for distance
covariance and a modified distance correlation statistic based on plug-in these unbiased version
in numerator and denominator of expression (21) and verifying that, under the null hypothesis of
independence, this converges to a Student t distribution. This new approach solves the inconsistency
problem in high dimensions.

An additional problem is the computational cost of the construction of the distance matrices.
Some recent works such as Huo and Székely (2016) or Chaudhuri and Hu (2019) propose alternatives
to reduce this. However, only the univariate random variables case is considered. New solutions
applying for the vectorial framework need to be considered in the future.

Finally, it is remarkable the natural relation between DC and the Hilbert-Schmidt Independence
Criterion (HSIC) of Gretton et al. (2005). The HSIC makes use of the cross-covariance operator be-
tween two reproducing kernel Hilbert spaces (RKHSs) to measure if there exists some type of de-
pendence between two random vectors defined in two different RKHSs with universal kernel. These
vectors will be independent when the HSIC operator will take the null value. The DC is a partic-
ular case of HSIC operator where general kernel distances are replaced by Euclidean versions. In
some sense, there was a parallel evolution between the HSIC criteria in the machine learning world,
related to RHKSs, and the DC ideas in literature. There are really interesting papers published in
the last decade giving a unifying framework that links both fields. See Sejdinovic et al. (2013), Hua
and Ghosh (2015), Zhu et al. (2020) or Edelmann and Goeman (2022) for examples of this connection
under different perspectives. As a result, the HSIC measure can be used to perform independence
tests, an example is the work of Song et al. (2012), as well as specification tests, see Sen and Sen (2014)
for simultaneous GoF and error-predictor independence tests in linear models.

3.3 Martingale difference divergence

The MDD is a new dependence coefficient introduced by Shao and Zhang (2014). This metric mea-
sures the departure from the conditional mean independence hypothesis. This is based on testing
if the conditional mean of Y ∈ R, given X ∈ Rp, is independent of X . The testing problem is now
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22 W. GONZÁLEZ-MANTEIGA

given by

H0 : E[Y |X ] = E[Y ] almost surely vs. H1 : E[Y |X ] 6= E[Y ] almost surely. (22)

Its name comes from the interpretation of martingale difference concept in probability. This
means that if H0 in (22) is verified, then Y − E[Y ] is a martingale difference with respect to X .

As a result, the MDD coefficient is designed to measure the difference between the conditional
mean and the unconditional one to perform (22). The MDD of Y given X is the nonnegative number
MDD2(Y |X) defined by

MDD2(Y |X) =
1

cp

∫
Rp

|ψY,X(t)− ψY ψX(t)|2
‖t‖p+1

p

dt (23)

where ψY,X(t) = E[Y ei<t,X>], ψY = E[Y ] and ψX(t) = ϕX(t).

The MDD coefficient defined in (23) verifies that MDD2(Y |X) ≥ 0 and takes the null value
if and only if the null hypothesis (22) holds. This is called divergence and not distance because
MDD2(Y |X) 6= MDD2(X|Y ).

Similar to DC, a scale invariant coefficient can be defined. This gives place to the martingale
difference correlation (MDC) given by the square root of

MDC2(Y |X) =

{
MDD2(Y |X)√
var2(Y )V2(X)

, var2(Y )V2(X) > 0,

0, var2(Y )V2(X) = 0.
(24)

where V2(X) is the distance variance of X defined in (14). It is verified that 0 ≤ MDC2(Y |X) ≤ 1.
Similar properties as DC for MDD2(Y |X) and MDC2(Y |X) are collected in Shao and Zhang (2014).

For a sample of i = 1, . . . , n iid observations (Xn,Yn) = {(Xi, Yi), i = 1, . . . , n} from the joint
distribution of (X,Y ) ∈ Rp × R, it is defined Ail as in (18) and Bil = bil − b̄i· − b̄·l + b̄··; being
now bil = |Yi − Yl|2/2, b̄i· = 1

n

∑n
l=1 bil, b̄·l = 1

n

∑n
i=1 bil and b̄·· = 1

n2

∑n
i,l=1 bil for i, l = 1, . . . , n.

The empirical estimation of MDD2(Y |X), i.e. the sample martingale difference divergence, can be
defined as the nonnegative number

MDD2
n(Yn|Xn) =

1

n2

n∑
i,l=1

AilBil (25)

and its associated sample martingale difference correlation coefficient is given by

MDC2
n(Yn|Xn) =

{
MDD2

n(Yn|Xn )√
var2n(Yn)V2

n(Xn)
, var2

n(Yn)V2
n(Xn) > 0,

0, var2
n(Yn)V2

n(Xn) = 0.
(26)

where varn(Yn) = 1
n

∑n
i=1(Yi − Ȳ )2, for Ȳ = 1

n

∑n
i=1 Yi, and V2

n(Xn) is defined in (20).

See the paper of Park et al. (2015) for a nice connection between MDD and DC coefficients.
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If E
[
‖X‖p + |Y |2

]
< ∞, both estimators, MDD2

n(Yn|Xn) and MDC2
n(Yn|Xn), converge to

their population versions displayed in (23) and (24) almost surely. A prove of this result can be
found in Shao and Zhang (2014). Moreover, under the null hypothesis of independence in mean,
it is guaranteed that nMDD2

n(Yn|Xn) −→ ‖Γ (t)‖2 in distribution when n → ∞, being Γ (·) a
Gaussian process. In addition, if E[Y 2|X ] = E[Y 2] is also guaranteed, nMDD2

n(Yn|Xn)/Sn −→ Q
in distribution when n → ∞, being Q a nonnegative quadratic form of centered Gaussian random
variable with E[Q] = 1 and Sn = 1

n2

∑
i

∑
l ‖Xi−Xl‖p 1

n

∑
i(Yi− Ȳn)2. Finally, if the null hypothesis is

not verified, we have that nMDD2
n(Yn|Xn)/Sn −→ ∞ in probability when n→∞. We refer to Shao

and Zhang (2014) for more details. Although the asymptotic distribution under both, H0 and H1

hypothesis is known, resampling procedures can be applied in practice to calibrate the distribution
of the test statistic, especially for small sample sizes.

Thus, using the estimators of the MDD or MDC, it is possible to perform covariates selection
in regression models, specifying which covariates are the relevant ones. Shao and Zhang (2014)
propose a screening procedure sorting out the covariates relevance in terms of the regressor function
explanation, i.e. based on E [Y |X ] explanation, and then they establish a proper threshold to detect
the important significance covariates. Authors make use of the MDC criteria to measure covariates
relevance. A different approach for covariates selection in terms of causality is introduced in
Zhang et al. (2018). They propose a statistic based on the MDD ideas to test the null hypothesis of
H0 : E

[
Y |Xj

]
= E[Y ] almost surely for all j = 1 . . . , p. A wild bootstrap scheme is proposed to

approximate the statistics distribution.

All these ideas can be transferred to GoF testing. An example is the work of Su and Zheng
(2017). They test the null hypothesis of H0 : P (E [Y |X ] = g(X,β)) = 1 for some β ∈ B, being B the
parameter space and assuming Y = g(X,β) + ε, with g(·) a known function. The MDD is applied
using the residuals calculated under the null hypothesis, and covariates. Calibration of the test is
again done by means of wild bootstrap. A similar, but broader approach, using HSIC is also provided
by Teran Hidalgo et al. (2018).

3.4 Conditional distance correlation

The CDC was introduced in Wang et al. (2015) to measure the dependence of two random vectors
X ∈ Rp and Y ∈ Rq conditioned to a third one, Z ∈ Rr. For this purpose, conditional characteristic
functions are employed and ideas of the distance correlation introduced in Section 3.1 are adapted to
the conditional framework. The problem to be tested now is

H0 : X ⊥|Z Y almost surely vs. H1 : P
(
X 6⊥|Z Y

)
> 0 (27)

where X ⊥|Z Y denotes independence of X and Y conditioned to Z.

Using similar DC arguments, it is possible to rewrite (27) in terms of characteristic functions. The
new test is given by

H0 : ϕX,Y |Z = ϕX|ZϕY |Z vs. H1 : ϕX,Y |Z 6= ϕX|ZϕY |Z (28)

where ϕX,Y |Z , ϕX|Z and ϕY |Z are the joint and marginal conditional characteristic functions.
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Then, the CDC with finite first moments given Z (E[|X|p + |Y |q|Z ] <∞), is defined as the square
root of

CDC2(X,Y |Z) =‖ϕX,Y |Z (t, s)− ϕX|Z (t)ϕY |Z (s)‖2

=
1

cpcq

∫
Rp+q

|ϕX,Y |Z (t, s)− ϕX|Z (t)ϕY |Z (s)|2

‖t‖p+1
p ‖s‖q+1

q

dt ds
(29)

where cp and cq are the ones defined in (12) and conditional distance variance is the square root of

CDC2(X|Z) = CDC2(X,X|Z) = ‖ϕX,X|Z (t, s)− ϕX|Z (t)ϕX|Z (s)‖2,

being ‖ · ‖ the weighted norm defined in Section 3.2.

The CDC coefficient defined in (29) has analogues properties to the unconditional version of
(13). Particularly, it is verified that CDC(X,Y |Z) ≥ 0 if and only if X and Y are conditionally
independent given Z.

The conditional distance correlation (CDCor) is the square root of

CDCor(X,Y |Z) =

{
CDC2(X,Y |Z)√

CDC2(X|Z)CDC2(Y |Z)
, CDC2(X|Z)CDC2(Y |Z) > 0,

0, CDC2(X|Z)CDC2(Y |Z) = 0.
(30)

and this verifies that 0 ≤ CDCor(X,Y |Z) ≤ 1 and CDCor(X,Y |Z) = 0 if and only if X and Y
are conditionally independent given Z.

To construct an estimator of CDC2(X,Y |Z) the empirical characteristic functions conditioned
to Z are plugged in (29). Note that, for the estimation of conditional characteristic functions, it is
needed to resort to some kind of smoothing techniques as for example kernel-type estimators. We
refer to Wang et al. (2015) for more details. Denote by Wi = (Xi, Yi, Zi), i = 1, . . . , n a sample iid
from a random vector W = (X,Y, Z) ∈ Rp × Rq × Rr, Xn = {X1, . . . , Xn}, Yn = {Y1, . . . , Yn},
Zn = {Z1, . . . , Zn}, and Wn = (Xn,Yn,Zn). As a result, the sample conditional distance covariance
CDCn(Xn,Yn|Zn) is the positive quantity defined by

C̃DC
2

n(Xn,Yn|Zn) = ‖ϕnX,Y |Z (t, s)− ϕnX|Z (t)ϕnY |Z (s)‖2. (31)

being ϕnX,Y |Z , ϕnX|Z and ϕnY |Z the corresponding empirical conditional characteristic functions.

Following Wang et al. (2015), letting dijkl =
(
aXij + aXkl − aXik − aXjl

)(
bYij + bYkl − bYik − bYjl

)
and

dSijkl = dijkl + dijlk + dilkj for i, j, k, l = 1, . . . , n, where aij and bij are defined in (18), and Z1, Z2,
Z3 and Z4 are iid copies of Z, it is verified that

CDC2(X,Y |Z=z) =
1

12
E[dS1234|Z1=z,Z2=z,Z3=z,Z4=z]

As a result, the conditional dependence measures can be estimated by applying kernel regres-
sion smoothing ideas to the above expectation estimation. This results in a V-process. The sample
conditional distance covariance is defined as the square root of

CDC2
n(Wn|Z) = CDC2

n(Xn,Yn,Zn|Z) =
1

n4

∑
ijkl

Ψn(Wi,Wj ,Wk,Wl;Z) (32)
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where Ψn is the symmetric random kernel of degree 4 defined in Schick (1997):

Ψn(Wi,Wj ,Wk,Wl;Z) =
n4Φi(Z)Φj(Z)Φk(Z)Φl(Z)

12Φ4(Z)
dSijkl

for Φi(Z) = KH(Z − Zi) and Φ(Z) =
∑n

i=1 Φi(Z), being K a kernel function and H a bandwidth
matrix r-dim.

Let WXn = (Xn,Xn,Zn) and WYn = (Yn,Yn,Zn). Analogously, the sample conditional dis-
tance correlation can be defined as the square root of

CDCorn(Wn|Z) =

{
CDC2

n(Wn|Z)√
CDC2

n(WXn |Z)CDC2
n(WYn |Z)

, CDC2
n(WXn |Z)CDC2

n(WYn |Z) > 0,

0, CDC2
n(WXn |Z)CDC2

n(WYn |Z) = 0.

It is verified that C̃DC
2

n(Wn|Z) = CDC2
n(Wn|Z) given Wn = {W1, . . . ,Wn} a sample from the

joint distribution of (X,Y, Z). Furthermore, if E [‖X‖p + ‖Y ‖q|Z ] < ∞ and Φ(Z)/n is a consistent
density function estimator of Z, then CDC2

n(Wn|Z) −→ CDC2(X,Y |Z) in probability for each value
of Z as n→∞. See Wang et al. (2015) for more details and properties of CDC2

n(Wn|Z). Analogously,
an unbiased version of (32) can be defined with similar properties. For this purpose, U-processes
theory is applied.

Wang et al. (2015) make use of these ideas to perform the conditional independence test displayed
in (27), applying conditioned covariates selection. In particular, they define a statistic based on the
CDC coefficient and implement a test calibrated by means of a local bootstrap. Other procedures
related with screening techniques in terms of conditional dependence are the recent works of Song
et al. (2020) and Lu and Lin (2020). The first one adapt the ideas of Liu et al. (2014) using the CDCor
to specify significant covariates for general varying-coefficient models in regression. Covariates are
sorting out based on their CDCor value and then a cutoff is applied. In contrast, Lu and Lin (2020)
select an initial set of covariates and measures the importance of remaining ones conditioned to
this subset. For this purpose, they use the CDCor, resulting in the CDC-SIS (conditional distance
correlation sure independence screening) algorithm.

3.5 A new generation of procedures for testing in regression models based on distance
correlation with functional data

In this Section, we assume that both, the explanatory covariate X as well as the output Y of the
regression model Y = m(X) + ε, are functions. Here, similar to Section 2, it is assumed that X ∈ HX
and Y ∈ HY , beingHX andHY Hilbert spaces. As it was mentioned in previous sections, results for
specification testing in regression models with functional data appear in the last 10 years. However,
it is not until very recently when the methodology of the DC is employed, extending procedures of
Section 2 to the functional framework.

A first paper is Lee et al. (2020), where it is tested the null hypothesis H0 : E [Y |X ] = E[Y ] as in
(22) but now for the functional case. Then, to carry out the test, an statistic based on a generalized
version of the MDD coefficient described in Section 3.3 is proposed.

In particular, the vectorial MDD term can be written as (see Shao and Zhang (2014))

MDD2 (Y |X) = −E
[
(Y − E[Y ])

(
Y ′ − E[Y ]

)
‖X −X ′‖HX

]

SJS, VOL. 4, NO. 1 (2022), PP. 9 - 40
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and this idea is extended to the functional context considering

FMDD2 (Y |X) = −E
[
〈Y − E[Y ], Y ′ − E[Y ]〉HY ‖X −X ′‖HX

]
being, in both cases (vectorial and functional), (X ′, Y ′) iid copies of (X,Y ).

Hence, based on an iid sample (Xn,Yn) = {(Xi, Yi), i = 1, . . . , n} of (X,Y ), an unbiased estima-
tor of FMDD2 is obtained with the empirical version

FMDD2
n (Yn|Xn) =

1

n(n− 3)

∑
i 6=j

ÃijB̃ij (33)

where Ãij and B̃ij are now the corresponding U-centered versions of (18), being the (i, j)th elements
of the matrices defined as

Ãij =

{
aij − āi· − ā·j + ā··, i 6= j
0, i = j

B̃ij =

{
bij − b̄i· − b̄·j + b̄··, i 6= j
0, i = j

with aij = ‖Xi − Xj‖ =
√
〈Xi −Xj , Xi −Xj〉HX , āi· =

∑
l ail

(n−2) , ā·j =
∑
k akj

(n−2) , ā·· =
∑
akl

(n−1)(n−2) ,
bij = ‖Yi − Yj‖2HY /2 and b̄i·, b̄·j and b̄·· defined in a similar way.

That is, the modified and adapted empirical unbiased version of the estimation given in (25), but
now, for the functional context.

Nice results are obtained in Lee et al. (2020) under the assumptions of E
[
‖X‖2HX + ‖Y ‖2HY

]
<∞,

E
[
‖X − E[X]‖2HX + ‖Y − E[Y ]‖2HY

]
< ∞ and the null hypothesis is true: nFMDD2

n(Yn|Xn) −→∑∞
k=1 λk(G

2
k − 1) in distribution, being {λk}∞k=1 the eigenvalues corresponding to the eigenfunctions

{Ψk(·)}∞k=1 such that J(z, z′) =
∑∞

k=1 λkΨk(z)Ψk(z
′) with z = (x, y) and J(z, z′) = U(x, x′)V (y, y′),

where U(x, x′) = ‖x − x′‖HX + E [‖X −X ′‖HX ] − E [‖x−X ′‖HX ] − E [‖X − x′‖HX ] and
V (y, y′) = −〈y − E[Y ], y′ − E[Y ]〉HY . Here {Ψk} is an orthogonal sequence in the sense that
E [Ψj(z)Ψk(z)] = I(j = k) and {Gk}∞k=1 is a sequence of iid N(0, 1) random variables.

This represent the limit distribution of a degenerate U -statistic with kernel h(·), being

FMDD2
n (Yn|Xn) =

1(
n
4

) ∑
i<j<k<l

h(Zi, Zj , Zk, Zl)

with h(Zi, Zj , Zk, Zl) = 1
4!

∑(i,j,k,l)
(s,t,u,v)(astbuv + astbst − astbsu − astbtv) the sum over the 24 possible

permutations of the indexes (i, j, k, l).

In Lee et al. (2020) it is proposed to reject the null hypothesis of conditional mean independence
if and only if Tn = nFMDD2

n (Yn|Xn) > C, where C is a constant taken based on the α significance
level. The power of the test is studied and demonstrated to be consistent under both, local and fixed
alternatives, using a consistent wild bootstrap calibration.
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A second recent contribution is the paper of Lai et al. (2020), devoted to test a modified null
hypothesis: H̃0 : “X is independent of ε and m satisfies the linear model given by (7) in Section 2”.
Using the recent results related with the distance covariance (see Székely et al. (2007), Lyons (2013)
and Sejdinovic et al. (2013)). Consider now (X , ρ

X̃
) and (Y, ρ

Ỹ
) two semimetric spaces of negative

type, where ρ
X̃

and ρ
Ỹ

are the corresponding semimetrics. Denote by (X̃, Ỹ ) a random element
with joint distribution P

X̃Ỹ
and marginals P

X̃
and P

Ỹ
, respectively, and take (X̃ ′, Ỹ ′) an iid copy of

(X̃, Ỹ ). The generalized distance covariance (X̃, Ỹ ) is given by

θ(X̃, Ỹ ) = E
[
ρ
X̃

(X̃, X̃ ′)ρ
Ỹ

(Ỹ , Ỹ ′)
]

+ E
[
ρ
X̃

(X̃, X̃ ′)
]
E
[
ρ
Ỹ

(Ỹ , Ỹ ′)
]

− 2E
(X̃,Ỹ )

[
E
X̃′

[
ρ
X̃

(X̃, X̃ ′)
]
E
Ỹ ′

[
ρ
Ỹ

(Ỹ , Ỹ ′)
]]
.

This corresponds with expression (16) and (17) for the vectorial case.

As noted by Lai et al. (2020) the generalized distance covariance can be alternatively written as

θ(X̃, Ỹ ) =

∫
ρ
X̃

(x̃, x̃′)ρ
Ỹ

(ỹ, ỹ′) d[(P
X̃Ỹ
− P

X̃
P
Ỹ

)× (P
X̃Ỹ
− P

X̃
P
Ỹ

)].

where d[·] denotes the differential term of the integral.

Note that θ(X̃, Ỹ ) = 0 if and only if X̃ and Ỹ are independent. Given an iid sample {(X̃i, Ỹi)}ni=1

of (X̃, Ỹ ), an empirical estimator of θ is given by

θn(X̃, Ỹ ) =
1

n2

∑
i,j

kij`ij +
1

n4

∑
i,j,q,τ

kij`qτ −
2

n3

∑
i,j,q

kij`iq

with kij = ρ
X̃

(X̃i, X̃j) and `ij = ρ
Ỹ

(Ỹi, Ỹj). Taking X̃ = X and Ỹ = ε = Y − 〈X,β〉HX , ρ
Ỹ

is
the absolute value and ρ

X̃
is the distance associated to the Hilbert space HX . The test statistic is

Tn = θn(ε̂, X) and is based on {(Xi, Yi − 〈Xi, β̂〉HX )}ni=1.

In other recent papers Hu et al. (2020) and Zhao et al. (2022), the null hypothesis about the
linearity given in (7) is tested using related approximations based on the MDD adapted to the
functional context.

All the tests described in this section have challenging limit distributions and need to be
calibrated with resampling techniques.

The references mentioned above are for the extension of DC and MDD coefficients to specification
tests in the functional data context. Specification tests, in general, for independence testing between
two functional variables X and Y , conditioned to a third one Z, are a really though problem. Some
very relevant and recent papers in this topic are the ones of Shah and Peters (2020) or Lundborg et al.
(2022). A deep study of the CDC in the functional framework is still an open problem of interest for
future research.
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28 W. GONZÁLEZ-MANTEIGA

4 Applications

In this last section, we illustrate some of the recently developed new methodologies for specification
tests in the functional framework introduced along the document. Three real datasets examples with
functional nature are employed.

The first application is an illustration of the test of equality of distribution functions. This is
devoted to the Medflies data (Carey et al. (1998)). In this example, the Mediterranean fruit flies’
lifetime distributions are compared with respect to their fertility (number of eggs). The distinction is
done in terms of short-lived or long-lived individuals. As a result, a test of equality of distribution
for functional data is performed (Section 4.1).

Secondly, other well-known data set in the functional framework is employed. This is the
Tecator database (see Ferraty and Vieu (2006)). In this application, it is wanted to determine if the
spectrometric functional variable (absorbance), as well as its first and second derivatives, support
relevant information to explain the fat content in a regression model. For this purpose, significance
tests are applied over the considered functional covariates (Section 4.2).

Finally, a GoF test based on CD is applied to check if a Ornstein-Uhlenbeck diffusion process
explains the evolution of high-frequency financial data. In particular, Johnson & Johnson stock prices
from August 2018 to August 2019 are analyzed (Section 4.3).

4.1 Testing equality of distributions in the Medflies data set

Medflies is a functional dataset usually used for classification purposes. See Carey et al. (1998) for
more details. This is available in the ddalpha (Pokotylo et al. (2019)) package of R (R Core Team
(2022)). This contains the medflies trajectories for number of eggs laid differentiation between short
or long-lived individuals. The goal is to classify a group of Mediterranean flies as short-lived or
long-lived (alive after day 50), X and Y populations, respectively, given their fertility up to day
35. The dataset contains 278 trajectories of long-lived and 256 for the short-lived group. This is
considered a hard classification problem and the best overall ratio is around 60%. As a result, it
makes sense to wonder if it is possible to correctly discriminate between both groups. For this
purpose, a test for comparison of populations in the function context is applied.

First, data on flies that have not laid any egg are removed to avoid outliers. We found this type
of individuals for both classes: short-lived as well as long-lived flies. This results in a total of 266
long-lived trajectories and 246 of the short-lived ones for the new dataset. As the number of eggs
laid is a discrete variable we considered the raw data as well as a logaritmic transformation to avoid
heterogeneity problems. Next, functional data is smoothed using nonparametric kernel estimation.
This is done using the optim.np function of fda.usc library (Febrero-Bande and Oviedo de la
Fuente (2012)). We have employed a bandwidth parameter value of h = 1, other values could be
considered as well. However, we have appreciated a suitable smoothing taking this quantity. Results
for first 30th resulting samples are displayed in Figure 1 for both groups.

Thus, after smoothing both functional variables X and Y , corresponding to short-lived and
long-lived populations, we are interested in determining if there exits significance differences
between both groups in terms of their distributions. For this purpose, a test for comparison of the



FUNCTIONAL GOF TEST WITH SOME APPLICATIONS 29

5 10 15 20 25 30 35

0
20

40
60

80
10

0
30 smoothed medflies trajectories

day

N
º 

eg
gs

 la
id

5 10 15 20 25 30 35

−
2

−
1

0
1

2
3

4

30 log−smoothed medflies trajectories

day

lo
g(

N
º 

eg
gs

 la
id

+
0.

1)
Figure 1: First 30th smoothed medflies trajectories for number of eggs laid (left) and log(number of
eggs laid +0.1) (right) for short-lived individuals (—) and long-lived ones (—).

distribution of the populations in the functional framework is needed. This results in testing the null
hypothesis of H0 : X ∼ Y .

We resort to random projections in functional data (Cuesta-Albertos et al. (2007)) to construct a
proper statistic for the test. Once our data is projected, scalar procedures for comparison of popu-
lations can be employed. In an illustrative way, we decided to use a total of 10 random projections
and then apply Kolmogorov-Smirnov (KS10) and Anderson-Darling (AD10) techniques. For this
aim, function XYRP.test of the fda.usc library (Febrero-Bande and Oviedo de la Fuente (2012)) is
applied. Obtained results are collected in Table 1.

KS10 AD10

smfl 1.3× 10−4 6.5× 10−4

log(smfl + 0.1) 0.00804 0.01547

Table 1: Resulting p-values for Kolmogorov-Smirnov (KS10) and Anderson-Darling (AD10) tests
using 10 random projections for smoothed medflies trajectories (sfml) and its logarithmic version
(log(smfl + 0.1)).

In view of the results, all p-values< 0.0155, we have evidences to reject the null hypothesis that
the number of eggs laid for fruit flies are equally distributed for short and long lived individuals.
Thus, we can conclude that there exists difference between the fertility of a fly with long life ex-
pectancy compared to one with a lower rate. Therefore, new classification methodologies for the
functional data context are needed to correctly discriminate between both groups.

SJS, VOL. 4, NO. 1 (2022), PP. 9 - 40
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4.2 Significance tests with functional covariates for the Tecator database

The Tecator data set records the content of water, fat and protein percentages jointly with ab-
sorbances spectrometric curves, measured in a 100-channel spectrum, of a total of n = 215 meat
samples. This is available in the fda.usc (Febrero-Bande and Oviedo de la Fuente (2012)) package
of R (R Core Team (2022)). This database is a well-studied real data example in the functional
framework. Some examples where this data set is considered are the works of Ferraty and
Vieu (2006), García-Portugués et al. (2014), Lee et al. (2020) and Shi et al. (2022) among others.
Following previous studies guidelines, we are interested on model the percentage of fat (Y) using the
spectrometric curves information (X). In particular, we consider the absorbance (ab) and its first and
second derivatives (ab1 and ab2). Representation of the considered covariates is collected in Figure 2.
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Figure 2: Left: absorbance curves. Middle: first derivative of absorbance curves. Right: second
derivative of absorbance curves.

To verify if all considered covariates are relevant in the fat percentage explanation or if some do
not support enough information, we can resort to significance tests. In particular, we want to test

H0 : E [Y |X ] = E[Y ] almost surely vs. H1 : P (E [Y |X ] 6= E[Y ]) > 0,

whereX can be the absorbance information as well as its first or second derivative. This corresponds
with the test displayed in expression (22) of Section 3.3 for the vectorial case.

Following similar ideas to Lee et al. (2020) we can implement the test using the FMDD coeffi-
cient introduced previously in Section 3.5. Using a B = 1000 resampling wild bootstrap calibration
procedure, we obtain null p-values for raw absorbance (ab), first (ab1) and second derivative (ab2).
As a result, we have evidences to reject the null hypothesis of conditional mean independence and
to claim that these three covariates provide relevant information in the fat percentage explanation.
It is interesting to note that no model assumption or structure is needed, as all types of possible
dependence in mean are collected in the considered H0.

Moreover, we can go a step further to detect which covariates are the most and least relevant ones.
For this aim, we can define a scale invariant functional martingale difference correlation coefficient
(FMDC). This is an extension of the MDC2(Y |X) term introduced in (24) for the vectorial context



FUNCTIONAL GOF TEST WITH SOME APPLICATIONS 31

ab ab1 ab2
DC 0.2 0.78 0.91

FMDC 0.45 0.88 0.94

Table 2: Results of distance correlation (DC) and functional martingale difference correlation (FMDC)
coefficients for Absorbances (ab), first Absorbances’ derivative (ab1) and second one (ab2).

just applying the considered metrics for the functional martingale calculation. Now, we build our
functional scale invariant coefficient using the unbiased FMDD2

n (Yn|Xn) estimator formula intro-
duced in (33). Results are displayed in Table 2. We see as the ab2 term is the one with the greatest
explanation capability, following for ab1 and ab. This highlights the fact that employing the sec-
ond derivative instead of ab increases the explanatory power of the regression model. Besides, we
calculate the DC coefficient and similar results are obtained.

4.3 GoF test for a high-frequency dynamic model example: Johnson & Johnson com-
pany stock prices

To illustrate a real-data application for dynamic models, we apply the ideas of DC to test a GoF of
the Ornstein-Uhlenbeck process as an autorregresive Hilbertian (ARH) process. We refer the reader
to Bosq (2000) for more details about ARH processes.

Let {Xt}t∈R+ be a continuous-time zero-mean stochastic process. Following the ideas in Álvarez-
Liébana et al. (2022), we split the path, corresponding to the observed domain of the t ∈ R+ term of
the stochastic process, as Xn(t) = Xnh+t, with t ∈ [0, h], and Xn ∈ H = L2 ([0, h]), for each n ∈ Z+,
constituting an infinite-dimensional discrete-time process. The zero-mean autoregressive Hilbertian
process of order one X = {Xn}n∈Z+ , denoted as ARH(1), satisfies the state equation

Xn(t) = Λ (Xn−1) (t) + En(t), n ∈ Z+, t ∈ [0, h],

with Xn, En ∈ H = L2([0, h]), Λ the linear autocorrelation operator, and {En}n∈Z an independent
sequence of Gaussian processes with null mean (strong-white noise) with iid components (see As-
sumptions considered in Álvarez-Liébana et al., 2022). The Ornstein-Uhlenbeck process,

Xt = X0e
−θt + µ

(
1− e−θt

)
+ σ

∫ t

0
e−θ(t−s) dWs, t, s ∈ R+,

with X0 the initial condition at t0 = 0, can be characterized as an ARH(1) process. Let H be a
separable Hilbert space given by H = L2

(
[0, h],B[0,h], λ+ δ(h)

)
, with B[0,h] the σ-algebra generated

by the subintervals [0, h], λ the Lebesgue measure and δ(h)(s) = δ(s − h) the Dirac measure at h.
Given a centered process {Xt}t∈R+ , the Ornstein-Uhlenbeck process can be characterized as a zero-
mean stationary ARH(1) model {Xn(t) := Xnh+t, t ∈ [0, h]}n∈Z+ , given by

Xn(t) = e−θtXn−1(h) + σ

∫ nh+t

nh
e−θ(nh+t−s) dWs = Λθ (Xn−1) (t) + En (t) ,

with n ∈ Z+ and where
{
En(t) := σ

∫ nh+t
nh e−θ(nh+t−s) dWs

}
n∈Z+ constitutes aH-valued strong white

noise and Γθ is a bounded linear operator, for each θ > 0.
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Figure 3: Johnson & Johnson stock prices recorded every minute from August 2018 to August 2019.
Observed path (left) and centered daily price curves (right).

The dataset considered consist on Johnson & Johnson stock prices from August 1, 2018 to August
7, 2019, recorded every minute. Figure 3 shows the price path (left) with 98 280 observations and
the daily curves {Xi(t)}ni=1 with n = 252 curves (right) discretized in 390 equispaced grid points,
that is, 1-minute data. The daily price curves are evaluated in H = L2

(
[0, 1],B[0,1], λ+ δ(1)

)
, where

the [0, 1] interval corresponds to a 1-day observation window. We test the parametric form of the
Ornstein-Uhlenbeck process, that is, that the daily curves {Xi(t)}ni=1 constitute an ARH(1) process
Xn(t) = Λ(Xn−1)(t) + En(t) with Λ(X )(t) := Λθ(X )(t) = e−θtX (h). As in López-Pérez, Febrero-
Bande, and González-Manteiga (López-Pérez et al.), to test the specification of the process using the
independence test, we have the test

H0 : En(t) ⊥ Xn(t) vs. H1 : En(t) 6⊥ Xn(t)

which is equivalent to test the Ornstein-Uhlenbeck specification. The p-value obtained is 0.0011,
therefore the null hypothesis is rejected, as significant evidence is found against the Ornstein-
Uhlenbeck as a ARH(1) process for sensible significance levels. Explaining the dynamic of the stock
price may require a more intricate model, or coupling the model with jumps, as there was a decline
in December due to allegations against the company.

5 Conclusions

In this article, existing procedures about specification tests in the presence of functional data are
reviewed. These can be fundamentally differentiated into two types:

a) Extensions of classic procedures developed for the vectorial framework. These are based on
distances between a nonparametric universally consistent pilot estimator and another one
estimated under the null hypothesis assumptions.
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b) Using correlation generalized coefficients. These are employed to measure independence, con-
ditional mean independence and conditional independence. These correspond with the ana-
lyzed DC, MDD and CDC coefficients, respectively.

The development of specification tests for the functional context is not an easy task. In fact,
most of the references date from the last decade. This field has attracted great interest, resulting in
a very fast evolution in the recent years. These novel procedures face some important limitations as
the curse of dimensionality in the big data context involving functional data. For this reason, it is
currently an interesting line of research for the big data processing.

All the manuscript review is performed for specification tests in static functional models.
Nevertheless, an example of specification testing for a functional continuous-time process is given
in Section 4.3 to illustrate their possible adaptations.

An open line for future research is the development of specification tests for functional time
series. Articles such as the ones of Edelmann et al. (2019), Davis et al. (2018), Dehling et al. (2020),
Lee and Shao (2018) or Meintanis et al. (2022) could be a good starting point for construction of new
specification tests in dynamic models.

There are several practical problems where functional data are of potential interest. Specially,
in the medical context, where a continuous monitoring of patients features can be desirable. An
example is the glucose monitoring in diabetes disease. The case of cure models, from the Survival
Analysis, is specially relevant. Works as the ones of Zhang et al. (2021) or Edelmann et al. (2022)
in the vectorial context based on DC ideas could bridge a gap for specification tests in cure models
with functional data.

Eventually, it is important to remark that all the exposition was developed for functional data in
Hilbert spaces. There are papers, like Castro-Prado and González-Manteiga (2020) or the excellent
review of Jansen (2021), which extend the results to broader spaces. In these last references, a unified
version of dependence measures in general metric spaces, being the Hilbertian ones a particular case,
is performed. Specification tests for not only the Hilbertian case, but also for general metric spaces,
is another open problem for future research.
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