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Abstract: In this paper, we introduce a new family of distributions for modeling positive data.
The new distribution arises from the quotient of two independent random variables: transmuted
Rayleigh in the numerator, and beta in the denominator. Structural properties of the new distribu-
tion are derived, and an application to real data reveals good performance of this new distribution in
practice.
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1 Introduction

The one-parameter Rayleigh distribution is a continuous probability distribution for modeling posi-
tive data. It is named after the English Lord Rayleigh. This distribution plays a key role in modeling
lifetime data such as project effort loading modeling, survival and reliability data, theory of commu-
nication, physical sciences, technology, diagnostic imaging, and clinical research. Some important
references regarding the Rayleigh distribution are (Cliff and Ord, 1975) and (Hirano, 1986). Cliff and
Ord (1975) pointed out the remarkable property that the Rayleigh distribution arises as the distri-
bution of the distance between an individual and its nearest neighbor when the spatial pattern is
generated by a Poisson process, while (Hirano, 1986) has presented a brief account of the history and
properties of this distribution. For further details on the Rayleigh distribution, the reader is referred
to (Johnson et al., 1995) and the references cited therein. However, researchers have focused on the
generalization of the one-parameter Rayleigh distribution to create a more flexible Rayleigh distri-
bution. A random variable X is said to have a transmuted distribution if its cumulative distribution
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function (cdf) is given by F (x) = (1 + λ)H(x) + λH2(x), where |λ| ≤ 1 and H(x) is the cdf of the
baseline distribution. Note that if λ = 0 we obtain the baseline H(x) distribution of the random vari-
able X . By using this procedure, (Merovci, 2013) studied the two-parameter transmuted Rayleigh
(‘TR’ for short) distribution. A random variable Z is said to have the TR distribution if its cdf and
probability density function (pdf) are given, respectively, by

FZ(z;σ, λ) =

(
1− e−

z2

2σ2

)(
1 + λe−

z2

2σ2

)
, (1)

fZ(z;σ, λ) =
z

σ2
e−

z2

2σ2

(
1− λ+ 2λe−

z2

2σ2

)
,

where z > 0, σ > 0 and |λ| ≤ 1. We write Z ∼ TR(σ, λ). If λ = 0 we obtain the Rayleigh distribution.
In this short note, we introduce a new generalization of the TR distribution. The main aim of this
paper is to introduce a three-parameter Rayleigh family of distributions, which extends the Rayleigh
and TR distributions, with the hope that the new distribution may have a âĂŸbetter fitâĂŹ compared
to these distributions in certain practical situations. Additionally, we will provide some mathematical
properties of the proposed new family of distributions. As we will see later, the formulae related with
the new distribution are simple and manageable, and with the use of modern computer resources and
its numerical capabilities, the proposed distribution may prove to be an useful addition to the arsenal
of applied statisticians in data analysis. In Section 2, we introduce the new three-parameter Rayleigh
family of distributions and investigate its properties, including the stochastic representation. Section
3 discusses estimation of model parameters. A simulation study is performed in Section 4. Section 5
provides a real data application for illustrative purposes. Section 6 concludes the paper.

2 Slashed transmuted Rayleigh distribution

2.1 Stochastic representation

We have the following definition.

Definition 1. A random variable T has the slashed transmuted Rayleigh (STR) distribution if it can be repre-
sented as

T =
X

U1/q
, (2)

where X ∼ TR(σ, λ) defined in (1) and U ∼ Uniform(0, 1) (with X and U independent), σ > 0, |λ| ≤ 1,
and q > 0.

Remark 1. We shall use the notation T ∼ STR(σ, λ, q).

Proposition 1. Let T ∼ STR(σ, λ, q). The pdf of T is given by

fT (t;σ, λ, q) =
qσq

tq+1
Γ
(q

2
+ 1
)[

2q/2(1− λ)G

(
t2

2σ2
,
q

2
+ 1, 1

)
+ λG

(
t2

σ2
,
q

2
+ 1, 1

)]
, (3)

where t > 0, σ > 0, |λ| ≤ 1, q > 0, Γ(α) =
∫∞
0 uα−1e−u du is the gamma function, and G(x;α, β) =

(βα/Γ(α))
∫ x
0 u

α−1e−βu du is the cdf of the gamma distribution.

Proof. Using representation in (2) and the Jacobian method, the pdf associated to T is

fT (t;σ, λ, q) =
q(1− λ)

σ2

∫ 1

0
twq+1e−

t2w2

2σ2 dw +
2qλ

σ2

∫ 1

0
twq+1e−

t2w2

σ2 dw.
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Considering the change of variable u = t2w2/2σ2 in the first integral and u = t2w2/σ2 in the second,
we obtain

fT (t;σ, λ, q) = qσqt−(q+1)

(
(1− λ)2q/2

∫ t2/(2σ2)

0
uq/2e−u du+ λ

∫ t2/σ2

0
uq/2e−u du

)
.

Recognizing the cdf of the gamma distribution, the result follows.

Remark 2. When σ = λ = q = 1, the pdf of T reduces to

fT (t) =

√
π

2
t−2G

(
t2

2
,
3

2
, 1

)
, t > 0.

Figure 1 shows some pdf shapes of the STR distribution for some parameter values. It is evient
that the STR distribution is much more flexible than the TR distribuiton.

2.2 Structural properties

Here, we derive some basic properties of the STR distribution. We have the following proposition.

Proposition 2. Let T ∼ STR(σ, λ, q). We have that:

(a) lim(λ,q)→(0,∞) fT (t;σ, λ, q) = t
σ2 e
− t2

2σ2 .

(b) lim(λ,q)→(1,∞) fT (t;
√

2σ, λ, q) = t
σ2 e
− t2

2σ2 .

(c) lim(λ,q)→(−1,∞) fT (t; (2β)−1/2, λ, q) = 4βxe−βx
2
(

1− e−βx2
)

.
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(g) FT (t;σ, λ, q) = FZ(t;σ, λ)− t
qfT (t;σ, λ, q), where FZ(·) is the cdf given in (1), and fT (·) is pdf given

in (3).

Proof. Firstly, we have from (2) that the STR distribution reduces to the TR distribution as q → ∞.
With this in mind, we immediately have that lim(λ,q)→(0,∞) fT (t;σ, λ, q) = limλ→0 fZ(t;σ, λ) =

(t/σ2)e−
t2

2σ2 limλ→0(1− λ+ 2λe−
t2

2σ2 ) = (t/σ2)e−
t2

2σ2 , and so (a) holds. The other ones are obtained in
a similar fashion.

Remark 3. From Proposition 2, properties 1 and 2 show that the STR distribution tends to the classical
Rayleigh distribution when (λ, q) → (0,∞). Property 3 shows that the STR distribution converges to the
exponentiated Rayleigh distribution when (λ, q)→ (−1,∞) and σ = (2β)−1/2. Properties 4 and 5 show that
the STR distribution converges to the slashed Rayleigh distribution. Property 6 shows that the distribution
STR distribution tends to slashed exponentiated Rayleigh distribution when λ→ −1.

We have the following proposition.
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Figure 1: STR density for some parameter values.
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Proposition 3. Let T ∼ STR(σ, λ, q). The r-th moment of T takes the form

E(T r) =
σrrq

2(q − r)
Γ
(r

2

)
(λ+ 2r/2(1− λ)), q > r, (4)

where r = 1, 2, . . ..

Proof. Using the stochastic representation in (2), we haveE (W−r) = q/(q−r) for q > r, andE (Xr) =
σrr
2 Γ(r/2)(λ+ 2r/2(1− λ)) are the moments of the TR(σ, λ) distribution.

From (4), we have that
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√
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√
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When (λ, q)→ (0,∞), the asymmetry and kurtosis tend, respectively, to

(π − 3)
√

4π
(4−π)2 ,

32−3π2

(4−π)2 ,

which are the asymmetry and kurtosis of the Rayleigh distribution. When q → ∞, the asymmetry
and kurtosis converge, respectively, to

3
4
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2
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(λ+
√
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√
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2 ,

which are the asymmetry and kurtosis of the TR distribution. Figure 2 shows the graphs of the
asymmetry and kurtosis of the STR distribution as functions of λ and q. Note that, for a fixed value
of λ, the kurtosis of the STR distribution goes to zero as q →∞, while it has no upper limit as q → 4+.

3 Parameter estimation

In the following, we consider the method of moments as well as the maximum likelihood method to
estimate the parameters σ, λ and q of the STR distribution.

SJS, VOL. 5, NO. 1 (2023), PP. 55 - 64
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Figure 2: (left) Asymmetry; (right) Kurtosis.

3.1 Moment estimators

We have the following proposition.

Proposition 4. Let t1, . . . , tn be a sample of size n from the T ∼ STR(σ, λ, q) distribution. The moment
estimates of σ, λ and q, for q > 3, are

q̃ =
1

1− d1σ
, σ̃ =

d1 ±
√
d21 − d2
d2

,

0 =

(
d1
d2

)2(2d3
d2
− 3

)2 (
d21 − d2

)
−
((

3d21
d2
− 2

)
− d3
d22

(
2d21 − d2

))2

, (5)

where d1 =
√
π

2T
(λ+
√

2(1−λ)), d2 = 2−λ
T 2

, d3 = 3
√
π

4T 3
(λ+2

√
2(1−λ)), and T = (1/n)

∑n
i=1 ti is the sample

mean, T 2 = (1/n)
∑n

i=1 t
2
i , and T 3 = (1/n)

∑n
i=1 t

3
i . The equation (5) depends only on the parameter λ, and

so it has to be solved numerically to obtain λ̃.

Proof. Using (4), we have that

E(T ) =

√
πσq

2(q − 1)
(λ+

√
2(1− λ)),

E(T 2) =
σ2q

(q − 2)
(2− λ), (6)

E(T 3) =
3
√
πσ3q

4(q − 3)
(λ+ 2

√
2(1− λ)),

and thus replacing E(T ) with T , E(T 2) with T 2 and E(T 3) with T 3 in (6), we obtain the moment
estimators (σ̃, λ̃, q̃) of (σ, λ, q).
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3.2 Maximum likelihood

Suppose t1, t2, . . . , tn is a sample of size n from the STR(σ, λ, q) distribution. The log-likelihood
function is

log(L(σ, λ, q)) = c(σ, λ, q)− (q + 1)
n∑
i=1

log(ti)

+
n∑
i=1

log

(
2q/2(1− λ)G

(
t2i

2σ2
,
q

2
+ 1, 1

)
+ λG

(
t2i
σ2
,
q

2
+ 1, 1

))
,

where c(σ, λ, q) = n log(q) + nq log(σ) + n log(Γ
( q
2 + 1

)
). Taking the derivatives of the log-likelihood

function log(L(σ, λ, q)) with respect to σ, λ and q, and equating these expressions to zero, we obtain

nq

σ
+

n∑
i=1

F1(ti)

F (ti)
= 0,

n∑
i=1

F2(ti)

F (ti)
= 0,

n

q
+ n log(σ) +

n

2
Ψ
(q

2
+ 1
)
−

n∑
i=1

log(ti) +

n∑
i=1

F3(ti)

F (ti)
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where F (ti) = 2q/2(1 − λ)G(t2i /(2σ
2), q/2 + 1, 1) + λG(t2i /σ

2, q/2 + 1, 1), F1(ti) = d
dσF (ti), F2(ti) =

d
dλF (ti), F3(ti) = d

dqF (ti), and Ψ(·) is the digamma function. The above equations do not lead to

explicit analytical solutions for the maximum likelihood (ML) estimates q̂, σ̂ and λ̂ of q, σ and λ,
respectively. The Newton-Raphson iterative technique could be applied to solve the above likelihood
equations and obtain the estimates q̂, σ̂ and λ̂ numerically. The observed information matrix used for
computing confidence intervals for the parameters q, σ and λ, and to compute standard errors (SD)
for the estimates q̂, σ̂ and λ̂ can be determined numerically from standard maximization routines,
which now provide the observed information matrix as part of their output; e.g., one can use the R
function optim to compute the observed information matrix numerically; see R Core Team (2022).

4 Simulation study

In this section, a small Monte Carlo simulation experiment is performed to illustrate the behavior
of the ML estimators of the model parameters σ, λ and q. We generate 10,000 random samples of
sizes n =100, 200 and 500 from the STR distribution. Random numbers of T ∼ STR(σ, λ, q) can be
generated as follows:

1. Generate U ∼ U(0, 1), that is, a uniform distribution on the unit interval (0, 1).

2. Compute X = qR

(
1+λ−

√
(1+λ)2−4λU
2λ

)
, where qR(·) is the quantile function of the Rayleigh

distribution.
3. Compute T = X/U1/q.

The evaluation of point estimation was performed based on the following quantities for each sample
size: the empirical mean and the empirical standard deviation (eSD). It can be seen from Table 1 that
the ML estimates are quite stable and, more important, are close to the true values for the sample
sizes considered. Additionally, as the sample size increases, the eSD decreases, as expected.

SJS, VOL. 5, NO. 1 (2023), PP. 55 - 64



62 H.S. SALINAS ET AL.

[htp!]

Table 1: Empirical mean and eSD for the ML estimates.
n = 100

σ λ q σ̂ (eSD) λ̂ (eSD) q̂ (eSD)
1.0 -1.0 1.0 1.044 (0.147) - 0.933 (0.174) 1.028 (0.145)

2.0 1.040 (0.103) - 0.948 (0.115) 2.141 (0.395)
3.0 1.029 (0.095) - 0.953 (0.101) 3.357 (1.349)

2.0 0.5 1.0 1.040 (0.177) 0.546 (0.401) 1.023 (0.156)
2.0 1.032 (0.156) 0.532 (0.365) 2.122 (0.623)
3.0 1.030 (0.150) 0.535 (0.342) 3.591 (3.038)

3.0 1.0 1.0 2.824 (0.420) 0.770 (0.261) 1.036 (0.162)
2.0 2.855 (0.384) 0.774 (0.254) 2.249 (0.925)
3.0 2.911 (0.373) 0.794 (0.241) 4.155 (4.892)

n = 200

σ λ q σ̂ (eSD) λ̂ (eSD) q̂ (eSD)
1.0 -1.0 1.0 1.023 (0.076) - 0.961 (0.085) 1.014 (0.094)

2.0 1.013 (0.060) - 0.972 (0.053) 2.047 (0.240)
3.0 1.016 (0.058) - 0.970 (0.055) 3.155 (0.503)

2.0 0.5 1.0 2.043 (0.275) 0.538 (0.364) 1.006 (0.107)
2.0 2.026 (0.265) 0.513 (0.353) 2.034 (0.323)
3.0 2.022 (0.264) 0.496 (0.353) 3.130 (0.954)

3.0 1.0 1.0 2.859 (0.331) 0.799 (0.253) 1.028 (0.109)
2.0 2.847 (0.308) 0.794 (0.248) 2.107 (0.327)
3.0 2.871 (0.294) 0.806 (0.234) 3.589 (5.585)

n = 500

σ λ q σ̂ (eSD) λ̂ (eSD) q̂ (eSD)
1.0 -1.0 1.0 1.010 (0.044) - 0.978 (0.040) 1.006 (0.061)

2.0 1.008 (0.038) - 0.983 (0.031) 2.029 (0.147)
3.0 1.007 (0.034) - 0.982 (0.030) 3.039 (0.280)

2.0 0.0 1.0 2.016 (0.232) 0.509 (0.334) 1.000 (0.064)
2.0 2.035 (0.216) 0.546 (0.306) 1.996 (0.181)
3.0 2.020 (0.217) 0.520 (0.298) 2.996 (0.381)

3.0 1.0 1.0 2.831 (0.279) 0.792 (0.252) 1.011 (0.068)
2.0 2.855 (0.255) 0.819 (0.243) 2.057 (0.196)
3.0 2.868 (0.248) 0.823 (0.237) 3.188 (0.455)

5 Real data illustration

Here, we consider the real dataset in (Devore, 2012), which corresponds to the lifetime of Microdrills
(number of holes that a drill machines before it breaks). The sample size is n = 50. The moment
estimates of the model parameters are σ̃ = 59.206, λ̃ = −0.248 and q̃ = 3.007. Now, using these
estimates as starting values to compute the ML estimates, we obtain the ML estimates (standard
errors (SD) between parentheses) as given in Table 2 for the TR and STR distributions. We consider
the optim function of the R program (see ("R, 2022)) to maximize the log-likelihood function. The
Akaike Information Criterion (AIC) introduced by (Akaike, 1974) and Bayesian Information Criterion
(BIC) proposed by (Schwarz, 1978) are also provided in Table 2. We have that AIC = 2k − 2̂̀, and
BIC = k ln(n)− 2̂̀, where ̂̀denotes the maximized value of the log-likelihood function, and k is the
total number of parameters. From Table 2, it is evident that STR distribution outperforms the TR
distribution according to the AIC and BIC values. In order to assess if the model is appropriate, the
histogram of the dataset and plots of the fitted TR and STR distributions are displayed in Figure 3.
The plot indicates that the STR distribution yields the best fit and hence can be an adequate model for
these data. In summary, the proposed model is a good alternative to the TR available in the statistical
literature
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Table 2: ML estimates (SD) of the TR and STR model parameters.
Model σ̂ λ̂ q̂ AIC BIC

TR 125.893 (11.333) 0.698 (0.174) - 581.9892 585.8132
STR 48.406 (11.307) −0.271 (0.533) 2.092 (0.566) 570.9134 576.6495
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Figure 3: Histogram and fitted models: STR (solid line) and TR (dashed line).

6 Concluding remarks

We introduce a new three-parameter distribution, called the slashed transmuted Rayleigh distribu-
tion (STR), and study some of its general structural properties. The model generalizes the transmuted
Rayleigh family of distributions and the Rayleigh distribution. This generalization can be used for
modeling positive data with high kurtosis. The model parameters are estimated by maximum likeli-
hood and method of moments. A real data illustration reveals that the proposed model can be very
useful in practical scenarios.
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