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• Linking data from different sources may be a necessary step in
several statistical applications

I Population size estimation via capture recapture models:
official statistics, epidemiology, ecology...

I Shape analysis: bioinformatics
I Regression modelling with Y and X ′s observed in different files

sharing some common units

• Linking data aims at producing a larger data set

• Problems arise when datasets do not share a common identifier:
units are not labelled.
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Simple example

• Data set A (nA = 34) contains all the foreigner residents observed in
a small census block during the last Italian census population survey

• Data set B (nB = 45) contains all the foreigner residents observed
in the same census block during the post enumeration survey - POS.

• Matching variables: first two letters of the coded surname, gender
and education.

The parameter of interest is N, the number of foreigner residents in
the census block.
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Posterior distribution of N

Our goal is to estimate N by taking into account the recaptures
uncertainty. Let T be the number of matches. Similar choices of T may
produce dramatic different posteriors.
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Classic approach to record linkage

Suppose we are given two record configurations xA and xB of different
sizes nA and nB with

xA = (xA
1 , . . . , x

A
a , . . . , x

A
nA )′ and xB = (xB

1 , . . . , x
B
b , . . . , x

B
nB )′.

Here xA
a = (xA1

a , . . . , xAh
a ) and xB

b = (xB1

b , . . . , xBh

b ) are the observed
values of a categorical random vector x = (x1, . . . , xh) whose support is
the set

V =
{
vj1j2,...,jh = (v1

j1 , v
2
j2 , . . . , v

h
jh ) j1 = 1 . . . , k1; . . . ; jh = 1, . . . kh

}
.

Let M be the set that represents identical units and let U be the set
representing different units

M = {(a, b) ∈ A× B : a = b} and U = {(a, b) ∈ A× B : a 6= b} .
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Record linkage analysis is usually performed via the construction of
vectors yab = (y1

ab, · · · , yh
ab), a ∈ A; b ∈ B,

y i
ab =

{
1
0

xAi
a = xBi

b

xAi
a 6= xBi

b

, i = 1, . . . , h.

Comparison vectors y ′abs are assumed to be i.i.d. with distribution given
by the mixture

p(yab|m, u,w) = w
h∏

i=1

m
y i

ab

i (1−mi )
1−y i

ab + (1− w)
h∏

i=1

u
y i

ab

i (1− ui )
1−y i

ab .

To perform the record linkage consider

λ =
P(yab|(a, b) ∈ M)

P(yab|(a, b) ∈ U)
=

∏h
i=1 m

y i
ab

i (1−mi )
1−y i

ab∏h
i=1 u

y i
ab

i (1− ui )1−y i
ab

or the posterior probability p((a, b) ∈ M|yab)
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Several extensions of this basic setup have been proposed.
The general approach can be criticized on different grounds.

• Decision rules for classifying records as matches are problematic

• Multiple matches are not ruled out

• Sampling information about the X values is not considered

• Comparison vectors are not independent

• The components y i
ab i = 1, . . . , h may be not conditionally

independent

• Model for categorical variables
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A new model for categorical variables

Data sets xA and xB contain measurements subject to recording error of
a multivariate variable µ = (µ1, . . . , µh) whose support is V .

Let µA = (µA
1 , · · · , µA

a , · · · , µA
nA )′ and µB = (µB

1 , · · · , µB
b , · · · , µB

nB )′ be
the two unobserved matrices with µS

s being the unobserved true vector
for unit s in sample S , S = A,B

Conditionally on their respective true values and a parameter vector
β = (β1, . . . , βh), xA and xB are mutually independent random vectors

xA xB

µA µB

β
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A new model for categorical variables
Conditionally on its true value, each field is a mixture of two
components: the first one is concentrated on the true value, and the
other one has a uniform spread over v i = {v i

1, . . . , v
i
hi
}

p(x i = v i
ji |µ

i = v i
j′i

) = βi I{v i
ji

=v i
j′
i
} + (1− βi )

1

ki
i = 1, . . . , h

µA and µB are two independent simple random sample drawn without
replacement - SRSWR - from a finite population of unknown size N;
To model µ we need to introduce the vector F = (F1, . . . ,Fj , . . . ,Fk ) i.e.

the population counts for each element vj of the set V (
∑k

j=1 Fj = N)

xA xB

µA µB

β

F
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The matching matrix

Consider a nA × nB matching matrix C s. t.

Cab =

{
1 if (a, b) ∈ M
0 if (a, b) ∈ U

•
∑

a Ca b ≤ 1∀ b = 1, . . . , nB ,
∑

b Ca b ≤ 1 ∀ a = 1, . . . , nA

•
(nA

T

)(nB

T

)
T ! different C matrices with T =

∑
a b Ca b matches, for all

T ≤ min(nA, nB ).

Further computational semplification comes from the introduction of the
vector t = (t1, . . . , tk ) denoting, for each element of V , the number of

matches taking vj as the true value. Note
∑k

j=1 tj = T .
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• The conditional distributions p(µA, µB |C , t,F ) and p(t,C |F ) must
reflect the random selection mechanism of the two samples.

I p(µA, µB |C , t,F ): multivariate hypergeometric distribution for the
true sample counts after eliminating from the population the match
counts tj and fixing the match positions given by C

I p(C |t,F ): uniform distribution on its support, which depends on T ;
hypergeometric distributions for t|T ,F and T |F (it depends on N)

I Easy to show that “integrating out” t and C one gets two
independent SRSWR

• Super-population model generating the population counts F

I Conditionally on the population size N and a probability vector
θ = (θ1, . . . , θk ), F is multinomial with size N and parameters θ.

I the prior for N will be non-informative, i.e. p(N) ∝ 1/Ng and θ
follows a hyper-Dirichlet distribution
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The final DAG structure

xA xB

µA µB

F

t

C

θ N

β
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Bayesian implementation
A Metropolis within Gibbs algorithm has been used to simulate from the
posterior distribution

p(µA µB , β, t,F ,N, θ|xA, xB ).

Gibbs steps are based on the following block updating

µA, µB , t | F ,N, θ, β

F ,N | µA, µB , t, θ, β

θ | µA, µB , t,F ,N, β

β | µA, µB , t,F ,N, θ.

Notice that C is missing in the above scheme.
When the matching matrix C is itself a quantity of interest, one should
add a draw from the conditional distribution at each iteration of the
algorithm

p(C |µA µB , β, t,F ,N, θ, xA, xB ).

This entails a sort of simple Monte Carlo estimate for the posterior of C
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Application

Back to the motivating example:

For the coded surname we have 339 categories while for the level of
education we have 17 categories. The total number of entries in the set
V is k = 339× 2× 17 = 11526.

The hyperparmeter g for the prior p(N) has been set equal to 2. The
hyper-Dirichlet structure of the prior for θ allows us to assume specific
dependence structure among the covariates. Here we assume that the
coded surname is independent of sex and education level.
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Some results
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Posterior Probabilities of matches
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Alternative approach 1: the Jaro constrained model

• Slight modification of the Bayesian approach proposed by
Larsen[2005], where yab is marginally distributed as a multivariate
Bernoulli mixture model and the matching matrix C satisfies the
constraints

∑
a Cab ≤ 1 and

∑
b Cab ≤ 1.

• Uniform priors for m and u. For the matching matrix C , same prior
distribution as before.

• The posterior distribution for the parameters (m, u,C ,N) can be
easily simulated by using Gibbs steps for [m|u,C ,N], [u|m,C ,N]
and [N|u,m,C ]. To update the matching matrix C , one can use a
single Metropolis-Hastings step
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Alternative approach 2: the hybrid approach

• Standard analysis of the Jaro model (Bayesian or classical)

• Plug-in the model estimates into p((a, b) ∈ M|yab)

• Maximization of the function

nA∑
a=1

nB∑
b=1

zab log

∏k
i=1(m̂y i

ab (1− m̂)1−y i
ab )∏k

h=1(ûy i
ab (1− û)1−y i

ab )

subject to the constraints
∑νA

a=1 zab ≤ 1 ∀b,
∑νB

b=1 zab ≤ 1 ∀a and
zab ∈ {0, 1} ∀(a, b) in order to avoid multiple matches.

• Plug-in the estimated number of matches into a capture-recapture
model (for example the hypergeometric model) for estimating N

19/ 31



yab frequency p((ab) ∈ M|yab) λ
(0, 0, 0) 659 0.00 0.01
(1, 0, 0) 20 0.01 0.14
(0, 1, 0) 601 0.00 0.04
(1, 1, 0) 13 0.05 0.58
(0, 0, 1) 78 0.23 3.43
(1, 0, 1) 8 0.80 45.20
(0, 1, 1) 126 0.56 14.81
(1, 1, 1) 25 0.94 194.97

Data summaries for the alternative

approaches
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Comparison on all the Italian blocks (4 key variables)
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Matching multivariate normal data

Liseo and Tancredi (2011, JOS)

• Suppose we have xA
a ∼ Nh(µA

a , Γ) and xB
b ∼ Nh(µB

b , Γ)
independently for a = 1, . . . , nA and b = 1, . . . , nB .

• µA
a and µB

b are two vectors containing the true values of the
observed variables for individuals a ∈ A and b ∈ B.

• Given Cab = 0, µA
a and µB

b are two independent Nh(θ,Σ) variates

• Given Cab = 1, µA
a and µB

b take the same value: µAB
ab ∼ N2h(θ2,Σ2)

where

µAB
ab =

[
µA

a

µB
b

]
θ2 =

[
θ
θ

]
and Σ2 =

[
Σ Σ
Σ Σ

]
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• The joint conditional p(µA, µB |C , θ,Σ) is∏
a: Ca.=0

φh(µA
a |θ,Σ)×

∏
b: C.b=0

φh(µB
b |θ,Σ)×

∏
a b: Cab=1

φ2h(µAB
ab |θ2,Σ2)

• The matching matrix C given T , nA, nB is uniformly distributed on
its support

• Model Mt for nA, nB and the unobserved recaptures T =
∑

ab Cab

nB |nA,T ,N, pA, pB ∼ T + Binomial(N − nA, pB )

nA|T ,N, pA, pB ∼ T + Binomial

(
N − T ,

pA(1− pB )

(1− pA pB )

)
T |N, pA, pB ∼ Binomial(N, pA pB )
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BAYESIAN INFERENCE

• Prior independence for N, p,Σ, θ, Γ with non-informative or
conditionally conjugate prior distributions: p(N) ∝ 1/N, p ∼ Beta,
θ ∼ Multivariate Normal, Σ ∼Wishart and Γ diagonal with its
elements Gamma distributed

• Posterior simulation by a Metropolis whitin Gibbs algorithm after
integrating out analytically µ: p(xA, xB |C , θ,Σ, Γ) is equal to∏
a: Ca.=0

φh(xA
a |θ,Σ + Γ)×

∏
b: C.b=0

φh(xB
b |θ,Σ + Γ)×

∏
a b: Cab=1

φ2h(xAB
ab |θ2,Ψ)

where Ψ =

[
Σ + Γ Σ

Σ Σ + Γ

]
• Updating of the matching matrix with three moves: add, delete, or

switch a match. Main references: Lindley (1977) BKA and Green
and Mardia (2006) BKA
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Inference with linked data

Hierarchical Bayesian models can be used for the general problem of
inference with linked data

• Suppose dataset A contains xA’s and an extra variable Y .
Dataset B contains xB ’s and some other variables Z ’s.

• Goal: fit a statistical model linking Y to Z , say y |z .

• For simplicity assume (y , z) ⊥⊥ x | C .

p(y , z |C ) =
∏

a:Ca.=0

p(ya)
∏

b:C.b=0

p(zb)
∏

a b:Ca b=1

p(ya, zb)

∝
∏

a:Ca.=0

p(ya)
∏

a b:Ca b=1

p(ya|zb)
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Linear Regression

Scheuren and Winkler (1997) and Lahiri and Larsen (2005) have
considered the linear regression problem

• Bayesian analysis allows for several different approaches for this
problem.

1. Plug in a point estimate Ĉ of C and use it in the following
regression analysis

2. Include the regression step into the MCMC algorithm. This can be
done by noticing that

C ′Y = C ′CXβ + C ′ε.

(not easy to implement)

3. Hibrid approach; at each iteration of the algorithm, after drawing C ,
generate a value for (β, σ).
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Small scale Simulation

Population size: N=100, Sample sizes: na = 80, nb = 80. standard 3
independent key variables generated according to the previous model
(measurement error β = .1)
we add to file B a random variable wb ∼ N(0, 1) for b = 1, . . . , 80.
In file A, for each pair (a, b) with

∑
b Cab = 1 we generate

za ∼ N(β0 + β1 wb, σ)

with β0 = β1 = σ = 1.
For each unit a such that

∑
b Cab = 0 we nave generated

za ∼ N(β0 + β1 w̃a, σ)

with w̃a ∼ N(0, 1)
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200 replications

We have compared three different strategies, namely

1. sampling distributions of MLE for the three parameters (β0, β1, σ)
using the true matches (benchmark) (1st line)

2. sampling distributions of MLE for the three parameters (β0, β1, σ)
using the point estimate of C . (Two-steps Bayesian standard
solution) (2nd line)

3. histograms of the means of the MLE estimates evaluated at each
iteration of the MCMC algorithm (Naive Bayesian solution) (3rd
line)
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Conclusions

Discussion: Bayes and statistics from public domain

• Pragmatic Bayesian approach with several subjective elements

• Objective priors may be used, but subjective elements on
hierarchical structures and likelihood functions still remain

• Rebut the idea that frequentist are objective and more appropriate
in public domain [Fienberg 2011 Statistical Science]

Possible extensions

• More adequate capture-recapture models should be used
(eterogeneity/clustering). Multiple captures

• Remove the assumption of conditional independence of the errors
given the true values

• Different models for the misspecified record fields
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