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Statistical Matching: introductory aspects

The goal of statistical matching (sometimes called “data fusion”)
is to combine information available in different sample surveys
from the same target population, in order to produce a synthetic
dataset containing all variates separately observed in such differ-
ent sample surveys.

Formally, let (X,Z, Y ) be a three-dimensional random variable
(r.v.), and let A and B be two samples of size nA, nB, respec-
tively, composed by i.i.d. copies of (X,Z, Y ). Because of the
adopted observation process, only (X, Y ) are observed in A, and
only (X,Z) are observed in B. Hence, the r.v. Z (Y ) is missing
in A (B).
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In symbols, actual sample observations are denoted by

− Sample A: (XA
1 , Y

A
1 ), . . . , (XA

nA
, Y AnA);

− Sample B: (XB
1 , Z

B
1 ), . . . , (XB

nB
, ZBnB).

Statistical matching consists in producing a complete data set,
where the variablesX , Y , Z of interest are simultaneously recorded.

No parametric assumptions are made on the joint distribution
function (d.f.) of X , Y , Z (and on its marginal d.f.s, as well).

Since no joint observations ofX , Y , Z are available, sample data
are unable to identify the joint d.f. of (X, Y, Z).
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Two main approaches to statistical matching have been consid-
ered.

1. Techniques based on the conditional independent assumption
between Y and Z given X (CIA);

2. Techniques using external auxiliary information on the statis-
tical relationship between Y and Z (e.g. an additional sample
C where (X,Z, Y ) are jointly observed is available).

Identification problem: if either the CIA is a misspecified as-
sumption or external auxiliary information is not available or
“too weak”, the statistical model for (X,Z, Y ) is not identifiable
(model uncertainty).
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Goals of this talk

1. Investigation of the model uncertainty when X , Y , Z are or-
dered categorical variates.

2. Definition of an overall measure of uncertainty for non-identifiable
models.

3. Evaluation of the effect on model uncertainty due to the intro-
duction of logical constraints. Such constraints include re-
strictions on the support of the joint distribution of (Z, Y )
given X . An estimator of the model uncertainty measure is
proposed, and its asymptotic behavior is studied.
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Basic assumption. X , Y , Z are discrete r.v.s. Furthermore,
X possesses I categories, Y possesses J categories, and Z pos-
sesses K categories.

With no loss of generality, we can assume that i = 1, . . . , I ,
j = 1, . . . , J , and k = 1, . . . , K, are the (ordered) categories
taken by X , Y and Z, respectively.
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Symbols used

γjk|i = conditional probability Pr(Y = j, Z = k|X = i);

φj|i = conditional probability Pr(Y = j|X = i);

ψk|i = marginal probability Pr(Z = k|X = i)
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Conditionally on X = i, the distribution functions (d.f.’s) of
(Y, Z), Y , and Z, are equal to

Hj,k|i =

j∑
j=1

k∑
z=1

γyz|i,

Fj|i =

j∑
y=1

φy|i,

Gk|i =

k∑
z=1

ψz|i,

respectively, as j = 1, . . . , J, k = 1, . . . , K, i = 1, . . . , I .
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Model uncertainty

The sampling mechanism is unable to identify the joint distribu-
tion of (X, Y, Z), but only a class of possible distributions of
(X, Y, Z). Roughly speaking, this produces uncertainty about
the actual distribution of (X, Y, Z) in the above mentioned class,
even when the marginal distributions of (X, Y ) and (X, Z) are
known.

Of course, this happens because the sampling mechanism is ac-
tually unable to identify the conditional distribution of (Y, Z)
given X . This is the actual reason for the lack of identifiability
of the distribution of (X, Y, Z). Hence, considering uncertainty
about the conditional distribution of (Y, Z) givenX is equivalent
to consider uncertainty on the distribution of the triple (X, Y, Z).
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When no further information on the distribution of (X, Y, Z) is
available, the bivariate (conditional) d.f. Hjk|i lies in between
the lower bound

H−
jk|i = max(0, Fj|i + Gk|i − 1)

and the upper bound

H+
jk|i = min(Fj|i, Gk|i).

In symbols:

H−
jk|i = max(0, Fj|i+Gk|i−1) ≤ Hjk|i ≤ min(Fj|i, Gk|i) = H+

jk|i

for each triple j, k, i.
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Measures of uncertainty

The lower bound H−
jk|i and the upper bound H+

jk|i allow one to
construct a a measure of pointwise uncertainty for Hjk|i:

H+
jk|i −H

−
jk|i

namely the length of the interval [H−
jk|i, H

+
jk|i] Hjk|i lies in.

Next step is to summarize all pointwise measures of uncertainty
above defined (one for each triple (j, k, i) into a unique, overall
measure.
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To this purpose, we may take the average length

∆ =

∫
R3

(H+
jk|i −H

−
jk|i) dT (i, j, k)

where T (i, j, k) is a weight function on R3, i.e. a measure having
total mass 1.

A “natural” choice consists in taking

d T (i, j, k) = dF (j|i) dG(k|i) d Q(i) = φj|iψk|i ξi.

This distribution is “natural” because: i) it is the simplest choice
given the available d.f.s F (j|i), G(k|i), Q(i) and makes the in-
tegral in ∆ easily computable in many cases; ii) among all the
possible associations between Y and Z, we consider a neutral
position, i.e. we do not give preference to any specific positive
or negative association.
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On the basis of the above remarks, a conditional measure of un-
certainty is

∆x=i =

J∑
j=1

K∑
k=1

(H+
jk|i −H

−
jk|i)φj|iψk|i (1)

As a matter of fact, by averaging (1) with respect toX , we obtain
the overall measure of uncertainty ∆:

∆ =

I∑
i=1

∆x=i ξi. (2)

The unconditional uncertainty measure is a weighted mean of
conditional uncertainty measures. Then, the larger ∆x=is, the
more uncertain the data generating statistical model.
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Evaluating uncertainty under constraints

Uncertainty about the statistical model can be reduced by extra-
sample auxiliary information. Such an external knowledge re-
duces the uncertainty characterizing the statistical matching prob-
lem, since some models for (X, Z, Y ) become “impossible” and
must be excluded from the set of plausible distribution functions.

Several kinds of auxiliary information can be (realistically) in-
troduces. A few examples are listed in the sequel.
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− Constraints on the association between Y and Z. For instance,
Y and Z are positively quadrant dependent (conditionally onX):
Hjk|i ≥ Fj|iGk|i for every j, k, i.

− The correlation coefficient between Y and Z (conditionally on
X) ranges on an interval (ρ−, ρ+), with ρ− > −1 and/or ρ+ > 1.

− Logical constraints between Y and Z: some pairs (k, k) do
not lie on the support of (Y, Z) (conditionally on X).

In this talk, we focus on logical constraints between Y and Z
(given X). Due to the discrete nature of (X, Y, Z), logical con-
straints are equivalent to structural zeroes.
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In the sequel, we will concentrate on structural zeros that reduce
the support of Y and Z in a “regular way”, useful to manage
uncertainty.

From an intuitive point of view, the presence of structural zeros
is a form of information that should reduce the uncertainty about
Hjk|i. More formally, the main idea is to use structural zeroes
in order improve the lower bound H−

jk|i and/or the upper bound

H+
jk|i, and hence to reduce the measure of uncertainty previously

defined.

The kind of “regular regions of structural zeroes” considered in
the present talk in depicted in Figure 1.
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Figure 1: Structural zeros in a Y -regular domain.
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For each j ∈ {1, . . . , J}, define the two integers:

k+
j = largest integer k such that γjk|i > 0;

k−j = smallest integer k such that γjk|i > 0.

Of course, there exist integers j1, j2 such that k+
j1

= K and k−j2 =
1.

Analogously, for each k ∈ {1, . . . , K}, define the two integers:

j+
k = largest integer k such that γjk|i > 0;

j−k = smallest integer k such that γjk|i > 0.

Again, there exist integers k1, k2 such that j+
k1

= J and j−k2
= 1.
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The support of (Y, Z) (given X) is Y -regular if, for all j =
1, . . . , J ,

γjk|i = 0 ∀ k > k+
j , γjk|i = 0 ∀ k < k−j . (3)

Similarly, the support of (Y, Z) (given X) is Z-regular if, for all
k = 1, . . . , K,

γjk|i = 0 ∀ j > j+
k , γjk|i = 0 ∀ j < j−k . (4)
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The algorithm to compute the lower bound H−
jk|i and the upper

bound H+
jk|i is described below.

Step 0 Take j = 1, and compute k−j , k+
j . Define next F0|i = 0, G0|i =

0, and

H
y+
jk|i =


0 if k < k−j

min(Fj|i, Gk|i) if k−j ≤ k ≤ k+
j

Fj|i if k > k+
j

and

H
y−
jk|i =


0 if k < k−j

max(0, Fj|i + Gk|i − 1) if k−j ≤ k ≤ k+
j

Fj|i if k > k+
j

.

Replace j by j + 1. Go to Step 1.
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Step 1 If j > J , then go to Step 3. Otherwise, go to Step 2.

Step 2 Compute k−j , k+
j . Define

H
y+
jk|i =


H
y+
j−1k|i if k < k−j

min(Fj|i, Gk|i) if k−j ≤ k < k+
j

min(Fj|i, Gk|i, Fj|i − Fj−1|i + H
y+
j−1k|i) if k > k+

j

and

H
y−
jk|i =


max(0, Fj|i + Gk|i − 1, H−

j−1k|i) if k ≤ k−j
max(0, Fj|i + Gk|i − 1) if k−j ≤ k ≤ k+

j

max(0, Fj|i + Gk|i − 1, Fj|i − Fj−1|i + H
y−
j−1k|i) if k > k+

j

.

Replace j by j + 1. Go to Step 1.

Step 3 Stop. H
y−
jk|i and H

y+
jk|i are the lower and upper bounds for

Hjk!i, respectively.
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The same reasoning holds also when the support of (Y, Z) given
X is Z-regular: it is enough to exchange the role of Y and Z.
Let us denote by Hz−

jk|i and Hz+
jk|i be the lower and upper bounds

for Hjk!i, respectively, in case of Z-regularity. Finally, define:

H+
jk|i =



min(H
y+
jk|i, H

z+
jk|i) if the support of (Y, Z |X)

is both Y and Z − regular
H
y+
jk|i if the support of (Y, Z |X)

is only Y − regular
Hz+
jk|i if the support of (Y, Z |X)

is only Z − regular
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and

H−
jk|i =



max(H
y−
jk|i, H

z−
jk|i) if the support of (Y, Z |X)

is both Y and Z − regular
H
y−
jk|i if the support of (Y, Z |X)

is only Y − regular
Hz−
jk|i if the support of (Y, Z |X)

is only Z − regular
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The main result obtained is that the lower and upper bounds com-
puted in the presence of “regular structural zeroes” improve the
ones previously computed:

H−
jk|i ≥ max(0, Fj|i + Gk|i − 1)

H+
jk|i ≤ min(Fj|i, Gk|i)

Hence, using the new bonds H−
jk|i and H+

jk|i produces measures

of uncertainty ∆x=i, ∆ smaller than those obtained in the ab-
sence of structural zeroes.
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Statistical inference on uncertainty measures under constraints

The uncertainty measures introduced can be estimated on the ba-
sis of the sample data. The notation used is the following.

Sample A: (XA
1 , Y

A
1 ), . . . , (XA

nA
, Y AnA);

Sample B: (XB
1 , Z

B
1 ), . . . , (XB

nB
, ZBnB).

nxA,i (nxB,i): number of sample observations is sample A (B)
such that X = i

n
xy
A,ij (nxzB,ik): number of observations in sample A (B) such

that X = i and Y = j (X = i and Z = k)
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The probabilities ξi, φj|i, ψk|i can be first estimated by the cor-
responding sample proportions

ξ̂i =
nxA,i + nxB,i
nA + nB

, i = 1, . . . , I ;

φ̂j|i =
n
xy
A,ij

nxA,i
, i = 1, . . . , I, j = 1, . . . , J ;

ψ̂k|i =
nxzB,ik
nxB,i

, i = 1, . . . , I, k = 1, . . . , K.
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The c.d.f.s Fj|i, Gk|i can be next estimated by the corresponding
empirical distribution functions (e.d.f.s):

F̂j|i =
n
xy
A,i1 + · · · + n

xy
A,ij

nxA,i
, i = 1, . . . , I, j = 1, . . . , J ;

Ĝk|i =
nxzB,i1 + · · · + nxzB,ik

nxAB,i
, i = 1, . . . , I, k = 1, . . . , K.
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As a consequence, the upper end lower bound for Hjk|i, H
+
jk|i,

H−
jk|i, can be simply estimated by replacing the actual d.f.s Fj|is,

Gk|i with the corresponding e.d.f.s F̂j|is, Ĝk|is. Hence, the con-
ditional and unconditional measures of uncertainty can be esti-
mated by

∆̂x=i =

J∑
j=1

K∑
k=1

(
Ĥ+
jk|i − Ĥ

−
jk|i

)
φ̂j|i ψ̂k|i, (5)

∆̂ =

I∑
i=1

∆̂x=i ξ̂i (6)

respectively.
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The properties of estimators (5), (6) are listed below.

Consistency

∆̂x=i a.s.→ ∆x=i as nA→∞, nB →∞, i = 1, . . . , I ;

∆̂
a.s.→ ∆ as nA→∞, nB →∞.

Asymptotic normality The rescaled measures of uncertainty√√√√ nxA,in
x
B,i

nxA,i + nxB,i
(∆̂x=i −∆x=i),

√
nAnB
nA + nB

(∆̂−∆)

possess normal asymptotic distribution σ2
i , σ

2, respectively, as
nA, nB tend to infinity.
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The asymptotic variances σ2
i s, σ2 do have a complicate form,

depending on the “true” Fj|is, Gk|is . However, they can be con-
sistently estimated by bootstrap method, that works as follows.

1. Generate from the e.d.f. of sample A a bootstrap sample of
size nA.

2. Generate from the e.d.f. of sample B a bootstrap sample sam-
ple of size nB.

3. Use samples generated in steps 1, 2 to compute the “bootstrap
version” ∆̃x=i of ∆̂x=i.

Steps 1-3 are repeated M times, so that the M bootstrap values
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∆̃x=i
m , m = 1, . . . , M are obtained. Let ∆

x=i be their average,
and let S2x

M be their variance:

∆
x=i

=
1

M

M∑
m=1

∆̃x=i
m , S2x

M =
1

M − 1

M∑
m=1

(∆̃x=i
m −∆

x=i
)2.

As an estimate of σ2
i , we may take

σ̂2
i,M =

nA,x nB,x
nA,x + nB,x

S2x
M . (7)

From (7) it is also easy to construct an estimate of the uncondi-
tional variance σ2.
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The above results are useful to construct point and interval esti-
mates of the uncertainty measures ∆x=i, ∆. They are also useful
to test the hypothesis that the class of bivariate d.f.s with upper
bounds H+

jk|is and lower bounds H−
jk|i is “narrow”, when struc-

tural zeroes are considered.
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