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Abstract - Administrative lists offer great opportunity for analyses that provide quantities for policy 
decisions.  This is particularly true when groups of administrative lists are combined with survey and 
other data.  To produce accurate analyses, data need to be cleaned and corrected according to valid 
subject matter rules.  This paper describes methods and associated computational algorithms that, while 
often being easier to apply, are sometimes 40-100 times as fast as classical methods.  This means that 
moderate-size administrative files can be cleaned (via modeling/edit/imputation) to eliminate 
contradictory or missing quantitative data to yield valid joint distributions, unduplicated within files, and 
matched and merged across files in a matter of weeks or months. 
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1.  Introduction 
 
Well collected and processed administrative data can be of great use for providing enhanced 
aggregates and microdata for analytic purposes.  In this paper, we assume that data are collected 
and processed in a manner that minimizes error. We describe three methods for processing data.  
The first are modeling/edit/imputation methods for filling in missing data and ‘correcting’ 
erroneous or contradictory data.  The second are record linkage (entity resolution) methods for 
matching files using common quasi-identifiers such as name, address, date-of-birth, and other 
characteristics.  The third are methods for adjusting analyses of merged files for linkage error. 
The modeling/edit/imputation methods are based on the theoretical model and suggested 
algorithms of Fellegi and Holt (1976, hereafter FH).  Versions of generalized software for editing 
and certain types of imputation have been in use in a few statistical agencies for more than ten 
years. What is new is a rigorous method of theoretically connecting editing with modern 
imputation such as given in Little and Rubin (2002).  Winkler (2003) introduced the theory for 
discrete data and provided extremely fast computation algorithms (2008, 2010b) in highly 
automated, parameter-driven software.  The set-covering algorithms (Winkler 1997) for 
enumerating all implicit edits are 100 times as fast as those of IBM based on the ideas of 
Garfinkel, Kunnathur, and Liepins(1986).  The modeling, imputation, and imputation-variance 
are on the order of 100 times as fast as those in commercial or experimental university software. 
The record linkage algorithms (Yancey and Winkler 2005-2009, Winkler, Yancey, and Porter 
2010) are 40+ times as fast as recent parallel software from Stanford and Penn State (Kawai et al. 
2006, Kim and Lee 2007) and 500+ times as software used in some government agencies (e.g., 
Wright 2010). 
The analysis-adjustment methods for merged files are still quite preliminary (Scheuren and 
Winkler 1993, 1997; Lahiri and Larsen 2005, Chambers 2009) with the main difficulties being 
seen as properly creating an overall model of the record linkage process and having suitable 
generalized methods for adjusting analyses for error.  The methods of Chambers (2009) appear 



to show great promise in drastically simplified record linkage situations and simple simulations 
but may not extend to the more general and far more realistic situations of Lahiri and Larsen 
(2005).  At issue in all of the work are methods for estimating suitable probabilities of matching 
for all pairs (typically without training data).  Lahiri and Larsen (2005) and Chambers (2009) 
assume that extremely large resources and time may be available for follow-up on an 
exceptionally large number of pairs to determine matching probabilities.  Scheuren and Winkler 
(1993) made simplifications in the adjustment procedures because they were able to make use of 
methods due to Belin and Rubin (1995) for estimating match probabilities.  A more general 
method for estimating match probabilities (Winkler 2006) mimics ideas from semi-supervised 
learning (see e.g. Larsen and Rubin 2001, Winkler 2002, Nigam et al. 2000) but also does not 
use training data. 
A conceptual picture would link records in file  

A = (ai, …, an, x1, …, xk) 
with records in file  

B = (b1, …, bm, x1, …, xk) 
using common identifying information (x1, …, xk) to produce the merged file  

A × B = (ai, …, an, b1, …, bm) 
for analyses.  The variables x1, …, xk are quasi-identifiers such as names, addresses, dates-of-
birth, and even fields such as income (when processed and compared in a suitable manner).  
Individual quasi-identifiers will not uniquely identify correspondence between pairs of records 
associated with the same entity; sometimes combinations of the quasi-identifiers may uniquely 
identify.  Survey files routinely require cleanup via edit/imputation and administrative files may 
also require similar cleanup.  If there are errors in the linkage, then completely erroneous (b1, …, 
bm)  may be linked with a given (ai, …, an) and the joint distribution of (ai, …, an, b1, …, bm) in A 
× B may be very seriously compromised.  If there is inadequate cleanup (i.e., effective 
edit/imputation) of A = (ai, …, an, x1, …, xk)  and B = (b1, …, bm, x1, …, xk) , then analyses may 
have other serious errors in addition to the errors due to the linkage errors.    
The purpose of the paper is to describe the available newer theoretical ideas and new 
computational algorithms.  If we have several administrative lists each with 100 million to one 
billion records, then the clean-up, merging, and analyses might be performed in 3-4 months with 
this software that is 40-100 times as fast.  Without the faster software, the problem of extensive 
cleanup, merging, and analysis of sets of large administrative lists is computationally intractable. 
In the next three sections, we provide background and insight into modeling/edit/imputation, 
record linkage, and adjustment of analyses for linkage error. 
 
2.  Modeling/edit/imputation 
 
In this section we provide background on classical edit/imputation that uses hot-deck and 
provide a description of how hot-deck was assumed to work by practitioners.  As far as we 
know, there has never been a rigorous development that may justify some of the assumed 
properties of hot-deck.  We also provide background methods of creating loglinear models Y 
(Bishop, Fienberg and Holland 1975) that are straightforward to apply to general discrete data, 
background on general methods of imputation and editing for missing data under linear 
constraints that extend the basic methods and can also be straightforward to apply, and an 
elementary review of the EM algorithm.  The application of the general methods and software is 



straightforward.  The application can be done without any modifications that are specific to a 
particular data file or analytic use. 
 
2.1  Classical data collection, edit rules, and hot-deck imputation 
The intent of classical data collection and clean-up was to provide a data file that was free of 
logical errors and missing data.  For a statistical agency, a survey form might be filled out by an 
interviewer during a face-to-face interview with the respondent.  The ‘experienced’ interviewer 
would often be able to ‘correct’ contradictory data or ‘replace’ missing data during the interview.  
At a later time analysts might make further ‘corrections’ prior to the data being placed in 
computer files.  The purpose was to produce a ‘complete’ (i.e., no missing values) data file that 
had no contradictory values in some variables.  The final ‘cleaned’ file would be suitable for 
various statistical analyses.  In particular, the statistical file would allow determination of the 
proportion of specific values of the multiple variables (i.e., joint inclusion probabilities). 
Naïvely, dealing with edits is straightforward.  If a child of less than sixteen years old is given a 
marital status of ‘married’, then either the age associated with the child might be changed (i.e., to 
older than 16) or the marital status might be changed to ‘single’.  The difficulty consistently 
arose that, as a (computerized) record r0 was changed to a different record r1 by changing values 
in fields in which edits failed, then the new record r1 would fail other edits that the original 
record r0 had not failed. 
Fellegi and Holt (1976) were the first to provide an overall model to assure that a changed record 
r1 would not fail edits.  Their theory required the computation of all implicit edits that could be 
logically derived from an originally specified set of ‘explicit’ edits.  If the implicit edits were 
available, then it was always possible to change an edit-failing record r0 to an edit passing record 
r1.  The availability of ‘implicit’ edits makes it quite straightforward and fast to determine the 
minimum number of fields to change in an edit-failing record r0 to obtain an edit-passing record 
r1 (Barcaroli and Venturi 1997).  Further, Fellegi and Holt indicated how hot-deck might be used 
to provide the values for filling in missing values or replacing contradictory values.  As shown in 
Winkler (2008b), hot-deck is not generally suitable for filling in missing values in a manner that 
yields records that satisfy edits and preserve joint distributions.  Indeed, the imputation methods 
in use at a variety of statistical agencies and those that are also being investigated do not assure 
that aggregates of records satisfy joint distributions and that individual records satisfy edits. 
The early set-covering algorithms necessary for the computation of ‘implicit’ edits required 
extremely large amounts of computer time (Garfinkel, Kunnathur, and Liepins 1986).  A later 
algorithm (Winkler 1997), while as much as 100 times as fast, is not completely theoretically 
valid but works in most situations where skip patterns are not present in the survey form (see 
also Winkler and Chen 2002).  Due to hardware-speed increases, the latter algorithm should 
work well in most day-to-day survey situations.  Both Winkler (1997) and Boskovitz (2008) 
provided counterexamples to Theorem 1 in Garfinkel et. al (1986) which gave a method for 
greatly simplifying the set covering algorithms for implicit-edit generation.  Boskovitz (2008) 
provided a complete theoretical development (including data with skip patterns), however 
software based on her algorithms has not yet been written and will likely be 10 times as slow due 
to the significantly greater amount of information that must be accounted for at different levels 
of the computational algorithms.   
The intent of filling-in missing or contradictory values in edit-failing records r0 is to obtain a 
records r1 that can be used in computing the joint probabilities in a principled manner.  The 
difficulty that had been observed by many individuals is that a well-implemented hot-deck does 



not preserve joint probabilities.   Rao (1997) provided a theoretical characterization of why hot-
deck fails even in two-dimensional situations.  The failure occurs even in ‘nice’ situations where 
individuals had previously assumed that hot-deck would work well.  
In a real-world survey situation, subject matter ‘experts’ may develop hundreds or thousands of 
if-then-else rules that are used for the editing and hot-deck imputation.  Because it is 
exceptionally difficult to develop the logic for such rules, most edit/imputation systems do not 
assure that records satisfy edits or preserve joint inclusion probabilities.  Further, such systems 
are exceptionally difficult to implement because of (1) logic errors in specifications, (2) errors in 
computer code, and (3) no effective modeling of hot-deck matching rules.  As demonstrated by 
Winkler (2008b), it is effectively impossible with the methods (classical if-then-else and hot-
deck) that many agencies use to develop edit/imputation systems that preserve either joint 
probabilities or that create records that satisfy edit restraints.  This is true even in the situations 
when Fellegi-Holt methods are used for the editing and hot-deck is used for imputation. 
An edit/imputation system that effectively uses the edit ideas of Fellegi and Holt (1976) and 
modern imputation ideas (such as in Little and Rubin 2002) has distinct advantages.  First, it is 
far easier to implement (as demonstrated in Winkler 2008b, also 2010d).  Edit rules are in easily 
modified tables, and the logical consistency of the entire system is tested automatically according 
the mathematics of the Fellegi-Holt model and additional requirements on the preservation of 
joint inclusion probabilities (Winkler 2003).  Second, the optimization that determines the 
minimum number of fields to change or replace in an edit-failing record is in a fixed 
mathematical routine that does not need to change.  Third, imputation is determined from a 
model (limiting distribution).  Most modeling is very straightforward.  It is based on variants of 
loglinear modeling and extensions of missing data methods that is contained in easily applied, 
extremely fast computational algorithms (Winkler 2006, 2008b; also 2010a).  The methods 
create records that always satisfy edits and preserve joint inclusion probabilities. 
 
2.2  How classical hot-deck is assumed to work 
In this subsection we provide an explanation of some of the (possibly) subtle issues that 
significantly degrade the overall analytic characteristics of realistic data files (8 or more 
variables) that are subjected to well-implemented hot-deck. The reason that the issues may be 
subtle is that in many situations with hot-deck, the probabilistic model is not written down and 
the effects of the statistical evaluations (say logistic or ordinary regression) on hot-deck 
collapsing rules for matching are not evaluated.  We will describe why it is effectively 
impossible in many practical survey situations to do the empirical testing and develop program 
logic necessary for a well-implemented hot-deck.  Prior to this we provide some notation and 
background that will allow us to describe why hot-deck breaks down in terms of the basic 
modeling frameworks of Little and Rubin (2002) and Winkler (2003). 
We assume X = Xi = (xij), 1 ≤ i ≤ N, 1 ≤ j ≤ M is a representation of the survey data with N rows 
(records) and M columns (variables).  Record xi has values xij, 1 ≤ j ≤ M.  The jth variables Xj 
takes values xjk, 1≤ k ≤ nj.  The total number of patterns is npat = n1 × … × nM.  In most realistic 
survey situations (8 or more variables), the number of possible patterns npat is far greater than N 
(i.e., N << npat).  Under classical hot-deck assumptions (that are essentially universally used in 
statistical agencies), the typical assumption is that we will be able to match a record r0 = (x01, x02, 
…., x0M) having missing values of certain variables against a large number of donor records that 
have no missing variables and that agree with record r0 on the non-missing values.  If record r0 
has eight variables with the last three variables having missing values, then the intent of hot-deck 



(after it is implemented over an entire file) is to create a set of records that preserve the original 
probability structure of a hypothetical file X having no missing values. 
We start with record r0 = (x01, x02, …, x05, b, b, b) where b represents a missing value for x06, x07, 
and x08.  Under the hot-deck assumptions, our matching would allow use to effectively draw 
from the distribution of P(X6, X7, X8 | X1=x01, …, X5=x05).  In practice with real-world data, we 
typically have zero donors (rather than an exceptionally large number that would be needed to 
preserve joint distributions).  Statistical agencies typically use ad hoc collapsing in which they 
attempt to match on a subset of the values x01, x02, …, x05.  For instance, there may be a 
matching hierarchy in which the first match attempt is on x01, x02, x03.  If a donor record is not 
found matching may be done on x01 and x02.  If no donor is found, then matching might be done 
on only x01 where it might be possible to always find a donor. 
If we are able to match on x01, x02 and x03, we obtain a record rd = (xd1, …. xd8) that yields a hot-
deck completed record r0c = (x01, …, x05, xd6, xd7, xd8).   There is no assurance that the substituted 
values will preserve joint distributions or create a record that satisfies edits.  Indeed, elementary 
empirical work with exceptionally simple simulated data (that should preserve joint distributions 
under the hot-deck assumption) also demonstrate that joint distributions are not preserved.  
Although the elementary work uses data situations that are much nicer than many real-world 
situations, it still fails to yield hot-deck imputations that preserve joint distributions.  To preserve 
joint distributions, it might be necessary to create some type of basic model for collapsing.  A 
simplistic approach might be to use logistic regression to find what subsets of x01, …, x05 are the 
best predictors of the remaining variables and choose the collapsing hierarchy based on a very 
large set of logistic regressions. 
Even after such work (that is very specific to an individual data set), it is not clear why the joint 
distributions would be preserved.  It would be much better to have a general modeling 
framework (possibly an extension of Little and Rubin (2002), chapter 13) and software that 
would work for arbitrary discrete data under mild assumptions.  One mild assumption is the 
missing-at-random assumption (Little and Rubin 2002) that is effectively the hot-deck 
assumption in a framework in which it is possible to preserve joint inclusion probabilities.  An 
effective model might be multinomial (or multinomial with weak Dirichlet prior) that all non-
structural-zero cells are given a non-zero (but possibly very close to zero) values.  In this 
situation (pi), 1 ≤ i ≤ npat are the probabilities of the multinomial with the individual cells, and 
we have a suitable probability structure.  With this extended hot-deck (effectively Little-Rubin 
ideas), we match against cells that agree with the non-missing part of a record r0 and choose one 
cell (donor pattern or record) with probability proportional to size of the cell probability.   
 
2.3.  New Computational Algorithms for Modeling and Imputation 
The generalized software (Winkler 2010b) incorporates ideas from statistical matching software 
(Winkler 2006) that can be compared to ideas and results of D’Orazio et al. (2006) and earlier 
discrete-data editing software (Winkler 2008b) that could be used for synthetic-data generation 
(Winkler 2010a).  The basic methods are closely related to ideas suggested in Little and Rubin 
(2002, Chapter 13) in that they assume a missing-at-random assumption that can be slightly 
weakened in some situations (Winkler 2008b, 2010a).  The original theory for the computational 
algorithms (Winkler 1993) uses convex constraints (Winkler 1990) to produce an EMH 
algorithm that generalizes the MCECM algorithm of Meng and Rubin (1993).  The EMH 
algorithm was first applied to record linkage (Winkler 1993) and used by D’Orazio, Di Zio, and 
Scanu (2006) in statistical matching. 



The current algorithms do the EM fitting as in Little and Rubin (2002) but with computational 
enhancements that scale subtotals exceedingly rapidly and with only moderate use of memory.  
The computational speed for a contingency table of size 600,000 is 50 seconds and for a table of 
size 0.5 billion cells in approximately 1000 minutes (each with epsilon 10^-12 and 200 
iterations).  In the larger applications, 16 Gb of memory are required.  The key to the speed is the 
combination of effective indexing of cells and suitable data structures for retrieval of information 
so that each of the respective margins of the M-step of EM-fitting are computed rapidly.   
Certain convex constraints can be incorporated in addition to the standard linear constraints of 
classic loglinear EM fitting.  In statistical matching (Winkler 2006c) was able to incorporate 
closed form constraints P(Variable X1 = x11 > Variable X1= x12) with the same data as 
D’Orazio et al. (2006) that needed a much slower iterative fitting algorithm for the same data and 
constraints.  The variable X1 took four values and the restraint is that one margin of X1 for one 
value is restricted to be greater than one margin of another value.  For general edit/imputation, 
Winkler (2008b) was able to put marginal constraints on one variable to assure that the resultant 
micordata files and associated margins corresponded much more closely to observed margins 
from an auxiliary data source.  For, instance one variable could a an income range and the 
produced microdata did not produce population proportions that corresponded closely to 
published IRS data until after appropriate convex constraints were additionally applied.  Winkler 
(2010a) used convex constraints to place upper and lower bounds on cell probabilities to assure 
that any synthetic data generated from the models would have reduced/eliminated re-
identification risk while still preserving the main analytic properties of the original confidential 
data. 
A nontrivially modified version of the indexing algorithms allows near instantaneous location of 
cells in the contingency table that match a record having missing data.   An additional algorithm 
nearly instantaneously constructs an array that allows binary search to locate the cell for the 
imputation (for the two algorithms: total < 1.0 millisecond cpu time).  For instance, if a record 
has 12 variables and 5 have missing, we might need to delineate all 100,000+ cells in a 
contingency table with 0.5 million or 0.5 billion cells and then draw a cell (donor) with 
probability-proportional-to-size (pps) to impute missing values in the record with missing values.  
This type of imputation assures that the resultant ‘corrected’ microdata have joint distributions 
that are consistent with the model.  A naively written SAS search and pps-sample procedure 
might require as much as a minute cpu time for each record being imputed. 
For imputation-variance estimation, other closely related algorithms allow direct variance 
estimation from the model.  This is in contrast to after-the-fact variance approximations using 
linearization, jackknife or bootstrap.  These latter three methods were developed for after-the-
fact variance estimation (typically with possibly poorly implemented hot-deck imputation) that 
are unable to account effectively for the bias of hot-deck or that lack of model with hot-deck.  
Most of the methods for the after-the-fact imputation-variance estimation have only been 
developed for one-variable situations that do not account for the multivariate characteristics of 
the data and assume that hot-deck matching (when naively applied) is straightforward when most 
hot-deck matching is never straightforward. 
 
3.  Record Linkage 
Fellegi and Sunter (1969) provided a formal mathematical model for ideas that had been 
introduced by Newcombe et al. (1959, 1962).  They introduced many ways of estimating key 
parameters without training data.  To begin, notation is needed.  Two files A and B are matched.  



The idea is to classify pairs in a product space A × B from two files A and B into M, the set of 
true matches, and U, the set of true nonmatches.  Fellegi and Sunter, making rigorous concepts 
introduced by Newcombe (1959), considered ratios of probabilities of the form: 
 
      R =  P( γ ∈ Γ | M) / P( γ ∈ Γ | U)                                                                        (1)   
 
where γ is an arbitrary agreement pattern in a comparison space Γ.  For instance, Γ might consist 
of eight patterns representing simple agreement or not on the largest name component, street 
name, and street number.  Alternatively, each γ ∈ Γ might additionally account for the relative 
frequency with which specific values of name components such as "Smith" and "Zabrinsky” 
occur.  Then P(agree “Smith” | M) < P(agree last name | M) < P(agree “Zabrinsky” | M) which 
typically gives a less frequently occurring name like “Zabrinsky” more distinguishing power 
than a more frequently occurring name like “Smith” (Fellegi and Sunter 1969, Winkler 1995).  
Somewhat different, much smaller, adjustments for relative frequency are given for the 
probability of agreement on a specific name given U.  The probabilities in (1) can also be 
adjusted for partial agreement on two strings because of typographical error (which can approach 
50% with scanned data (Winkler 2004)) and for certain dependencies between agreements 
among sets of fields (Larsen and Rubin 2001, Winkler 2002).  The ratio R or any monotonely 
increasing function of it such as the natural log is referred to as a matching weight (or score). 
 
The decision rule is given by: 
 
   If R > Tµ, then designate pair as a match. 
 
   If Tλ ≤ R ≤ Tµ, then designate pair as a possible match 
        and hold for clerical review.                                                                                  (2) 
 
   If  R < Tλ, then designate pair as a nonmatch. 
 
The cutoff thresholds Tµ and Tλ are determined by a priori error bounds on false matches and 
false nonmatches.  Rule (2) agrees with intuition.  If γ∈ Γ consists primarily of agreements, then 
it is intuitive that γ∈ Γ would be more likely to occur among matches than nonmatches and ratio 
(1) would be large.  On the other hand, if γ∈ Γ consists primarily of disagreements, then ratio (1) 
would be small.  Rule (2) partitions the set γ ∈ Γ into three disjoint subregions.  The region Tλ ≤ 
R ≤ Tµ is referred to as the no-decision region or clerical review region.  In some situations, 
resources are available to review pairs clerically. 
Fellegi and Sunter (1969, Theorem 1) proved the optimality of the classification rule given by 
(2).  Their proof is very general in the sense in it holds for any representations γ ∈ Γ over the set 
of pairs in the product space A × B from two files.  As they observed, the quality of the results 
from classification rule (2) were dependent on the accuracy of the estimates of P( γ ∈ Γ | M) and 
P( γ ∈ Γ | U).   
Figure 1 provides an illustration of the curves of log frequency versus log weight for matches 
and nonmatches, respectively.  The two vertical lines represent the lower and upper cutoffs 
thresholds Tλ and Tµ, respectively.  The x-axis is the log of the likelihood ratio R given by (1).  
The y-axis is the log of the frequency counts of the pairs associated with the given likelihood 



ratio.  The plot uses pairs of records from a contiguous geographic region that was matched in 
the 1990 Decennial Census.  The clerical review region between the two cutoffs primarily 
consists of pairs within the same household that are missing both first name and age (the only 
two fields that distinguish individuals within a household). 

 
 
In many situations with administrative lists, we need to process an enormous number of pairs.  
For instance, in the Decennial Census, we process 10^17 (300 million x 300 million).  The way 
that we reduce computation is with blocking.  Blocking consists of only considering pairs that 
agree on characteristics such as a Census block code plus first character of the surname.  If we 
using multiple blocking passes, then we may additionally may consider pairs that only agree on 
telephone number, street address, or the first few characters of first name plus first few 
characters of surname.  In traditional record linkage, two files are sorted according to a blocking 
criteria, matched, processed and then (possibly) successive residual files are processed according 
to subsequent blocking criteria.  With a large billion-record file, each sort could require 12+ 
hours. 
BigMatch technology (see e.g. Yancey 2007; Winkler, Yancey and Porter 2010) solves this issue 
by embedding the smaller file in memory, creating indices for each blocking criteria (in memory) 
and running through the larger file once.  As each record from the larger file in read in, it is 
processed against each of the blocking criteria and separate scores associated with each pair 
along with other information are output.  BigMatch is 50 times as fast as recent parallel software 
from Stanford (Kawai et al. 2006) and 40 times as fast as parallel software from Penn State (Kim 
and Lee 2007).  In production matching during the 2010 Decennial Census, BigMatch did 
detailed computation on 10^12 pairs among 10^17 pairs in 30 hours using 40 cpus of an SGI 
Linux machine.  In equivalently large situations with slower software, a project might require 80 
machines and a whole crew of programmers to split up files and slowly put together all the 
matches coherently in 20 weeks.  There would be substantial opportunity for error as the 
programmers broke up files into much smaller subsets, moved subsets to different machines, and 
then attempted to move (possibly hundreds) of outputs back to other machines. 
 
4.  Analysis Adjustment in Merged Files having Linkage Error 
In this section, we describe research into methods for adjusting statistical analyses for linkage 
error.  Unlike the much more mature methods in the previous two sections, there are substantial 
research problems.  Scheuren and Winkler (1993) extended methods of Neter, Maynes, and 



Ramanathgan (1965) to more realistic record linkage situations in the simple analyses of a 
regression of the form y = β x where y is taken from one file A and x is taken from another file 
B.  Because the notation of Lahiri and Larsen (2005) is more useful in describing extensions and 
limitations, we use their notation. 
Consider the regression model y = (y1, …, yn)’: 
 
                 yi = xi’ β + εi, i = 1, …, n                                                                  (3) 
 
where xi = (xi1, …, xip) is a column vector of p known covariates β = (β1, …, βp)’, E(εi) = 0, 
var(εi) = σ2, covariance(εi, εj) = 0 for i ≠ j, i, j = 1, …, n.  Scheuren and Winkler (1993) 
considered the following model for z = (z1, …, zn) given y: 
 
           ⎧  yi with probability qii

    zi = ⎨ 
           ⎩   yj with probability qij for i ≠ j, i, j = 1, …, n                                                (4) 
 
where  ∑j=1

n  qij = 1 for i = 1, …, n.  Define qi = (qi1, …, qin)’, j = 1, …, n, and Q = (qi, …, qn)’.  
The  naïve least squares estimator of β, which ignores mismatch errors, is given by 
 
  βN

^ = (X’ X)-1 X’ z, 
 
where X = (x1, …, xn)’ is an n × p matrix. 
    Under the model described by (3) and (4) 
 
             E(zi) = w’β 
 
where wi = qi’ X = ∑j=1

n  qij xj’ , i = 1, …, n, is a p x 1 column matrix.  The bias of the naïve 
estimator βN

^  is given by 
 
  bias(βN

^) = E(βN
^  -  β) = [(X’X)-1 X’W – I] β = [(X’X)-1 X’Q X – I] β.                    (5)  

 
If an estimator of B is available where B = (B1, …, Bn)’ and Bi = (qii – 1) yi + ∑j≠1 qij yj .  The 
Scheuren-Winkler estimator is given by 
 
  βSW

^ = βN
^  -  X’X)-1 X’ B^                                                                                         (6) 

 
If qij1 and qij2 denote the first and second highest elements of the vector qi and zj1 and zj2 denote 
the elements of the vector z, then a truncated estimator of B is given by 
 
     Bi’TR = (qij1 -1) zj1 + qij2 zj2 .                                                                                      (7) 
 
Scheuren and Winkler (1993) used estimates of qij1 and qij2 based on software/methods from 
Belin and Rubin (1995).  Lahiri and Larsen improve the estimator (7) (sometimes significantly) 
by using the unbiased estimator 
 



    βU
^ = (W’ W)-1 W’ z.                                                                                                (8) 

 
The issues are whether it is possible to obtain reasonable estimates of qi or whether the crude 
approximation given by (7) is suitable in a number of situations. 
Under a significantly simplified record linkage model where each qij for i ≠ j, 1, …, n, Chambers 
(2009) provides an estimator approximately of the following form 
 
   βU

^ = (W’ Covz
-1 W)-1 W’ Covz

-1 z                                                                            (9) 
 
that has lower bias than the estimator of Lahiri and Larsen.  The matrix Covz is the variance-
covariance matrix associated with z. The estimator in (9) is the best linear unbiased estimator 
using standard methods that improve over the unbiased estimator (8).  Chambers further provides 
an iterative method for obtaining an empirical BLUE using the observed data. 
The issue with the Chambers’ estimator is whether the drastically simplified record linkage 
model is a suitable approximation of the realistic model used by Lahiri and Larsen. The issue 
with both the models of Chambers (2009) and Lahiri and Larsen (2005) is that they need both a 
method of estimating qij for all i, j with all pairs of records and a method of designating which of 
the qij is associated with the true match.  Scheuren and Winkler (1993) provided a much more ad 
hoc adjustment with the somewhat crude estimates of the qij obtained from the model of Belin 
and Rubin (1995). Lahiri and Larsen demonstrated that the Scheuren-Winkler procedure was 
inferior for adjustment purposes when the true qij were known.  Winkler and Scheuren (1991), 
however, were able to determine that their adjustment worked well in a very large number of 
empirical scenarios (several hundred).  Further, Winkler (2006) provided a ‘generalization’ of 
the Belin-Rubin estimation procedure that provides somewhat more accurate estimates of the qij 
and holds in a moderately larger number of situations.   
 
5.  Concluding Remarks 
This paper describes methods of modeling/edit/imputation and record linkage that are reasonably 
mature methods in terms of improving the quality of administrative and that have been greatly 
enhanced by breakthroughs in computational speed.  Newer methods for adjusting statistical 
analyses for linkage error (Lahiri and Larsen, 2005; Chambers 2009) are very much in their 
preliminary stages and need substantial additional research.  A very new method due to Tancredi 
and Liseo (2011) shows great potential both theoretically and methodologically but must be 
extended to more practical computational situations. 
 
1/   This report is released to inform interested parties of (ongoing) research and to encourage discussion (of work in 
progress).  Any views expressed on (statistical, methodological, technical, or operational) issues are those of the 
author(s) and not necessarily those of the U.S. Census Bureau.   
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