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Abstract

Official Statistics call for data by individual age, since a significant number of statistical

operations, such as the calculation of demographic indicators, require the use of ungrouped

population figures. However, in some countries or regions, population data are only available in

a grouped form, usually as quinquennial age groups plus a large open-ended interval for elderly

people.

A challenging problem faced by Official Statistics institutes is how to degroup data by indi-

vidual age, allowing one, if needed, to include demographic knowledge or to be consistent with

the heaped information.

In this paper, several Mathematical Optimization models are proposed to address this im-

portant, yet seldom studied problem. The models also consider a frequent issue in statistical

sources: the presence of noise and errors, and, in particular, age heaping.

Keywords: Degrouping population data, Integer Optimization, age-specific population, age heap-

ing.
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1 Introduction

Demography deals with human population and its dynamics; the study of the size, structure, and

distribution of this population are encompassed in its task. This discipline has become a powerful

tool for governments and business in carrying out effective planning and decision making for the

future. Demography also helps to raise awareness of contemporary society and to evaluate the

performance of political decisions.

Despite its importance, population data are not always published with the desired level of detail.

Most National and International Statistical Offices provide figures for small geographical areas of

countries, but at a low level of disaggregation. As an example, population data by single age can

be found on the website of the Statistical Office of the European Union, Eurostat [8], but only for

regions of sufficiently large size, namely those at the so-called NUTS 2 level or higher; however,

for smaller regions, data appear grouped by age intervals. Furthermore, the information is only

available in grouped form, even at the country level, if the target population is a subset of the

overall population, as occurs with the foreign resident population and other groups of interest.

The knowledge of population figures by single age is crucial in some statistical operations, such as

the calculation of demographic indicators. For instance, the estimation of the age-specific fertility

rates, as a previous step to the assessment of total fertility rate, requires population data by single

age. These ungrouped figures are also crucial in building projections of greater accuracy and for

planning in fields where age plays a prominent role, such as in education.

The disaggregation of a general chronological series, a problem closely related to the one posed

before, has been dealt with extensively, see [4, 5, 7, 11, 16, 20, 21, 26]. If we focus on demographic

data, the expansion of an abridged series of mortality data given in age groups has received certain

attention, see [5, 14] and references therein, while the disaggregation of series of population growth

rates is addressed in [22]. Nevertheless, the problem of degrouping population figures by single age

has barely been touched upon in the literature. When the data come from only one year, simple

algorithms such as the Sprague method [23] or other spline interpolation techniques, e.g. [18, 25],

can be used. These standard approaches lack one of the most desirable properties any procedure

for disaggregating population should possess: the degrouped values at any age should be integer

numbers, and these procedures fail to provide such numbers. On the other hand, it is far from

trivial to adapt such procedures to the case in which the number of years under study is greater

than one, due to the difficulty of assuring coherence between the populations of consecutive ages in
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consecutive years. To the best of our knowledge, no research dealing with this problem in its full

generality is available in the literature.

In this paper, this specific disaggregation problem is tackled; to this end, some mathematical

optimization models are introduced that, starting from population data grouped into age intervals,

allow to disaggregate them into single ages. In this manner, a singe value for each single age can

be obtained in an optimal way in accordance with a certain criteria.

First we introduce the basic concepts of Mathematical Optimization, and we refer the reader to

introductory texts such as [27, 28] for details. A mathematical optimization model, also known as a

mathematical programming model, is a mathematical problem where, given a function f : S → R,

with S ⊂ Rn, we try to find a point x∗ ∈ S such that f(x∗) ≤ f(x) for all x ∈ S (minimization) or

f(x∗) ≥ f(x) for all x ∈ S (maximization). These problems are usually represented in a compact

form as follows,

minimize f(x)

subject to x ∈ S
or

maximize f(x)

subject to x ∈ S

The function f is called the objective function or simply objective, and the point x∗, the optimal

solution. Since x is a vector in Rn, it can be written as x = (x1, . . . , xn), where the components

xi are known as decision variables. The set S is the feasible set and is usually given by a set of

constraints, i.e. expressions of the form g(x) ≤ 0 or h(x) = 0. In that case, the optimization model

can be written as follows (for minimization),

minimize f(x)

subject to gi(x) ≤ 0 i = 1, . . . ,m1

hj(x) = 0 j = 1, . . . ,m2

The difficulty of solving the optimization model depends on the type of functions involved. Problems

where the objective and the constraints are linear functions, i.e. they have the form cTx = c1x1 +

c2x2 + . . . + cnxn with ci constant values, are the easiest. Minimizing a convex quadratic function

subject to linear constraints is also an easy-to-solve problem. A function is said to be quadratic

when it can be written in the form 1
2x

TQx + cTx, where Q is an n × n symmetric matrix, and

where the function is convex when Q turns out to be positive semidefinite or, in other words, all its

eigenvalues are non-negative. A quadratic function can easily be identified, since it is a summation

of squared variables, products of different variables and single variables, all of which multiplied by
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constant values. In certain optimization problems, like those considered in this paper, the variables

are restricted to take on values from a discrete set, usually a subset of integer numbers, so that the

model makes sense. The branch of optimization theory dealing with this kind of problem is known

as Integer Optimization or Integer Programming, [29].

In this paper, we present mathematical optimization models for the problem of population de-

grouping, in which we seek mild transitions, longitudinally as well as transversally. To do that, for

the different years and ages involved in the disaggregation process, we want to make the difference

as small as possible between the number of individuals of ages i and i + 1 in the year t and, at

the same time, make the difference as small as possible between the number of individuals aged i

in the year t and those aged i + 1 in the year t + 1. All these differences are aggregated into one

single number, to be minimized. We consider here the most common aggregation method found in

the literature, namely the L2 model, in which the sum of squares of the differences is minimized.

Other common aggregation methods, such as the L1 and the L∞ models, where the sum of the

absolute values of the differences, and the highest absolute value of the differences are considered,

respectively, were applied and compared with the L2 models, and yielded worse results that those

of the L2 aggregation model and therefore these other methods have been excluded from this paper

(see [1] for further details).

The remainder of this paper is structured as follows: in Section 2 we introduce some optimization

models that allow population data grouped by age interval to be disaggregated. A brief description

of the resolution techniques applied to solve these models, as well as some numerical results, can

be found in Section 3, where the above-mentioned models are applied to the population figures of

Andalusia, which is one of the largest autonomous regions of Spain. The paper finishes in Section

4 with a short summary of conclusions and with further extensions to the case in which data are

affected by noise, whose main focus is on the age heaping phenomenon.

2 The models

We present several models aimed at the disaggregation of population figures in grouped form by

age intervals. In Section 2.1 we begin by introducing a basic model that provides a distribution

by age consistent with the intervals; the application of this model on empirical data shows that,

generally speaking, the solutions provided are not fully satisfactory, mainly due to the large open-

ended age interval. This steers us towards refining the basic model in Sections 2.2 and 2.3 by
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using auxiliary information that is usually found at hand. Additionally, a model is introduced in

Section 2.4 that deals with the disaggregation problem when geographic areas of different levels are

considered within a hierarchical structure.

All of the models here proposed lead to quadratic problems in integer numbers, which can be faced

by using a wide range of solvers, some of them freely available on the Internet at NEOS Server,

[19]. As has been shown in [1], all of these models have a non-empty feasible set, which ensures that

there exists at least one solution for the disaggregation problem. In fact, several feasible solutions

can be obtained in a straightforward manner and they can be provided as initial solutions to the

optimization software used to solve the problem.

2.1 Basic model

Given a geographic area s, we assume that, for each year t (t = 1, . . . , T ) the population is provided

in G age intervals Ej = {Lj , Lj +1, . . . , Uj−1, Uj} (j = 1, . . . , G) of variable length, such that Lj =

Uj−1 + 1. Let Pj,t denote the population of the age group Ej in the calendar year t (j = 1, . . . , G,

t = 1, . . . , T ). In addition, let us denote by Bt the total births in the year t − 1 in the area s. If

the disaggregation process is being carried out over the foreign resident population, Bt stands for

the total births to foreign-born women.

The decision variables of the disaggregation model are defined in a natural way in accordance with

our aim. Hence, xit will denote the population of the geographic area under consideration at the

age i (i = L1, L1 + 1, . . . , UG − 1, UG), for the year t (t = 1, . . . , T ). This yields a set of integer

variables whose cardinality is given by

T

G∑
j=1

(Uj − Lj + 1) = T (UG − L1 + 1),

If only five-year age groups are considered, the previous expression leads to 5 · G · T . If should

be noted that our approach can hold the open-ended interval associated to the elderly population,

provided that a reasonable upper bound UG for that group is chosen.

Departing from the parameters Pj,t and Bt (j = 1, . . . , G, t = 1, . . . , T ) and the decision variables

xi,t (i = L1, . . . , UG, t = 1, . . . , T ), we consider a first degrouping model that is based on the

minimization of the sum of the squares of the differences previously described. The following convex

quadratic problem with linear constraints and integer numbers, solvable by existing Mathematical
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Optimization techniques [2, 3, 10, 17, 24], is proposed.

(L2BAS)

min
T∑
t=1

UG∑
i=L1+1

(xi,t − xi−1,t)
2 +

T∑
t=1

(xL1,t −Bt)
2 +

T∑
t=2

UG∑
i=L1+1

(xi,t − xi−1,t−1)
2

s.t.
Uj∑

i=Lj

xi,t = Pj,t j = 1, . . . , G t = 1, . . . , T

xi,t ∈ Z+ i = L1, . . . , UG t = 1, . . . , T

In the previous model, Z+ denotes the set of non-negative integer numbers, Z+ = {z ∈ Z : z ≥ 0}.

Three different blocks can be identified within the objective function of (L2BAS), whose goal is

described below:

•
∑T

t=1

∑UG
i=L1+1(xi,t − xi−1,t)

2 : its aim is to achieve smooth transitions from one individual

age to the following within the same year t.

•
∑T

t=1(xL1,t − Bt)
2 : for each year t, this strives to approximate the initial population of age

0 to the number of births occurring the previous year.

•
∑T

t=2

∑UG
i=L1+1(xi,t − xi−1,t−1)

2 : this is aimed at ensuring a suitable time evolution for each

generational cohort, by seeking close values for the population of age i at year t and the

population of age i− 1 at the previous year t− 1.

Apart from the integrality constraints over the decision variables, our model only contains a block

of constraints which allows us to accomplish an exact correspondence between the original abridged

data and the disaggregated values by individual age attained as a solution of (L2BAS).

In order to illustrate how the model (L2BAS) is constructed, a short example is shown below.

Example 1 The population data of Malta are considered and, for the sake of simplicity, only 3

years (2008, 2009, and 2010) and 3 age intervals of the same length (0-4, 5-9, and 10-14) are taken

into account. Hence, T = 3 and G = 3.

The age intervals are E1 = {0, 1, 2, 3, 4}, E2 = {5, 6, 7, 8, 9} and E3 = {10, 11, 12, 13}, and the

aggregated population values Pi,j (taken from the Eurostat database) are

P1,1 = 19810 P1,2 = 20097 P1,3 = 20372

P2,1 = 21374 P2,2 = 20730 P2,3 = 20216

P3,1 = 25404 P3,2 = 24731 P3,3 = 23939
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where the first subindex corresponds to the age interval, and the second subindex, to the year. The

parameters Bt, t = 1, 2, 3 are given by the total number of births in Malta in 2007, 2008, and 2009,

respectively, namely B1 = 3765, B2 = 4013, B3 = 4029. We have a set of 45 decision variables (15

single ages multiplied by 3 years), x0,1, . . . , x14,1, x0,2, . . . , x14,2, x0,3, . . . , x14,3.

With all these elements at hand, the model (L2BAS) can be written in extended form as follows:

min
[
(x1,1 − x0,1)

2 + . . . + (x14,1 − x13,1)
2 + (x1,2 − x0,2)

2 + . . . + (x14,2 − x13,2)
2+

+(x1,3 − x0,3)
2 + . . . + (x14,3 − x13,3)

2
]
+

+
[
(x0,1 −B1)

2 + (x0,2 −B2)
2 + (x0,3 −B3)

2
]
+

+
[
(x1,2 − x0,1)

2 + . . . + (x14,2 − x13,1)
2 + (x1,3 − x0,2)

2 + . . . + (x14,3 − x13,2)
2
]

s.t. x0,1 + x1,1 + x2,1 + x3,1 + x4,1 = 19810

x0,2 + x1,2 + x2,2 + x3,2 + x4,2 = 20097

x0,3 + x1,3 + x2,3 + x3,3 + x4,3 = 20372

x5,1 + x6,1 + x7,1 + x8,1 + x9,1 = 21374

x5,2 + x6,2 + x7,2 + x8,2 + x9,2 = 20730

x5,3 + x6,3 + x7,3 + x8,3 + x9,3 = 20216

x10,1 + x11,1 + x12,1 + x13,1 + x14,1 = 25404

x10,2 + x11,2 + x12,2 + x13,2 + x14,2 = 24731

x10,3 + x11,3 + x12,3 + x13,3 + x14,3 = 23939

xi,t ∈ Z+ i = 0, . . . , 14 t = 1, 2, 3

For the sake of completeness, the value of the decision variables obtained after solving the model,

and the actual disaggregated population figures, taken from the Eurostat database, are shown in

Table 1.
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Table 1: Actual and estimated population at each age from 0 to 14, (L2BAS) model, Malta

2008-2010

2.2 Model with auxiliary information on the open-ended age interval

According to our experiments, [1], the previous model usually yields a suitable fit in all the age

groups, with the exception of the open-ended age interval EG, where strong discrepancies between

the results provided by the model and the actual data can be found. This is mainly due to the

large length of the open interval and the greater freedom that the last individual age possesses,

since it is not bounded by later values in the same or in the following year. Under these conditions,

the solver seldom finds a convenient solution among all the optimal solutions of the model. The

solution discovered by the solver, despite being optimal according to the minimization criterion, is

usually far from acceptable due to the major fitting errors observed at the extreme years and ages

considered in the open interval.

In order to solve this problem, we propose setting the requirement that the relative frequencies of

the ages in the open-ended interval take values within certain specific intervals derived from the

available figures. These could come from statistical operations where population data by individual

age are available for the open-ended interval in the same or a neighboring year. Examples of these

operations include the Population Census, any survey conducted on the subpopulation under study

(such as the National Migration Survey) and population figures by individual age for a higher-level
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population. Following this approach we define:

• f
i
: Lower bound for the relative frequency of the population aged i in the open-ended interval

(i = LG, LG + 1, . . . , UG).

• f̄i: Upper bound for the relative frequency of the population aged i in the open-ended interval

(i = LG, LG + 1, . . . , UG).

For each age belonging to the open-ended interval EG, it will be required that its relative frequency

within that interval falls between f and f̄ , i.e.,

f
i
≤ xi,t

PG,t
≤ f i i = LG, LG + 1, . . . , UG t = 1, . . . , T

or, equivalently

f
i
PG,t ≤ xi,t ≤ f iPG,t i = LG, LG + 1, . . . , UG t = 1, . . . , T

If f
i

and f i are obtained, for instance, from the available census-based information, these bounds

could be calculated using the relative distribution of the interval EG in the immediately prior and

immediately subsequent census to the period of years being disaggregated. If only one of those

census is available, the relative frequencies of EG obtained from this census could be used as the

central values of the interval [f
i
, f i] and their ranges could be determined proportionally to the

above-mentioned central values. Another possibility consists of using the disaggregated age data

from a higher-level population, if they are available.

After adding the new group of above-described constraints to (L2BAS), the following model is

obtained:

(L2INT1)

min

T∑
t=1

UG∑
i=L1+1

(xi,t − xi−1,t)
2 +

T∑
t=1

(xL1,t −Bt)
2 +

T∑
t=2

UG∑
i=L1+1

(xi,t − xi−1,t−1)
2

s.t.
Uj∑

i=Lj

xi,t = Pj,t j = 1, . . . , G t = 1, . . . , T

xi,t ≤ f iPG,t i = LG, LG + 1, . . . , UG t = 1, . . . , T

xi,t ≥ f
i
PG,t i = LG, LG + 1, . . . , UG t = 1, . . . , T

xi,t ∈ Z+ i = L1, . . . , UG t = 1, . . . , T
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If the external information required remains unavailable, then the problem can be addressed in an

alternative manner: by assuming that population decreases with the age in the open-ended interval,

thereby yielding the following model.

(L2INT2)

min
T∑
t=1

UG∑
i=L1+1

(xi,t − xi−1,t)
2 +

T∑
t=1

(xL1,t −Bt)
2 +

T∑
t=2

UG∑
i=L1+1

(xi,t − xi−1,t−1)
2

s.t.
Uj∑

i=Lj

xi,t = Pj,t j = 1, . . . , G t = 1, . . . , T

xi,t ≥ xi−1,t i = LG, LG + 1, . . . , UG t = 1, . . . , T

xi,t ∈ Z+ i = L1, . . . , UG t = 1, . . . , T

Observe that such a monotonicity assumption is rather realistic, with the exception of countries

deeply influenced by late-age immigration.

2.3 Model with contour information

When degrouping population data, one usually has auxiliary information at hand which may be

of help to model cohorts, in addition to births. An interesting case arises when population figures

by individual age are available for the years surrounding to those taking part in the disaggregation

process, as can be the case of the population census, which is carried out every ten years in many

countries.

Occasionally, one can even count on individual population figures for the extreme years of the

period under consideration, although they are supplied by other statistical sources. Under those

circumstances, this disaggregated information can be added to the model in order to lead the

fitting process at the initial and/or final years, thereby improving the solutions provided by the

basic model. With this aim in mind, we define:

• Ii: population of individual age i (i = L1, . . . , UG) at the initial or a closely preceding year.

• Fi: population of individual age i (i = L1, . . . , UG) at the final or a closely succeeding year.

Starting from the model (L2BAS), its objective function must be modified so that the decision

variables regarding the initial and final years take values near Ii and Fi, respectively. This yields

the following optimization problem,
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(L2CON)

min
T∑
t=1

UG∑
i=L1+1

(xi,t − xi−1,t)
2 +

T∑
t=1

(xL1,t −Bt−1)
2 +

T∑
t=2

UG∑
i=L1+1

(xi,t − xi−1,t−1)
2+

+

UG∑
i=L1

(xi,1 − Ii)
2 +

UG∑
i=L1

(xi,T − Fi)
2

s.t.
Uj∑

i=Lj

xi,t = Pj,t j = 1, . . . , G t = 1, . . . , T

xi,t ∈ Z+ i = L1, . . . , UG t = 1, . . . , T

2.4 Model with higher-level information

Another variant of interest of the models introduced previously arises when the disaggregated

population of a geographic area of higher level than those involved in the degrouping process is

considered, in such a way that the union of these areas gives the former area. This is a common

situation in Official Statistics and, for instance, the National Statistics Institute (INE) of Spain

published provincial population figures in quinquennial age groups, whereas the regional figures

were provided in a disaggregated way in terms of a single year of age. In January 2002, the dis-

semination of the so-called Population Now-Cast began, thereby providing unabridged population

figures at provincial level. However, the provincial population figures of the period 1970-2001

remain aggregated by age group on the website of the INE, [13].

In order to develop this model, it is assumed that, for each geographic area s (s = 1, 2, . . . , S−1, S),

and each calendar year t (t = 1, . . . , T ), G age population groups of variable length Ej = {Lj , Lj +

1, . . . , Uj − 1, Uj} (j = 1, . . . , G) are available. Let us denote by Pj,s,t the population of the age

group Ej , in the area s, for the calendar year t (j = 1, . . . , G, s = 1, . . . , S, t = 1, . . . , T ).

We also assume that the population by single age in the higher-level area is known; this will be

denoted by Qi,t, where the subindex i refers to the age and the subindex t stands for the calendar

year (i = L1, . . . , UG, t = 1, . . . , T ). From the definition of Pj,s,t y Qi,t, it follows that the following

relation must be fulfiled:

S∑
s=1

Pj,s,t =

Uj∑
i=Lj

Qi,t j = 1, . . . , G t = 1, . . . , T (1)
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Finally, Bs,t stands for the number of births registered over the year t− 1 in the territorial area s

(s = 1, . . . , S, t = 1, . . . , T ).

The decision variables of this model are defined in the usual manner, but S subareas are now

taken into account. In this way, the decision variable xi,s,t will denote the population of age i

(i = L1, . . . , UG) in the territorial area s (s = 1, . . . , S) for the calendar year t (t = 1, . . . , T ).

As in the previous cases, the first model taken into consideration in this context strives to minimize

the sum of the squares of the differences related to the main goals of the disaggregation problem

under study, namely:

• Mild transitions from one individual age to the following within each year and territorial area.

• Approximation of the initial population of age 0 to the number of births occurring the previous

year in each area.

• Mild transitions between consecutive ages of consecutive years in each territorial area.

Using the previous set of variables and bearing in mind the above-mentioned aims, the disaggrega-

tion model can be formulated as the following convex quadratic problem with linear constraints:

(L2HIG)

min

S∑
s=1

T∑
t=1

UG∑
i=L1+1

(xi,s,t − xi−1,s,t)
2 +

S∑
s=1

T∑
t=1

(xL1,s,t −Bs,t)
2+

+

S∑
s=1

T∑
t=2

UG∑
i=L1+1

(xi,s,t − xi−1,s,t−1)
2

s.t.
Uj∑

i=Lj

xi,s,t = Pj,s,t j = 1, . . . , G s = 1, . . . , S t = 1, . . . , T

S∑
s=1

xi,s,t = Qi,t i = L1, . . . , LG t = 1, . . . , T

xi,s,t ∈ Z+ i = L1, . . . , UG s = 1, . . . , S t = 1, . . . , T

The first set of constraints allows us to ensure, for each age interval, calendar year, and territorial

area, that the sum of the disaggregated population figures is equal to the total of the related age

interval; these are essentially the constraints appearing in the model (L2BAS).

12



The second set of constraints aims to ensure the agreement between the population figures in the

territorial areas and those in the higher-level area. Thus, these constraints guarantee that, for each

individual age and calendar year, the population figures of the higher level area agree with the sum

of the corresponding values in the subareas of which it is comprised.

3 Solving the disaggregation models

The models introduced in the previous section have been solved using the solver Cplex v12.2,

which is a component of the IBM ILOG Cplex Optimization Studio, [6]. Cplex is a well-known

software product aimed at the resolution of linear and quadratic integer problems. Other software

tools offering the same functionality, such as Gurobi, [12], and Xpress, [9], could equally have been

applied.

All the models have been formulated using OPL, the algebraic modeling language used by Cplex

Optimization Studio. The syntax of this kind of language is similar to the mathematical notation

used to formulate the optimization problem and allows a perfect separation between the model and

the data.

The models considered in this paper involve integer programming problems, which require large

computational times as a rule; however, the run times for our disaggregation models are very short

and a few seconds are usually sufficient to find an optimal solution.

In order to evaluate and compare the performance of the above-mentioned models, empirical pop-

ulation data from the region of Andalusia (Spain) covering several years were used. These were

taken from the so-called Municipal Register of Inhabitants, which is an administrative register

where every inhabitant of Spain has to be accounted for. We began by aggregating the population

figures by single year of age as found in the municipal register in five-year age groups plus a large

open-ended interval for the ages 85 and over. The models previously described were then applied

to these abridged data, thereby yielding disaggregated population figures that will be referred to

as estimated data. The empirical values from the municipal register, referred on what follows as

observed data, were compared to the estimated ones in order to test the plausibility of our disaggre-

gation scheme. This comparison was carried out by using the Root Mean Squared Relative Error

(RMSRE) as accuracy measure, which, for an area s and a year t, is defined as:

RMSRE(s, t) =

√√√√ 1

UG − L1 + 1

UG∑
i=L1

(
Oi,s,t − xi,s,t

Oi,s,t

)2

(2)
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where Oi,s,t are the observed values and xi,s,t the estimated values (i = L1, . . . , UG, s = 1, . . . , S, t =

1, . . . , T ).

A period of ten years, ranging from 1999 to 2008 inclusive, is considered in all the experiments,

except for the models with contour information, (L2CON), where the period 2002-2010 is consid-

ered in order to make use of the census carried out in Spain in 2001. The population data used in

this computational experience were collected from the website of the National Statistics Institute

of Spain, [13]. The accuracy results, in terms of Root Mean Squared Relative Error (2), are shown

in Tables 2 – 3. The best-performing model seems to be (L2INT1). The model (L2INT2) pro-

vides worse results than the previous model, with a slight improvement with respect to the model

(L2BAS). The difference in the accuracy of (L2INT1) and (L2INT2) can be caused by the stronger

assumptions used in the former model.

Table 2: Root Mean Squared Relative Error by disaggregation model, Andalusia

Table 3: Root Mean Squared Relative Error for models (L2HIG) by province

The result obtained from the disaggregation process are now shown graphically. Figures 1-4 provide

14



illustrations of the performance of the various models applied to the observed data of Andalusia.

For the sake of concision, the year 2004 in those figures is dealt with exclusively.

Regarding the model (L2HIG) and for the same reason, only results for the Andalusian provinces

of Granada and Seville are depicted graphically, (Figures 5-6).

A more thorough analysis and further results can be found in [1].

Figure 1: Age-disaggregated population, (L2BAS) model, Andalusia, 2004.
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Figure 2: Age-disaggregated population, (L2INT1) model, Andalusia, 2004.

Figure 3: Age-disaggregated population, (L2INT2) model, Andalusia, 2004.
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Figure 4: Age-disaggregated population, (L2CON) model, Andalusia, 2004.

Figure 5: Age-disaggregated population, (L2HIG) model, Granada, 2004.
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Figure 6: Age-disaggregated population, (L2HIG) model, Seville, 2004.

For the sake of completeness, other territorial areas have also been considered in the disaggrega-

tion process. As an illustration, Figure 7 presents the results obtained after applying the model

(L2CON) to the empirical data of Ireland obtained from the website of Eurostat.
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Figure 7: Age-disaggregated population, (L2CON) model, Irlanda, 2004.

The models proposed in this article strive to achieve mild transitions across ages, not only transver-

sally but also longitudinally. The figures that have been presented previously show that our ap-

proach provides accurate results when a transversal analysis of empirical and observad data is

performed. Now we focus on the longitudinal analysis. Figure 8 depicts the evolution of three gen-

erational cohorts throughout the period 1999-2008; it presents empirical data as well as adjusted

ones provided by the (L2INT ) model. Table 4 shows the result of calculating the RMSRE over

the three cohorts in the period 1999-2008.

Two main conclusions emerge from the longitudinal analysis: firstly, the evolution of each cohort is

smooth, which fulfils one of our aims, and secondly, small differences are found between observed

and adjusted figures. Similar conclusions can also be reached if we consider the other disaggregation

models. Hence, we conclude that both transversal and longitudinal adjustments are suitable.

19



Figure 8: Age-disaggregated population by cohort, (L2INT1) model, Andalusia, 1999− 2008.

Table 4: Root Mean Squared Relative Error by disaggregation model and cohort, Andalusia,

1999− 2008.
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4 Concluding remarks and extensions

This article describes several optimization models for the disaggregation of population figures by

single age from empirical data grouped in intervals. These models fulfil certain reasonable properties

for any disaggregation methodology, namely:

• The disaggregated population values are integer numbers. Hence, no ad-hoc rounding is

needed.

• For a given year, cross-sectional consistency is shown.

• For a given age, cross-cohort consistency is shown, thereby maintaining the idiosyncrasy of

each cohort.

Starting from a basic model that fulfils the basic requirements demanded in the disaggregation

process, this model is enriched so that, from a demographic point of view, solutions that are more

suitable can be obtained. The proposed models lead to quadratic integer optimization problems,

which can be solved in a few seconds on a personal computer using Cplex or other similar opti-

mization software.

Model validation was carried out using population figures from the region of Andalusia (Spain)

and its provinces. A graphical and numerical analysis of the results reveals that the proposed

methodology provides suitable longitudinal and transverse fits to the empirical data.

The above-described models can be easily modified to deal with hypotheses of a more general nature

than those ones considered previously in this paper. For instance, it has been implicitly assumed

that the population figures are accurate. Nevertheless, these figures are usually based on censuses

and surveys, both of which may contain errors that, when they are sufficiently large, could distort

the disaggregation process. For the sake of simplicity, we only consider the model (L2BAS), and a

similar approach could be used for all the models described so far. Assuming that the values Pj,t

may be affected by errors, the set of constraints

Uj∑
i=Lj

xi,t = Pj,t j = 1, . . . , G t = 1, . . . , T
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might transfer the errors to the disaggregated population. In order to face this problem, the

previous constraints are transformed into soft constraints as it is described below. Let

Xj,t =

Uj∑
i=Lj

xi,t

be the estimated population of each age group. Note that Xj,t are not actually decision variables,

since they are perfectly defined by the actual variables xi,t. For each year, it is then imposed that

the total estimated population equals the total reference population,

G∑
j=1

Xj,t =
G∑

j=1

Pj,t t = 1, . . . , T.

The objective function must be modified so that the model seeks solutions close to the reference

data. This is achieved by adding the following term,

T∑
t=1

G∑
j=1

(Xj,t − Pj,t)
2

In this way, a more flexible model is obtained. Without disregarding the reference values, the model

can, to a certain extent, separate the solutions from these values with the aim of obtaining a better

fit according to the minimization criterion considered in the model.

According to the previous considerations, the model (L2BAS) could be rewritten as follows.

min

T∑
t=1

UG∑
i=L1+1

(xi,t − xi−1,t)
2 +

T∑
t=1

(xL1,t −Bt)
2 +

T∑
t=2

UG∑
i=L1+1

(xi,t − xi−1,t−1)2 +

T∑
t=1

G∑
j=1

(Xj,t − Pj,t)
2

s.t.
G∑

j=1

Xj,t =

G∑
j=1

Pj,t t = 1, . . . , T

Xj,t =

Uj∑
i=Lj

xi,t j = 1, . . . , G t = 1, . . . , T

xi,t ∈ Z+ i = L1, . . . , UG t = 1, . . . , T

Throughout this article, it has been assumed that population figures are available every year, but

this is not necessarily true, especially in developing countries. The lack of data in certain years may

be overcome by applying commonly used techniques (e.g. interpolation of the available data, either

by means of spline functions or by following a distributional model that is considered suitable in

view of the data). However, the models proposed in this paper can deal directly with this situation,

without resorting to missing data techniques. Indeed, in the model (L2BAS) the indices t with
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unknown Bt (number of births in the previous year) should be excluded from the middle summation;

in addition, if a parameter Pj,t is not available, the relevant constraint

Uj∑
i=Lj

xi,t = Pj,t

should be removed from the optimization problem.

At first glance, the decision variables xi,t related to age intervals with unknown Pj,t might take

arbitrary values. However, the objective function has to lead them to take values close to the vari-

ables corresponding to the nearest intervals, both longitudinally and transversely. More precisely,

if Pj,t is unknown, the relevant variables xi,t have to take values close to those corresponding to

the intervals Ej−1 and Ej+1 in the calendar year t, and also close to those corresponding Ej−1 in

the year t− 1 and Ej+1 in the year t + 1. To illustrate this, the data of Malta used in Example 1

is again considered, assuming now that the figures of 2009 (index t = 2) are unknown. Hence, the

term (x0,2 −B2)
2 is removed from the objective function, as well as the constraints involving P1,2,

P2,2 and P3,2, thereby yielding the following model.

min
[
(x1,1 − x0,1)

2 + . . . + (x14,1 − x13,1)
2 + (x1,2 − x0,2)

2 + . . . + (x14,2 − x13,2)
2+

+(x1,3 − x0,3)
2 + . . . + (x14,3 − x13,3)

2
]
+

+
[
(x0,1 −B1)

2 + (x0,3 −B3)
2
]
+

+
[
(x1,2 − x0,1)

2 + . . . + (x14,2 − x13,1)
2 + (x1,3 − x0,2)

2 + . . . + (x14,3 − x13,2)
2
]

s.t. x0,1 + x1,1 + x2,1 + x3,1 + x4,1 = 19810

x0,3 + x1,3 + x2,3 + x3,3 + x4,3 = 20372

x5,1 + x6,1 + x7,1 + x8,1 + x9,1 = 21374

x5,3 + x6,3 + x7,3 + x8,3 + x9,3 = 20216

x10,1 + x11,1 + x12,1 + x13,1 + x14,1 = 25404

x10,3 + x11,3 + x12,3 + x13,3 + x14,3 = 23939

xi,t ∈ Z+ i = 0, . . . , 14 t = 1, 2, 3

As shown in Table 5, the fitting procedure provides accurate results, despite the missing data on

2009. In fact, the population estimates of that year by age group turn out to be P̂1,2 = 20054,

P̂2,2 = 20836, and P̂3,2 = 24570, which are close to the actual values, P1,2 = 20097, P2,2 = 20730,

and P3,2 = 24731.
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Table 5: Actual and estimated population at each age from 0 to 14, (L2BAS) model, Malta

2008-2010. The estimates were obtained without information of the year 2009.

The methodology proposed in this article is also useful to address the phenomenon known as age

heaping or digit preference, that occurs because many people (particularly older people or people

with a low level of education) tend not to give their exact age in surveys or censuses. Instead, they

usually round their age up or down to the nearest number ending in 0 or 5. These irregularities

can be detected by means of age heaping indices, such as Whipple’s index, Myers’ index, Bachi’s

index or Zelnik’s index.

Our models can also be used to restore population data without age heaping. To this end, the

original age-specific population counts are grouped by age intervals, and have multiples of five as

the central age in each group. Hence, the age groups 13-17, 18-22 and so on (the first ages remain

ungrouped) are considered. The fact that the extreme values Lj and Uj of the intervals can be freely

chosen in our methodology, can be used to disaggregate the data, thereby reducing the impact of

age heaping. These artificially-grouped data are then disaggregated by solving the optimization

problem (L2BAS) or its variants. By construction, the so-obtained disaggregated data have mild

transitions, both transversally and longitudinally, and thus the age heaping is eliminated.

As an illustration, Figure 6 shows both original (noisy) and restored population data of Mexico in

2005, which are clearly affected by age heaping.
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Table 6: Actual and estimated population, Mexico 2005.
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