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Abstract 

In theoretical spatial economics and econometrics non-convexities pop up all the 
time. This paper first treats three cases in theoretical spatial economics: industrial 
complex computation, a physical planning case, and a generalized Weber 
problem, to go on to three cases in spatial econometrics: multiple regimes, optimal 
regime selection, and finite automata. 

The main objectives of our contribution are (i) to show that there is a very intimate 
link between spatial economics and spatial econometrics, in fact, they are the two 
sides of the same coin; (ii)- non-convexities should be considered as one of the 
main features in the two fields, they are the norm rather than the exception; (iii) 
both disciplines, spatial economics and spatial econometrics, are well equipped to 
deal with non-convexities but is important that scholars assume this restriction, 
which gives a prominent role to discrete mathematics and discrete regime analysis. 
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Teoría Económica Espacial y Econometría Espacial: No convexidades 
en el Espacio y en el Tiempo a porrillo... 

Resumen 

La falta de convexidad es un problema recurrente tanto en economía y como en 
econometría espacial. Este trabajo trata, en primer lugar, tres casos en teoría 
económica espacial: diseño de complejos industriales, un caso de planificación 
física y un problema generalizado de localización tipo Weber; a continuación se 
abordan tres problemas asociados en econometría espacial: regímenes múltiples, 
selección del régimen óptimo y autómatas finitos. 

Los principales objetivos de nuestra contribución son (i) mostrar que existe una 
conexión muy íntima entre la economía espacial y la econometría espacial, de 
hecho, son las dos caras de la misma moneda; (ii) insistir en que la falta de 
convexidad es uno de los rasgos característicos de los dos campos, es la norma 
antes que la excepción; (iii) ambas disciplinas, economía espacial y econometría 
espacial, disponen de técnicas suficientes para tratar el problema de la ausencia de 
convexidad pero es importante que los investigadores asuman esta restricción, lo 
que confiere gran importancia al análisis matemático para conjuntos discretos y al 
análisis de regímenes discretos 

Palabras Clave: Economía Espacial; Econometría Espacial; Non-Convexidad; 
Regímenes finitos. 

Clasificación JEL: C21, C50, R15 

Clasificación AMS: 62F03 

 

1. Introduction 

Convexity assumption does play a central role in microeconomics and in general 
equilibrium theory (Varian, 1992). Convexity requires that all inputs and outputs are 
divisible, however most commodities are clearly indivisible, which immediately 
violates convexity. There is no need to insist that this is a very controversial hypothesis 
as stressed, for example, by Farrell (1959): ‘A glance at the world about us should be 
enough to convince us that most commodities are to some extent indivisible and that 
many have large indivisibilities’ (p. 377). This is an obvious feature of real world and 
for this reason non-convexities have been incorporated in mainstream economics 
beginning with, for example, Arrow and Frank (1971). 

Non-convexities were also key features in some of the most influential textbooks in 
regional economics, like Alonso (1964) or Isard (1975), and they were very present in 
the classical spatial econometrics textbook of Paelinck and Klaassen (1979). However, 
during the last decades the discussion in theoretical and quantitative spatial economics 
has slipped towards the assumptions of convexity, linearity and continuity. New 
Economic Geography, for example, although stressing the importance of scale 
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economics, is very silent about indivisibility and non-convexity problems (Krugman et 
al., 1999). Likewise, the preferred framework in spatial econometrics comes along with 
simplifying assumptions favoring smoothness and continuity. 

However, it must be recognized once again that non-convexities pop up all the time in 
spatial economics and econometrics (Paelinck, 2004; Griffith and Paelinck, 2011). This 
is the purpose of our paper. In first place, Section 2, three common problems in 
theoretical spatial economics are treated, namely, planning an industrial complex, a case 
in physical planning, and a generalized Weber location problem. Then, Section 3 
presents an analysis of three characteristic problems related to non-convexity in spatial 
econometrics: the multiple regimes specification, the optimal regime selection dilemma 
and the finite automata algorithm. Conclusions and references follow. 

2. Theoretical spatial economics 

The cases analyzed hereafter are only a small sample of what is going on in spatial 
economic behavior; they are however sufficient to show that non-convexities should be 
generally considered in spatial economic analysis. 

2.1 The case of setting up a petrochemical plant, or non-convexities in economic 
space-time 

Activity complexes have to be developed over time, so some dynamics should be 
introduced; quadratic assignment appear to be a suitable method for solving the 
dynamic industrial complex problem (DICP). 

Suppose there to be three activities to be started over time; the inter-temporal character 
of the problem derives from the fact that investment funds might be limited inside each 
time period. The idea is then to exploit the following facts: 

a) prices are rising over time, a well-known result for important projects (the 
“Chunnel”, or Channel-Tunnel in Western Europe is a much quoted example); 

b) the presence of activities on a site generates externalities. 

2.1.1. The model. 

Let us define: 

- xit as a binary variable, meaning that activity i is to be started in time-period t; 

- ait as the cost of implementing activity i in period t; 

- bijt as the percentage/100 of savings accruing to activity i due to the presence in 
period t of activity j. 

The three activity-three period program can then be specified as follows 
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   	    [1] 
	 

   . .   
 

     
     
   

1 11 11 12 12 122 21 132 31 13 13 123 21 22 133 31 32

2 21 21 22 22 212 11 232 31 23 23 213 11 21 233 31 32

3 31 31 32 32 312 11 322 21 33 33 313 11 12 323 21

φ = a x + a x 1- b x - b x + a x 1- b x + x - b x + x

φ = a x + a x 1- b x - b x + a x 1- b x + x - b x + x

φ = a x + a x 1- b x - b x + a x 1- b x + x - b x +

  
  

 22

2[ ]
x





   
Jx = τ

  

where x is the (1x9) “row vector x ; x ; x ; x ; x ; x ; x ; x ; x ; , J is a 
(18x9) binary matrix, and  a (9x1) unit column vector, the latter ones building up the 
so-called assignment conditions guaranteeing appropriate non-contradictory allocations 
in space and/or time. 

If one writes out the A-matrix, of  one will see that its structure resembles that of 
the MPP (matrix permutation problem) which results from the presence of externalities, 
in the form of plants that should exist before another plant is started. This chain of 
restrictions explains that the square sub-matrices of A have a lower block-triangular 
structure, i.e. a recursive structure in terms of sets of parameters. Table 1 hereafter 
presents the data used for a test. 

Table 1 

Data for problem [1] 

Parameters Values 

a11 1 
a12 2 
a13 3 
a21 2 
a22 3 
a23 4 
a31 3 
a32 4 
a33 5 

b122, b123 .3 
b132, b133 .2 
b212, b213 .2 
b232, b233 .4 
b312, b313 .4 
b322, b323 .1 

In the case of Table 1, one obtains the optimal solution 0; 0; 1; 1; 0; 0; 0; 1; 0 	or, 
what is the same, the sequence of actions is: [x13, x21, x32] with a value 7.1 for the 
objective function in [1]. See Appendix for the details of the solution. 
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2.1.2  An example. 

Below we use the well-known case of a complex inter-temporal assignment presented 
by Isard et al. (1959).The petrochemical complex chosen was the chain “ethylene-
ethylene glycol-dacron polymer-dacron staple”, the oil refinery (index 0) being already 
present, so four activities had to be planned over time. 

Table 2 hereafter presents the data; some of them, not available, had to be hypothesized, 
stars marking them; the symbols have the same meaning as above, it being understood 
that there are now four periods. The first three columns include the original data, only 
columns four and five having been included in the calculations. Finally, an inflation rate 
of 10% has been postulated. 

Table 2 

Data for a petrochemical complex. Isard et al. (1959) 
Coefficient UI AL SC TI Ex 

a11 2.65 25 .67 22.90 -

a22 4.31 1 .625 4.31 -

a33 3 1* .67* 2.16* -

a44 3 1* .67* 2.16* -

b011,b012, b013,b014 - - - - .1166

b122,, b123, b124 - - - - .0275

b212, b213, b214 - - - - .0070

b232, b233, b234 - - - - .0054

b322, b323, b324 - - - - .0037

b342, b343, b344 - - - - .0037

b432,  b433, b434 - - - - .0059

UI: Unit investment; AL: Activity level; SC: Economies of scale coefficient; TI: Total investment;  

Ex: Externalities. 

The technical sequence of the petrochemical process obtained from the QAP is x11,x22, 
x33, x44, with an objective function value φ = 30.39. It should however be remarked that 
in a different simulation, the first two activities were inverted, which amounted to 
activity 2 provisionally buying ethylene from outside the complex, while activity 1 was 
under construction. 

2.1.3  Further specifications 

Many refinements can be introduced in the optimization technique set for in Section 2.1.1. 

A first one is the incidence of a possible discounting, though the program presented 
computed the total expected optimal cost for the complex, i.e. the financial envelope to 
be provided for. Another possibility is the introduction of financing constraints, possibly 
in function of the duration of each of the sub-projects. 

The technique exposed is sufficiently flexible to accommodate those two refinements, 
and also other ones that could creep up in special programs; one of them is to program 
simultaneously more than one complex. How this can be done will be exposed now. 
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What was implicitly assumed above was that the complex was already given a location. 
This however, is a most simplifying assumption, as differently composed complexes 
may have jointly optimal locations. In other words, to each activity index, i, a locational 
index, j or r, should be added.  

The possibility exists indeed that more than one location area could be considered; the 
program above has to be generalized in the following two ways. 

In the first place the externalities mentioned will only occur if the plants concerned have 
been assigned to the same area. In second lieu, new binary variables have to be defined, 
assigning activities to areas, this together with the logical constraints that activities can 
only be assigned to one area or another if they are operated at non-zero levels. 

An example of the first point is the following; a term – for industries 1 and 2 – equal to 
c1c2+d1d2, has to be introduced, indicating that to generate the externalities both 
industries should belong to the same complex. A logical constraint is that the 
assignment to an area supposes the overall selection of the corresponding activity. 

Table 3 presents the data for three additional activities. 

Table 3 

Petrochemical complex. Additional parameters 
Ac\Pa  p*i pi p4a1i p5a2i p6a3i wi ri πi xio 

4 2 3 - 2 2 2 .1 .2 1
5 3 2 1 - 1 1 .1 .2 1
6 4 2 1 2 - 3 .1 .2 1

p*i=prices; pi =input prices; p4a1i,, p5a2i,, p6a3i=input costs; wi = wages;  
ri=rents; πi= profits; xio=levels of production 

Moreover the following “cross-inputs” between the two groups of activities have been 
introduced (table 4); the Table corresponds to aijs, i≠j of Table 1. 

Table 4 

Cross-inputs 
 

 

 

 

The results of adding three activities to the ones of section 2.1.1 were as follows: all six 
were selected, four of them being assigned to one area, the remaining two to the other. 
In each case, one activity generated a supernumerary profit, with total minimal 
investment costs for the two areas equal to 10.1553 + 9.5452 = 19.7005. 

One more point should be considered, namely that each area has locational advantages, 
which can be introduced, for example, via the investment cost. In Table 5 the 

Plants  1 2 3 4 5 6 
1  2
2  2
3  2
4  1
5  3
6  1
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investment cost for the six complexes depend on the area where the investment takes 
place. The data that appear in this table refer to the investment coefficients of equation 
[1] for the six activities considered. 

Table.5 

Locational advantages 
Complex  Area 1 Area 2 

1  5 1

2  3 1

3  1 2

4  2 3

5  3 1

6  4 6

This time again four activities were allocated to area 2, the remaining to area 1, which 
was also the only one to show a supernumerary profit. Total investment costs went 
down to 4.5812 + 8.6222 = 13.2004. 

The technique should now be applied to real cases, as is done in the one-complex case. A 
dynamic version, as presented above, could be set up according to the lines just developed.  

2.2 A case in physical planning 

Curiously enough this study started with some thoughts being given to solving suudokus.  

Suudokus (from the Japanese syllables suu, figure, and doku, unique) are not just a game, 
but also a challenge to mathematical programming. Here a mathematical programming 
solution is presented (Koch, 2005) and an application to physical planning suggested. 

A suudoku is a 9x9 grid, filled at the start with a certain number of figures. Table 6 
presents an example. 

Table 6 

A starting suudoku grid 
1  4  8 7   6 

8 2  5    1 7 

    1     

9    5  8 3 2 

2   8 7   6  

4 8 5  6 2    

6   7 2 5 1   

 1 2 6 4 8    

7      6 2  

As it is well-known, the problem is to fill out the empty cells, in such a way that all the 
figures from 1 through 9 would be present in each of the nine rows, each of the nine 
columns, and each of the nine 3x3 squares.  
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Introduce now for the empty cells of Table 6, 43 variables, ai. For the present exercise 
they are ordered along the successive rows. From the start the following facts are 
known: 

1. The figures absent in every row, column and square are known (not their position!); 
also obviously their sums. 

2. The possible values each cell can take on; indeed, the possibilities per row, column 
and square are generally different, so the only possible values are their intersection. 

A first idea is to use the above mentioned sums in a linear program, minimizing the sum 
of the sum of differences between the summed unknowns, per row, column and square, 
and their known sum, under the constraint that each elementary difference should be 
non-negative. Given the properties of linear programming an extremal solution (i.e. in 
terms of integer values) will be obtained, the value of the objective function being zero; 
but there are multiple solutions, as the rules of the game are not necessarily satisfied.  

Next idea is then to switch to binary programming, according to the following 
specification. Take a row, and one of its elements, ai; one knows that ai can only take on, 
say, k values (1<k<9). Let us call them air so we can define: 

 k
ir1 irr=1=a ax   

 2
ir irwith x = x  [3] 

There are two constraints: 

 k
irr=1x = 1; i  [4] 

as only one value can be taken on. Moreover, over the row, values {air; i, r=1, .., k} are 
exclusive, whence one has: 

 k
iri I x = 1  [5] 

Where is the set of indices i for which the values are air = ajs = akt = ...= a (being a a 
certain value). 

This leads to the solution presented in Table 7 as the complement to Table 6. 
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Table 7 

Solution to the suudoku problem 
 9  2   3 5  

  6  3 4 9   

5 7 8 9  6 2 4 8 

 6 7 4  1    

 3 1   9 4  5 

   3   7 9 1 

 4 9     8 3 

3      5 7 9 

 5 8 1 9 3   4 

Suppose now that the nine numbers correspond to the elements of a set of (urban) 
amenities; one wants them all to be available inside (square) zones, and along a (square) 
network of routes or roads. The method exposed above can then be used to allocate the 
missing ones to zones and routes, given the amenities already present. This simple 
method forms the basis for a physical urban planning experiment. 

2.3 A generalized Weber problem 

The classical Weber problem minimizes total transport cost as a location criterion for an 
individual firm, F. A number of important features should be added, i.a. multiple purveyors, 
multiple markets, multiple transportation modes; hereafter those aspects are added. 

Two inputs (A, B) with each two purveyors, and two markets are considered; the A1, A2, 
B1, B2, M1, M2 coordinates are respectively (5,30), (20,10), (5,5), (5,20), (10,25) and 
(15,15). Moreover the unit transportation costs are more favorable over short distances for 
mode T1 than for mode T2 (respectively 1,2-2,1, 2,3-3,2, 3,4-4,3); technically they were 
introduced via if-conditions (the cutting values were respectively 10, 15 and 5). Finally the 
criterion was the minimization of overall transport cost over Manhattan distances, by 
choosing one A and one B firm, markets M1 and M2 having both to be served in 
proportions of 40% and 60%. The overall situation is depicted in Figure 1 below. 
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Figure 1 

A Weberian location problem: The spatial distribution 

 

The following binary variables are defined 

x1: choice of A1; 

y1: choice of B1; 

u1: choice of t1
A; 

v1: choice of t1
B; 

w1: choice of t1
M; 

The objective function to be minimized then becomes 

 
       

   

A A A A B B B B
A 1 1 1 2 1 1 1 2 B 1 1 1 2 1 1 1 2

M M M M M M
1 1 1 1 2 1 2 1 1 1 2 2

φ = a u t + 1- u t x d + 1- x d + a v t + 1- v t y d + 1- y d +

+q w t + 1- w t d + q w t + 1- w t d

              

      
 [6] 

In equation [6] symbol a stands for the input coefficients, q for the market shares, and d 
for the distances. The problem being linear in the distances, a global minimum can be 
attained. Table 8 shows the solution. 
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Table 8 

Solution for the generalized Weber problem 
Element  Characteristics Values 

F  Coordinates (10,15)
A1  Choice 0
A2  Choice 1
B1  Choice 0

B2  Choice 1

t1
A

  Choice 0

t2
A

  Choice 1
t1

B 
  Choice 1

t2
B

  Choice 0
t1

M  Choice 0
t2

M
  Choice 1

φ  Objective function 32

Larger and more complex cases should be investigated, but the method has proven to be 
operational. 

3. Spatial econometrics 

Again three cases will be studied, to wit multiple regimes, optimal regimes selection 
and finite automata. As said in the introduction to section 2, as the economics 
underlying spatial econometrics is beset with non-convexities, one should expect the 
latter to turn up in spatial econometrics. 

3.1 Multiple regimes 

In theoretical and applied physics space-time models have been classical tools of 
investigation; it comes to mind to try and appropriately apply some of them to spatial 
econometrics. Those space-time representations have since long been expressed in 
terms of partial differential equations; considering only one space variable, x, and time, 
t, a partial differential equation -abbreviated as PDE- for some function g(x, t) is a 
relation of the form: 

  x t xx xt tth x, t;g;g ,g ;g ,g ,g ;... = 0  [7] 

where, in general, h is a given function of the independent variables, x and t, of the still 
unknown function g, and of a finite number of its partial derivatives. One well-known 
member of that family is the wave equation specified as 

    2f x, t " x, tf  [8] 

the double dot meaning the second time-derivative (acceleration), the double prime the 
second x-derivative (curvature); α2 is a strictly positive parameter. Equation [8], as 
many other commonly used especially in theoretical (non-quantum) physics, is an 
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expression of local interaction. However, in spatial economics (the same as in quantum 
physics) "non-locality" is the rule. In order to express spatial interaction, equation [8] 
should be generalized to: 

      
1

2

1
, , " ,f x t w x f t d   




   [9] 

where w(x,) is the so-called "spatial discount function", its convolution with some 
variable representing a potential over a line [-l, +l]. Equation [9] should be called a 
potentialized partial differential equation, PPDE. 

Kaashoek and Paelinck (1994, 1996, 1998, 2001) analyzed various features of PPDE's: 
two-dimensional spatial cases, the effects of varying the potentializing function, and the 
possibility of controlling the space-time process. Last question results from the fact that 
the realizations of the process happen to be chaotic but, being generated from exact 
equations, they belong to the family of so-called exact-chaotic processes. 

Figure 2 hereafter pictures one such process taken from Kaashoek and Paelinck, (1998). 

Figure 2 

A realization of a PPDE 

 

One will notice the presence of sharp "peaks" which have been dubbed "pseudo-
solitons", as genuine solitons – as they are called in physics - are in fact infinitely dense 
local peaks (Dirac functions). However pseudo-solitons, like the true ones, can travel 
over space, as figure 2 clearly shows; one can imagine figure 2 as a series of peaky 
waves. 

One now has to rewrite equation [10] in a finite difference specification, which results in: 

      2 2 1 2
1, , ,t xf x t w x t  

    [10] 
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The summation depends on the spatial interaction process selected. As can be seen in 
Paelinck (2000) potentialized processes can produce very complex spatial patterns. 

Model [10] has been applied to the most populated region in France after Ile-de-France, 
the Rhône-Alpes region (Coutrot et al., 2009). In this case, it was used to analyze the 
development of knowledge-based industries by means of corresponding employment in 
activities close to the concept of knowledge-based industries over 3 periods in 39 towns 
of Rhône-Alpes. 

Briefly, the model was first applied to all 39 towns together, but as simulations of first 
results suggested, there is evidence for the existence of at least two regimes (Griffith 
and Paelinck, 2011, Chapter 13). Consequently, the equation to be estimated is the 
following: 

 
       

       

2
t0i 0i 1i 3i

* * *
0i 1i 3i

Δ 1n n = λ aΔ1n n + bΔ1n n + cΔ1n n +

+ 1- λ a Δ1n n + b Δ1n n + c Δ1n n

  

  

 [11] 

 being a binary switching variables, one more instance of non-convexity, typical of 
spatial economic analysis. 

The model has been estimated by minimizing absolute discrepancies with the purpose 
of neutralizing outliers but, given the result below, any estimator would have done. The 
results appear in Table 9, (I) referring to model [10], and (II) to model [11]. Note that (I) 
has been computed from natural values, (II) from natural logarithms. 

These results are indeed remarkable from different points of view. First, the regimes are 
each other's reverse in terms of signs. Second, the fit is almost an interpolation, so all 
coefficients should be highly significant. Finally, as said, the estimation method 
problem could be side-stepped; remarkable being also the fact that this happened for a 
double second-order difference specification. All those results mean that correct 
specification of a (spatial) econometric model is a central issue.  

Apart from these theoretical-econometric considerations, the empirical content of the 
results should also be considered. In this sense, there is empirical evidence to add 
robustness to the conclusions, as the (II)-class of Table 9 includes the three main 
activity centers of the region, to wit Lyons, Grenoble and Saint-Etienne, which 
moreover have a positive constant and, consequently, a positive autonomous 
“acceleration”. 
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Table 9 

Two regression results 
Parameters  (I) (II) 

A  -0.0041 0.0122

B  -0.0049 0.0072

c  0.0002 -0.0015

a*  - -0.0059

b*  - -0.0003

c*  - 0.0008

(Pseudo-)R2
  0.5156 0.9990

The conclusion should be, first that partial difference models do seem to be a very 
suitable tool to analyze large sets of small spatial units, but second, and most important, 
that some of the larger units can behave in a different way from the bulge of the set. The 
latter fact is one of the many instances of multiple regimes, characteristic of spatial 
econometric practice. 

3.2 Optimal regime selection 

The preceding section is clearly related to another interesting situation, to wit how to 
specify a model optimizing the number of regimes. This problem can be compared to 
optimizing a p-median problem with respect to p. A possible specification is: 

 

i i

j j

2
j j

Min P

s.t.

SR v

P = P

 







 [12] 

The pis are the regime selection binary variables as stated in the second restriction. The 
first restriction must be read in this way: the sum of squared residuals (SRj) should not 
exceed some given value v, or, alternatively, that the overall (global, pseudo) 
determination coefficient should exceed one minus that value. 

This specification has been applied to a linear dynamic model aiming to explain the 
growth of the Dutch regions (Griffith and Paelinck, 2011, Chapter 11): 

 it 1 it-1 1 it-1 i ity y z        [13] 

yit represent the relative Gross Regional Product (GRP) of the i-th Dutch macro-region 
in period t whereas zit is the sum of the remaining regions’ values. As said the two 
variables are expressed in shares, for the period 1988-2000, for the case of the four 
regional aggregates (North, South, East and West) that appear in Figure 4. 
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Figure 4 

The four Dutch macro-regions 

 

The data are included in Table 10 below. 

Table 10 

Relatives GRP for the four Dutch macro-regions 
Year  North South East West 

1988  10.8094 20.0306 17.3263 51.8337
1989  10.4381 20.1981 17.2407 52.1231
1990  10.4117 20.4517 17.4317 51.7049
1991  10.6066 20.4546 17.5047 51.4341
1992  10.9608 20.4557 17.4602 51.1233
1993  10.6208 20.5621 17.6697 51.1474
1994  10.5830 20.3957 17.8816 51.1397
1995  10.2275 20.6878 17.8719 51.2128
1996  10.0604 20.9624 17.7872 51.1900
1997  10.3111 20.9355 17.7193 51.0341
1998  10.1506 20.7147 17.6959 51.4388
1999  9.7498 20.9352 17.6603 51.6547
2000  9.3353 21.0844 17.8538 51.7265
2001  9.5463 20.9916 17.7386 51.7235

The results appear in Table 11. The first two columns indicate the number of spatial 
regimes considered and the components of each spatial regime; in the other columns there 
appear the parameter estimates and a measure of goodness-of-fit (as this was a first exercise, 
LS was used; see also the concluding remarks). 
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Table 11 

Results for model [13] 
Regions Number of 

regimes 
θ1 θ2 1 (macro)-R2 Estimation 

method 

(N,W,S,E) 1 1.0001 0.0000 0.6352 0.5566 LS 

(N,W);(S.E) 2 - - - 0.5735 LS 

(N);(S,E);(W) 3 - - - 0.6302 LS 

(N) 4 0.8711 0.0137 0.8500 0.6430 LS 

(S)  0.8226 0.0522 0.7300  

(E)  0.7965 0.0502 0.7400  

(W)  0.8677 0.1399 0.3400  

(N)* 4 -1.2368 -1.2618 141.1399 0.8870 SDLS 

(S)*  -0.2450 0.4712 -47.4387 0.8816  

(E)*  -0.2108 0.1072 -5.54545 0.8074  

(W)*  6.7218 0.6220 -748.6307 0.8894  

*From Table 11.3 in Griffith and Paelinck (2011, Chapter 11). 

As is to be expected, the (pseudo-macro)-R2s (i.e. the global variance ratios) increase 
with the number of regimes. As to model [12], it renders one regime as optimal as long 
as the desired R2 does not exceed 0.5566 (first restriction in 12); between 0.5566 and 
0.5735 the model selects two regimes. 

However, the specification used is far from appropriate to model shares. The last group 
of results (starred case appearing in the fourth panel) have been obtained by using a 
mixed Lotka-Volterra specification with endogenously generated SDLS variables 
(Griffith and Paelinck, 2011, chapter 11). As noted in the chapter just mentioned (page 
183) no extra adding-up constraint had to be introduced, which would not have been the 
case for model [13] which delivers only positive coefficients (Table 11, third panel). 
Once more, specification is a central issue in spatial econometrics. 

3.3 Finite automata 

A finite automaton specification (for a formal definition, see Linz, 1996, p. 2) can be 
viewed as an "if"-specification; in symbolic terms 

  : if ; ;xi zi xi ziy              [14] 

which reads as follows: if , then , elsexi zi xi zi             

An important problem indeed is that of the algebraic structure to be given to the model 
under construction. In Paelinck (2002) the possibilities of model specification based on 
a so-called "min-algebra" were studied. That algebra, in fact, generalizes the 
specification of the European FLEUR-model (Ancot and Paelinck, 1983), the latter 
being based on the idea of a "growth threshold". In a min-algebra, one (or several) 
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explanatory terms (variables with their reaction coefficients) of minimal value determine 
the value of the endogenous variable(s). So, instead of considering a (linear or non-
linear) combination of endogenous, exogenous or predetermined variables, one will 
only consider one (or a limited number) of explanatory variables in each equation; for 
instance, the development of a region could be hampered by the absence of a strategic 
factor, such as technologically highly trained manpower. 

A bad specification of regional models becomes really dramatic when they are used to 
derive "baskets" of regional policy measures. Indeed, the logic of the chosen algebra 
produces a linear programming solution with more non-zero decision variables than the 
number of constraints, whereas under a "classical" algebra would in general produce 
only that number of non-zero decision variables. 

The min-algebra can then be translated into a finite automaton as defined above. To 
submit such a finite automaton model to an empirical test in a well-documented case, 
gross regional product figures for the Netherlands have been investigated (Griffith and 
Paelinck, 2011, chapter 14). They were divided in two macro-regional sets, one for the 
western provinces (Noord-Holland, Zuid-Holland, Utrecht, the so-called "Rimcity"), the 
other one comprising the data for the remaining provinces. 

The curious thing, at first sight, was the behavior of the growth rate values for the non-
Rimcity provinces: whatever the state of the location factors attractiveness, they follow 
the ups and downs of the Rimcity growth rates. This is completely in line with the fact 
that the Rimcity is indeed the "motor" of the Dutch economy (Paelinck, 1973, pp. 25-
40, especially pp.37-40), imposing its evolutionary rhythm to the other regions. This 
finding has been confirmed with a Lotka-Volterra finite automaton specification 
(Griffith and Paelinck, 2011, chapter 13). 

4. Conclusions 

Though being the curse of the spatial economist, theoretical or applied, and also of the 
spatial econometrician, non-convexities can be and must be handled. Physical planning 
or the development of industrial complexes, in space and in time, are typical examples 
where non-convexities play a fundamental role. However, these problems can be treated 
by using appropriate instruments, i.e., nonlinear optimization techniques. Weberian 
classical location problems also admit operational solution by linear or nonlinear 
programming. Our conclusion is that discrete mathematics should become an important 
analytical tool in all those fields. 

The field of spatial econometrics is also prone to discontinuities and non-convexities. 
We are not talking exactly about spatial heterogeneity, which may be treated by using, 
for example, local regressions. It is about spatial regimes as a way of discretization of 
the space where, i.e., the economic growth model changes according to some restriction 
or threshold effect. This is a field that merits a bit more attention from the scholars. 

One more remark from our study that enlarges that discussion: binary conditions might 
be replaced by fuzzy ones, in the sense that they are replaced by the closed interval 
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[0,1]. This means that several regimes might apply to the same spatial unit, a fact that 
has hardly been recognized by spatial analysts. 
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Appendix 

The problem of Table 1 has been solved according to the following linearization method 
for Quadratic Assignment Problems (QAPs). Consider any minimising QAP; all QAPs 
now being binary bilinear problems. 

Write a bilinear term xy as: 

 xy x + y -1  [A1] 

For x = y = 1, the value of xy equals 1; for x or y equalling 0, its value is zero; but for x 
= y = 0 its value is -1. 

Now construct 

    f x, y = a x + y -1 + z 0  [A2] 

with z being a real non-negative auxiliary variable, added to the {x,y] set; for x=y=0 in a 
minimizing problem, condition [A2] will result in a value of z equal to a in equation 
[A2]. The assignment conditions mentioned after equations [1] of section 2.1.1 then 
guarantee that not all of the z's will be zero. The number of additional z's that must be 
computed can be large, for a general MPP-QAP problem. Being n the order of vector x, 
the number of bilinear terms amounts to n* = n(n-1)/2, which can be large but not too 
large for an LP (e.g. for n = 100, n* = 4950; in the example below, n* = 18).  

The full linear program or LP now reads as: 
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n n
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x ;x ;z
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Min φ = a x + x -1 + z

s.t.

a x + x -1 + z 0

x ;x ;z 0

 
 



 




 

Jx = τ

 [A3] 


